Elsevier

Life Sciences

Volume 274, 1 June 2021, 119341
Life Sciences

Review article
Implications of microscale lung damage for COVID-19 pulmonary ventilation dynamics: A narrative review

https://doi.org/10.1016/j.lfs.2021.119341Get rights and content

Highlights

  • Recent findings allow for better understanding of tissue mechanics in COVID-19 lung.

  • Alveolar damage causes increase in surface tension and forces surrounding injury.

  • Alveolar fibrosis in COVID-19 stiffens tissue affecting gas exchange.

  • Alveolar capillary damage leads to decreased oxygenation and diffusion capacity.

  • Microscale mechanical effects of COVID-19 impact macroscale lung function.

Abstract

The COVID-19 pandemic surges on as vast research is produced to study the novel SARS-CoV-2 virus and the disease state it induces. Still, little is known about the impact of COVID-19-induced microscale damage in the lung on global lung dynamics. This review summarizes the key histological features of SARS-CoV-2 infected alveoli and links the findings to structural tissue changes and surfactant dysfunction affecting tissue mechanical behavior similar to changes seen in other lung injury. Along with typical findings of diffuse alveolar damage affecting the interstitium of the alveolar walls and blood-gas barrier in the alveolar airspace, COVID-19 can cause extensive microangiopathy in alveolar capillaries that further contribute to mechanical changes in the tissues and may differentiate it from previously studied infectious lung injury. Understanding microlevel damage impact on tissue mechanics allows for better understanding of macroscale respiratory dynamics. Knowledge gained from studies into the relationship between microscale and macroscale lung mechanics can allow for optimized treatments to improve patient outcomes in case of COVID-19 and future respiratory-spread pandemics.

Keywords

Coronavirus infection
Micromechanics
Diffuse alveolar damage
Fibrotic lesions
Surfactant dysfunction
Microangiopathy

Cited by (0)

View Abstract