Dynamical Modeling of COVID-19 and Use of Optimal Control to Reduce the Infected Population and Minimize the Cost of Vaccination and Treatment

Authors

  • Yohannes Dhimas Mahardika Diponegoro University (UNDIP)

DOI:

https://doi.org/10.21512/comtech.v12i2.6466

Keywords:

dynamical modeling, optimal control, infected population, cost of vaccination, vaccination treatment, COVID-19

Abstract

The research described a model formulation of COVID-19 using a dynamic system of Ordinary Differential Equation (ODE) which involved four population systems (susceptible, exposed, infectious, and recovered). Then, the research analyzed the direction of the equilibrium, Disease Free Equilibrium (DFE), and Endemic Equilibrium (EE). The treatment and vaccination were the control functions applied to the dynamical system modeling of COVID-19. The research was done by determining dimensionless number R0 or Basic Reproduction Number and applying optimal control into the dynamical system using the Pontryagin Minimum Principle. Numerical calculations were also performed to illustrate and compare the graph of the dynamical system with and without a control function. From the results, there is a reduction in the number of susceptible and infected populations. It indicates that giving vaccines to susceptible populations and treating infected populations affect the number of susceptible and infected populations. It also means thatthis control can reduce the spread of the virus.

Dimensions

Plum Analytics

Author Biography

Yohannes Dhimas Mahardika, Diponegoro University (UNDIP)

Department of Mathematis

References

Anagnost, J. J., & Desoer, C. A. (1989). An elementary proof of the Routh-Hurwitz stability criterion (Technical report). University of California.

Annas, S., Pratama, M. I., Rifandi, M., Sanusi, W., & Side, S. (2020). Stability analysis and numerical simulation of SEIR model for pandemic COVID-19 spread in Indonesia. Chaos, Solitons & Fractals, 139(October), 1-19. https://doi.org/10.1016/j.chaos.2020.110072

Anita, S., Arnăutu, V., & Capasso, V. (2011). An introduction to optimal control problems in life sciences and economics: From mathematical models to numerical simulation with MATLAB®. Springer Science+Business Media.

Brauer, F., & Castillo-Chavez, C. (2013). Mathematical models in population biology and epidemiology. Springer Science+Business Media.

Al Farizi, S., & Harmawan, B. N. (2020). Data transparency and information sharing: Coronavirus prevention problems in Indonesia. Jurnal Administrasi Kesehatan Indonesia, 8, 35-50. https://doi.org/10.20473/jaki.v8i2.2020.35-50

Delamater, P. L., Street, E. J., Leslie, T. F., Yang, Y. T., & Jacobsen, K. H. (2019). Complexity of the basic reproduction number (R0). Emerging Infectious Diseases, 25(1), 1-4. https://doi.org/10.3201/eid2501.171901

Eaton, J. W., Bateman, D., Hauberg, S., & Wehbring, R. (2021). GNU Octave: A high-level interactive language for numerical computations. Retrieved from https://enacit.epfl.ch/cours/matlab-octave/octave-documentation/octave/octave.pdf

Hattaf, K., & Dutta, H. (Eds.) (2020). Mathematical modelling and analysis of infectious diseases. Springer.

Kan, B., Wang, M., Jing, H., Xu, H., Jiang, X., Yan, M., ... & Xu, J. (2005). Molecular evolution analysis and geographic investigation of severe acute respiratory syndrome coronavirus-like virus in palm civets at an animal market and on farms. Journal of Virology, 79(18), 11892-11900. https://doi.org/10.1128/jvi.79.18.11892-11900.2005

Krishna, M. V., & Prakash, J. (2020). Mathematical modelling on phase based transmissibility of coronavirus. Infectious Disease Modelling, 5, 375-385. https://doi.org/10.1016/j.idm.2020.06.005

Kumar, V., & Kumar, D. (2018). Analysis of epidemic model using basic reproduction number. In Proceedings of 3rd International Conference on Internet of Things and Connected Technologies (ICIoTCT) (pp. 26-27). https://doi.org/10.2139/ssrn.3166500

Li, H., Chen, X., & Huang, H. (2020). The novel coronavirus outbreak: What can be learned from China in public reporting? Global Health Research and Policy, 5, 1-3. https://doi.org/10.1186/s41256-020-00140-9

Murray, J. D. (2011). Mathematical biology: I. An introduction. Springer.

Pontryagin, L. S. (1962). The mathematical theory of optimal processes. Interscience Publishers.

Resendis-Antonio, O. (2013). Jacobian matrix. In W. Dubitzky, O. Wolkenhauer, K. H. Cho, & H. Yokota (Eds.), Encyclopedia of systems biology. Springer. https://doi.org/10.1007/978-1-4419-9863-7_1367

Roberts, M. G., & Heesterbeek, J. A. P. (2013). Characterizing the next-generation matrix and basic reproduction number in ecological epidemiology. Journal of Mathematical Biology, 66, 1045-1064. https://doi.org/10.1007/s00285-012-0602-1

Shereen, M. A., Khan, S., Kazmi, A., Bashir, N., & Siddique, R. (2020). COVID-19 infection: Emergence, transmission, and characteristics of human coronaviruses. Journal of Advanced Research, 24(July), 91-98. https://doi.org/10.1016/j.jare.2020.03.005

Van den Driessche, P. (2017). Reproduction numbers of infectious disease models. Infectious Disease Modelling, 2(3), 288-303. https://doi.org/10.1016/j.idm.2017.06.002

Wang, C., Horby, P. W., Hayden, F. G., & Gao, G. F. (2020). A novel coronavirus outbreak of global health concern. The Lancet, 395(10223), 470-473. https://doi.org/10.1016/s0140-6736(20)30185-9

Wang, M., & Hu, Z. (2013). Bats as animal reservoirs for the SARS coronavirus: Hypothesis proved after 10 years of virus hunting. Virologica Sinica, 28, 315-317. https://doi.org/10.1007/s12250-013-3402-x

Whalen, A. J., Brennan, S. N., Sauer, T. D., & Schiff, S. J. (2015). Observability and controllability of nonlinear networks: The role of symmetry. Physical Review X, 5(1), 1-18. https://doi.org/10.1103/physrevx.5.011005

Yang, Z., Zeng, Z., Wang, K., Wong, S. S., Liang, W., Zanin, M., ... & He, J. (2020). Modified SEIR and AI prediction of the epidemics trend of COVID-19 in China under public health interventions. Journal of thoracic disease, 12(3), 165-174. https://doi.org/10.21037/jtd.2020.02.64

Zheng, B. J., Guan, Y., Wong, K. H., Zhou, J., Wong, K. L., Young, B. W. Y., ... & Lee, S. S. (2004). SARS-related virus predating SARS outbreak, Hong Kong. Emerging Infectious Diseases, 10(2), 176-178. https://doi.org/10.3201/eid1002.030533

Downloads

Published

2021-11-09

Issue

Section

Articles
Abstract 507  .
PDF downloaded 368  .