1887
Research Open Access
Like 0

Abstract

Introduction

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the etiological agent of coronavirus disease (COVID-19). People infected with SARS-CoV-2 may exhibit no or mild non-specific symptoms; thus, they may contribute to silent circulation of the virus among humans. Since SARS-CoV-2 RNA can be detected in stool samples, monitoring SARS-CoV-2 RNA in waste water (WW) has been proposed as a complementary tool to investigate virus circulation in human populations.

Aim

To test if the quantification of SARS-CoV-2 genomes in WW correlates with the number of symptomatic or non-symptomatic carriers.

Method

We performed a time-course quantitative analysis of SARS-CoV-2 by RT-qPCR in raw WW samples collected from several major WW treatment plants in Greater Paris. The study period was 5 March to 23 April 2020, including the lockdown period in France (from 17 March).

Results

We showed that the increase of genome units in raw WW accurately followed the increase of human COVID-19 cases observed at the regional level. Of note, the viral genome could be detected before the epidemic grew massively (around 8 March). Equally importantly, a marked decrease in the quantities of genome units was observed concomitantly with the reduction in the number of new COVID-19 cases, 29 days following the lockdown.

Conclusion

This work suggests that a quantitative monitoring of SARS-CoV-2 genomes in WW could generate important additional information for improved monitoring of SARS-CoV-2 circulation at local or regional levels and emphasises the role of WW-based epidemiology.

Loading

Article metrics loading...

/content/10.2807/1560-7917.ES.2020.25.50.2000776
2020-12-17
2024-04-18
http://instance.metastore.ingenta.com/content/10.2807/1560-7917.ES.2020.25.50.2000776
Loading
Loading full text...

Full text loading...

/deliver/fulltext/eurosurveillance/25/50/eurosurv-25-50-5.html?itemId=/content/10.2807/1560-7917.ES.2020.25.50.2000776&mimeType=html&fmt=ahah

References

  1. van Doremalen N, Bushmaker T, Morris DH, Holbrook MG, Gamble A, Williamson BN, et al. Aerosol and Surface Stability of SARS-CoV-2 as Compared with SARS-CoV-1. N Engl J Med. 2020;382(16):1564-7.  https://doi.org/10.1056/NEJMc2004973  PMID: 32182409 
  2. Wang X-W, Li J-S, Guo T-K, Zhen B, Kong Q-X, Yi B, et al. Concentration and detection of SARS coronavirus in sewage from Xiao Tang Shan Hospital and the 309th Hospital. J Virol Methods. 2005;128(1-2):156-61.  https://doi.org/10.1016/j.jviromet.2005.03.022  PMID: 15964082 
  3. Zhou J, Li C, Zhao G, Chu H, Wang D, Yan HH-N, et al. Human intestinal tract serves as an alternative infection route for Middle East respiratory syndrome coronavirus. Sci Adv. 2017;3(11):eaao4966.  https://doi.org/10.1126/sciadv.aao4966  PMID: 29152574 
  4. Zhang W, Du R-H, Li B, Zheng X-S, Yang X-L, Hu B, et al. Molecular and serological investigation of 2019-nCoV infected patients: implication of multiple shedding routes. Emerg Microbes Infect. 2020;9(1):386-9.  https://doi.org/10.1080/22221751.2020.1729071  PMID: 32065057 
  5. Zhang H, Kang Z, Gong H, Xu D, Wang J, Li Z, et al. The digestive system is a potential route of 2019-nCov infection: a bioinformatics analysis based on single-cell transcriptomes; bioRxiv 2020. Available from: http://biorxiv.org/lookup/doi/10.1101/2020.01.30.927806
  6. Wu Y, Guo C, Tang L, Hong Z, Zhou J, Dong X, et al. Prolonged presence of SARS-CoV-2 viral RNA in faecal samples. Lancet Gastroenterol Hepatol. 2020;5(5):434-5.  https://doi.org/10.1016/S2468-1253(20)30083-2  PMID: 32199469 
  7. Wölfel R, Corman VM, Guggemos W, Seilmaier M, Zange S, Müller MA, et al. Virological assessment of hospitalized patients with COVID-2019. Nature. 2020;581(7809):465-9.  https://doi.org/10.1038/s41586-020-2196-x  PMID: 32235945 
  8. Chen N, Zhou M, Dong X, Qu J, Gong F, Han Y, et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. Lancet. 2020;395(10223):507-13.  https://doi.org/10.1016/S0140-6736(20)30211-7  PMID: 32007143 
  9. Chen C, Gao G, Xu Y, Pu L, Wang Q, Wang L, et al. SARS-CoV-2–Positive Sputum and Feces After Conversion of Pharyngeal Samples in Patients With COVID-19. Philadelphia: Annals of Internal Medicine; 2020. Available from: https://annals.org/aim/fullarticle/2764036/sars-cov-2-positive-sputum-feces-after-conversion-pharyngeal-samples
  10. Yeo C, Kaushal S, Yeo D. Enteric involvement of coronaviruses: is faecal-oral transmission of SARS-CoV-2 possible? Lancet Gastroenterol Hepatol. 2020;5(4):335-7.  https://doi.org/10.1016/S2468-1253(20)30048-0  PMID: 32087098 
  11. Grzelak L, Temmam S, Planchais C, Demeret C, Huon C, Guivel F, et al. SARS-CoV-2 serological analysis of COVID-19 hospitalized patients, pauci-symptomatic individuals and blood donors; medRxiv 2020. Available from: http://medrxiv.org/lookup/doi/10.1101/2020.04.21.20068858
  12. de Assis RR, Jain A, Nakajima R, Jasinskas A, Felgner J, Obiero JM, et al. Analysis of SARS-CoV-2 Antibodies in COVID-19 Convalescent Plasma using a Coronavirus Antigen Microarray; bioRxiv 2020. Available from: http://biorxiv.org/lookup/doi/10.1101/2020.04.15.043364
  13. Li R, Pei S, Chen B, Song Y, Zhang T, Yang W, et al. Substantial undocumented infection facilitates the rapid dissemination of novel coronavirus (SARS-CoV2). Science. 2020;16(6490):eabb3221.
  14. Mizumoto K, Kagaya K, Zarebski A, Chowell G. Estimating the asymptomatic proportion of coronavirus disease 2019 (COVID-19) cases on board the Diamond Princess cruise ship, Yokohama, Japan, 2020. Euro Surveill. 2020;25(10):2000180.  https://doi.org/10.2807/1560-7917.ES.2020.25.10.2000180  PMID: 32183930 
  15. Al-Tawfiq JA. Asymptomatic coronavirus infection: MERS-CoV and SARS-CoV-2 (COVID-19). Travel Med Infect Dis. 2020;35:101608.  https://doi.org/10.1016/j.tmaid.2020.101608  PMID: 32114075 
  16. Rothe C, Schunk M, Sothmann P, Bretzel G, Froeschl G, Wallrauch C, et al. Transmission of 2019-nCoV Infection from an Asymptomatic Contact in Germany. N Engl J Med. 2020;382(10):970-1.  https://doi.org/10.1056/NEJMc2001468  PMID: 32003551 
  17. Ng SC, Tilg H. COVID-19 and the gastrointestinal tract: more than meets the eye. Gut. 2020;69(6):973-4.  https://doi.org/10.1136/gutjnl-2020-321195  PMID: 32273292 
  18. González-Mariño I, Zuccato E, Santos MM, Castiglioni S. Monitoring MDMA metabolites in urban wastewater as novel biomarkers of consumption. Water Res. 2017;115:1-8.  https://doi.org/10.1016/j.watres.2017.01.063  PMID: 28254532 
  19. Bisseux M, Colombet J, Mirand A, Roque-Afonso A-M, Abravanel F, Izopet J, et al. Monitoring human enteric viruses in wastewater and relevance to infections encountered in the clinical setting: a one-year experiment in central France, 2014 to 2015. Euro Surveill. 2018;23(7):17-00237.  https://doi.org/10.2807/1560-7917.ES.2018.23.7.17-00237  PMID: 29471623 
  20. Prevost B, Lucas FS, Ambert-Balay K, Pothier P, Moulin L, Wurtzer S. Deciphering the Diversities of Astroviruses and Noroviruses in Wastewater Treatment Plant Effluents by a High-Throughput Sequencing Method. Appl Environ Microbiol. 2015;81(20):7215-22.  https://doi.org/10.1128/AEM.02076-15  PMID: 26253673 
  21. van Doremalen N, Bushmaker T, Morris DH, Holbrook MG, Gamble A, Williamson BN, et al. Aerosol and Surface Stability of SARS-CoV-2 as Compared with SARS-CoV-1. N Engl J Med. 2020;382(16):1564-7.  https://doi.org/10.1056/NEJMc2004973  PMID: 32182409 
  22. Gundy PM, Gerba CP, Pepper IL. Survival of Coronaviruses in Water and Wastewater. Food Environ Virol. 2009;1(1):10.  https://doi.org/10.1007/s12560-008-9001-6 
  23. Ye Y, Ellenberg RM, Graham KE, Wigginton KR. Survivability, Partitioning, and Recovery of Enveloped Viruses in Untreated Municipal Wastewater. Environ Sci Technol. 2016;50(10):5077-85.  https://doi.org/10.1021/acs.est.6b00876  PMID: 27111122 
  24. Lodder W, de Roda Husman AM. SARS-CoV-2 in wastewater: potential health risk, but also data source. Lancet Gastroenterol Hepatol. 2020;5(6):533-4.  https://doi.org/10.1016/S2468-1253(20)30087-X  PMID: 32246939 
  25. Mallapaty S. How sewage could reveal true scale of coronavirus outbreak. Nature. 2020;580(7802):176-7.  https://doi.org/10.1038/d41586-020-00973-x  PMID: 32246117 
  26. Medema G, Heijnen L, Elsinga G, Italiaander R, Brouwer A. Presence of SARS-Coronavirus-2 in sewage; medRxiv 2020. Available from: https://www.medrxiv.org/content/10.1101/2020.03.29.20045880v2
  27. Wu F, Xiao A, Zhang J, Gu X, Lee WL, Kauffman K, et al. SARS-CoV-2 titers in wastewater are higher than expected from clinically confirmed cases; medRxiv 2020.
  28. Corman VM, Landt O, Kaiser M, Molenkamp R, Meijer A, Chu DKW, et al. Detection of 2019 novel coronavirus (2019-nCoV) by real-time RT-PCR. Euro Surveill. 2020;25(3):2000045.  https://doi.org/10.2807/1560-7917.ES.2020.25.3.2000045  PMID: 31992387 
  29. Wurtzer S, Prevost B, Lucas FS, Moulin L. Detection of enterovirus in environmental waters: a new optimized method compared to commercial real-time RT-qPCR kits. J Virol Methods. 2014;209:47-54.  https://doi.org/10.1016/j.jviromet.2014.08.016  PMID: 25196451 
  30. Santé Publique France (SPF). Données des urgences hospitalières et de SOS médecins relatives à l'épidémie de COVID-19. [Data from hospital emergencies and medical emergency services relating to the COVID-19 epidemic]. Saint-Maurice: SPF. French. Available from: https://www.data.gouv.fr/fr/datasets/donnees-des-urgences-hospitalieres-et-de-sos-medecins-relatives-a-lepidemie-de-covid-19/
  31. Atkinson B, Petersen E. SARS-CoV-2 shedding and infectivity. Lancet. 2020;395(10233):1339-40.  https://doi.org/10.1016/S0140-6736(20)30868-0  PMID: 32304647 
  32. Gudbjartsson DF, Helgason A, Jonsson H, Magnusson OT, Melsted P, Norddahl GL, et al. Spread of SARS-CoV-2 in the Icelandic Population. N Engl J Med. 2020;382(24):2302-15.  https://doi.org/10.1056/NEJMoa2006100  PMID: 32289214 
/content/10.2807/1560-7917.ES.2020.25.50.2000776
Loading

Data & Media loading...

Supplementary data

Submit comment
Close
Comment moderation successfully completed
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error