Generic placeholder image

Recent Patents on Biotechnology

Editor-in-Chief

ISSN (Print): 1872-2083
ISSN (Online): 2212-4012

Mini-Review Article

In-vitro and In-vivo Experimental Models for MERS-CoV, SARSCoV, and SARS-CoV-2 Viral Infection: A Compendious Review

Author(s): Sonia Singh*, Aman Kumar and Himanshu Sharma

Volume 16, Issue 2, 2022

Published on: 14 March, 2022

Page: [82 - 101] Pages: 20

DOI: 10.2174/1872208316666220124101611

Price: $65

Abstract

SARS-CoV-2 belongs to the Coronaviridae family of coronaviruses. This novel virus has predominantly affected a vast world population and was declared a pandemic outbreak. The clinical and scientific communities strive to develop and validate potential treatments and therapeutic measures. The comparative study of existing synthetic drugs, evaluation of safety aspects, and the devel opment of novel vaccines can be efficiently achieved by using suitable animal models of primary infection and validating translational findings in human cell lines and tissues. The current paper explores varied animal and cell/tissue models employed and recapitulate various critical issues of ailment manifestation in humans to develop and evaluate novel therapeutic countermeasures and even include some novel patent developed in this regard.

Keywords: COVID-19, countermeasures, coronavirus, MERS, organoids, SARS, translational.

Graphical Abstract
[1]
Hui DS, Azhar EI, Memish ZA, Zumla A. Human coronavirus infections—severe acute respiratory syndrome (SARS), Middle East respiratory syn-drome (MERS), and SARS-CoV-2. Ref Module Bi-omed Sci 2020; p. 11634.
[http://dx.doi.org/10.1016/B978-0-12-801238-3.11634-4]
[2]
Singh A, Singh RS, Sarma P, et al. A comprehensive review of animal models for coronaviruses: SARS-CoV-2, SARS-CoV, and MERS-CoV. Virol Sin 2020; 35(3): 290-304.
[http://dx.doi.org/10.1007/s12250-020-00252-z] [PMID: 32607866]
[3]
Sharma H, Singh S, Pathak S. Pathogenesis of COVID-19, disease outbreak: A Review. Curr Pharm Biotechnol 2021; 22(12): 1591-601.
[http://dx.doi.org/10.2174/1389201022666210127113441] [PMID: 33504302]
[4]
Gu H, Chen Q, Yang G, et al. Adaptation of SARS-CoV-2 in BALB/c mice for testing vaccine efficacy. Science 2020; 369(6511): 1603-7.
[http://dx.doi.org/10.1126/science.abc4730] [PMID: 32732280]
[5]
Gu H, Chen Q, Yang G, et al. Rapid adaptation of SARS-CoV-2 in BALB/c mice: Novel mouse model for vaccine efficacy. bioRxiv 2020.
[http://dx.doi.org/10.1101/2020.05.02.073411]
[6]
Hassan AO, Case JB, Winkler ES, et al. SARS-CoV-2 infection model in mice demonstrates protection by neutralizing antibodies. Cell 2020; 182(3): 744-753.e4.
[http://dx.doi.org/10.1016/j.cell.2020.06.011] [PMID: 32553273]
[7]
Dinnon KH III, Leist SR, Schäfer A, et al. A mouse-adapted model of SARS-CoV-2 to test COVID-19 countermeasures. Nature 2020; 586(7830): 560-6.
[http://dx.doi.org/10.1038/s41586-020-2708-8] [PMID: 32854108]
[8]
Bao L, Deng W, Huang B, et al. The pathogenicity of SARS-CoV-2 in hACE2 transgenic mice. Nature 2020; 583(7818): 830-3.
[http://dx.doi.org/10.1038/s41586-020-2312-y] [PMID: 32380511]
[9]
Jiang RD, Liu MQ, Chen Y, et al. Pathogenesis of SARS-CoV-2 in transgenic mice expressing human angiotensin-converting enzyme 2. Cell 2020; 182(1): 50-58.e8.
[http://dx.doi.org/10.1016/j.cell.2020.05.027] [PMID: 32516571]
[10]
Sun SH, Chen Q, Gu HJ, et al. A mouse model of SARS-CoV-2 infection and pathogenesis. Cell Host Microbe 2020; 28(1): 124-133.e4.
[http://dx.doi.org/10.1016/j.chom.2020.05.020] [PMID: 32485164]
[11]
Sun J, Zhuang Z, Zheng J, et al. Generation of a broadly useful model for COVID-19 pathogenesis, vaccination and treatment. Cell 2020; 182(3): 734-743.e5.
[http://dx.doi.org/10.1016/j.cell.2020.06.010] [PMID: 32643603] [http://dx.doi.org/10.1016/j.cell.2020.06.010] [PMID: 32643603]
[12]
Imai M, Iwatsuki-Horimoto K, Hatta M, et al. Syri-an hamsters as a small animal model for SARS-CoV-2 infection and countermeasure development. Proc Natl Acad Sci USA 2020; 117(28): 16587-95.
[http://dx.doi.org/10.1073/pnas.2009799117] [PMID: 32571934]
[13]
Sia SF, Yan LM, Chin AWH, et al. Pathogenesis and transmission of SARS-CoV-2 in golden hamsters. Nature 2020; 583(7818): 834-8.
[http://dx.doi.org/10.1038/s41586-020-2342-5] [PMID: 32408338]
[14]
Lee AC, Zhang AJ, Chan JF, et al. Oral SARS-CoV-2 inoculation establishes subclinical respiratory infec-tion with virus shedding in golden Syrian hamsters. Cell Reports Medicine 2020; 1(7)100121
[http://dx.doi.org/10.1016/j.xcrm.2020.100121] [PMID: 32984855]
[15]
Chan JF, Zhang AJ, Yuan S, et al. Simulation of the clinical and pathological manifestations of Corona-virus Disease 2019 (COVID-19) in a golden Syrian hamster model: Implications for disease pathogene-sis and transmissibility. Clin Infect Dis 2020; 71(9): 2428-46.
[http://dx.doi.org/10.1093/cid/ciaa325] [PMID: 32215622]
[16]
Kim YI, Kim SG, Kim SM, et al. Infection and rapid transmission of SARS-CoV-2 in ferrets. Cell Host Microbe 2020; 27(5): 704-709.e2.
[http://dx.doi.org/10.1016/j.chom.2020.03.023] [PMID: 32259477]
[17]
Lu S, Zhao Y, Yu W, et al. Comparison of SARS-CoV-2 infections among 3 species of non-human primates. BioRxiv 2020.
[http://dx.doi.org/10.1101/2020.04.08.031807]
[18]
Woolsey C, Borisevich V, Prasad AN, et al. Estab-lishment of an African green monkey model for COVID-19. bioRxiv 2020.
[http://dx.doi.org/10.1101/2020.05.17.100289]
[20]
Munster VJ, Feldmann F, Williamson BN, et al. Res-piratory disease in rhesus macaques inoculated with SARS-CoV-2. Nature 2020; 585(7824): 268-72.
[http://dx.doi.org/10.1038/s41586-020-2324-7] [PMID: 32396922]
[21]
Deng W, Bao L, Gao H, et al. Ocular conjunctival inoculation of SARS-CoV-2 can cause mild COVID-19 in rhesus macaques. Nat Commun 2020; 11(1): 4400.
[http://dx.doi.org/10.1038/s41467-020-18149-6] [PMID: 32879306]
[22]
Rockx B, Kuiken T, Herfst S, et al. Comparative pathogenesis of COVID-19, MERS, and SARS in a nonhuman primate model. Science 2020; 368(6494): 1012-5.
[http://dx.doi.org/10.1126/science.abb7314] [PMID: 32303590]
[23]
Corbett KS, Flynn B, Foulds KE, et al. Evaluation of the mRNA-1273 vaccine against SARS-CoV-2 in nonhuman primates. N Engl J Med 2020; 383(16): 1544-55.
[http://dx.doi.org/10.1056/NEJMoa2024671] [PMID: 32722908]
[24]
Maisonnasse P, Guedj J, Contreras V, et al. Hy-droxychloroquine use against SARS-CoV-2 infec-tion in non-human primates. Nature 2020; 585(7826): 584-7.
[http://dx.doi.org/10.1038/s41586-020-2558-4] [PMID: 32698191]
[25]
Winkler ES, Bailey AL, Kafai NM, et al. SARS-CoV-2 infection of human ACE2-transgenic mice causes severe lung inflammation and impaired function. Nat Immunol 2020; 21(11): 1327-35.
[http://dx.doi.org/10.1038/s41590-020-0778-2] [PMID: 32839612]
[26]
Moreau GB, Burgess SL, Sturek JM, Donlan AN, Petri WA Jr, Mann BJ. Evaluation of K18-hACE2 mice as a model of SARS-CoV-2 infection. Am J Trop Med Hyg 2020; 103(3): 1215-9.
[http://dx.doi.org/10.4269/ajtmh.20-0762] [PMID: 32723427]
[27]
Osterrieder N, Bertzbach LD, Dietert K, et al. Agede-pendent progression of SARS-CoV-2 infection in Syrian hamsters. Viruses 2020; 12(7): 779.
[http://dx.doi.org/10.3390/v12070779] [PMID: 32698441]
[28]
Brocato RL, Principe LM, Kim RK, et al. Disruption of adaptive immunity enhances disease in SARS-CoV-2-infected Syrian hamsters. J Virol 2020; 94(22): e01683-20.
[http://dx.doi.org/10.1128/JVI.01683-20] [PMID: 32900822]
[29]
Mohandas S, Jain R, Yadav PD, et al. Evaluation of the susceptibility of mice & hamsters to SARS-CoV--2 infection. Indian J Med Res 2020; 151(5): 479-82.
[http://dx.doi.org/10.4103/ijmr.IJMR_2235_20] [PMID: 32611917]
[30]
Richard M, Kok A, de Meulder D, et al. SARS-CoV--2 is transmitted via contact and via the air between ferrets. Nat Commun 2020; 11(1): 3496.
[http://dx.doi.org/10.1038/s41467-020-17367-2] [PMID: 32641684]
[31]
Ryan KA, Bewley KR, Fotheringham SA, et al. Dose-dependent response to infection with SARS-CoV-2 in the ferret model and evidence of protec-tive immunity. Nat Commun 2021; 12(1): 81.
[http://dx.doi.org/10.1038/s41467-020-20439-y] [PMID: 33398055]
[32]
Schlottau K, Rissmann M, Graaf A, et al. SARS-CoV-2 in fruit bats, ferrets, pigs, and chickens: An experimental transmission study. Lancet Microbe 2020; 1(5): e218-25.
[http://dx.doi.org/10.1016/S2666-5247(20)30089-6] [PMID: 32838346]
[33]
Subbarao K. SARS-CoV-2: a new song recalls an old melody. Cell Host Microbe 2020; 27(5): 692-4.
[http://dx.doi.org/10.1016/j.chom.2020.04.019] [PMID: 32407706]
[34]
Hogan RJ, Gao G, Rowe T, et al. Resolution of pri-mary severe acute respiratory syndrome-associated coronavirus infection requires Stat1. J Virol 2004; 78(20): 11416-21.
[http://dx.doi.org/10.1128/JVI.78.20.11416-11421.2004] [PMID: 15452265]
[35]
Vogel LN, Roberts A, Paddock CD, et al. Utility of the aged BALB/c mouse model to demonstrate pre-vention and control strategies for severe acute res-piratory syndrome coronavirus (SARS-CoV). Vaccine 2007; 25(12): 2173-9.
[http://dx.doi.org/10.1016/j.vaccine.2006.11.055] [PMID: 17227689]
[36]
Glass WG, Subbarao K, Murphy B, Murphy PM. Mechanisms of host defense following severe acute respiratory syndrome-coronavirus (SARS-CoV) pulmonary infection of mice. J Immunol 2004; 173(6): 4030-9.
[http://dx.doi.org/10.4049/jimmunol.173.6.4030] [PMID: 15356152]
[37]
Frieman MB, Chen J, Morrison TE, et al. SARS-CoV pathogenesis is regulated by a STAT1 dependent but a type I, II and III interferon receptor independent mechanism. PLoS Pathog 2010; 6(4)e1000849
[http://dx.doi.org/10.1371/journal.ppat.1000849] [PMID: 20386712]
[38]
Bartlett J. Virology SARS virus infection of cats and ferrets. Infect Dis Clin Pract 2004; 12(3)
[39]
ter Meulen J, Bakker AB, van den Brink EN, et al. Human monoclonal antibody as prophylaxis for SARS coronavirus infection in ferrets. Lancet 2004; 363(9427): 2139-41.
[http://dx.doi.org/10.1016/S0140-6736(04)16506-9] [PMID: 15220038]
[40]
Roberts A, Vogel L, Guarner J, et al. Severe acute re-spiratory syndrome coronavirus infection of golden Syrian hamsters. J Virol 2005; 79(1): 503-11.
[http://dx.doi.org/10.1128/JVI.79.1.503-511.2005] [PMID: 15596843]
[41]
Rowe T, Gao G, Hogan RJ, et al. Macaque model for severe acute respiratory syndrome. J Virol 2004; 78(20): 11401-4.
[http://dx.doi.org/10.1128/JVI.78.20.11401-11404.2004] [PMID: 15452262]
[42]
Greenough TC, Carville A, Coderre J, et al. Pneu-monitis and multi-organ system disease in common marmosets (Callithrix jacchus) infected with the se-vere acute respiratory syndrome-associated corona-virus. Am J Pathol 2005; 167(2): 455-63.
[http://dx.doi.org/10.1016/S0002-9440(10)62989-6] [PMID: 16049331]
[43]
McAuliffe J, Vogel L, Roberts A, et al. Replication of SARS coronavirus administered into the respira-tory tract of African Green, rhesus and Cynomolgus monkeys. Virology 2004; 330(1): 8-15.
[http://dx.doi.org/10.1016/j.virol.2004.09.030] [PMID: 15527829]
[44]
Fouchier RA, Kuiken T, Schutten M, et al. Aetiolo-gy: Koch’s postulates fulfilled for SARS virus. Nature 2003; 423(6937): 240.
[http://dx.doi.org/10.1038/423240a] [PMID: 12748632]
[45]
Roberts A, Lamirande EW, Vogel L, et al. Animal models and vaccines for SARS-CoV infection. Virus Res 2008; 133(1): 20-32.
[http://dx.doi.org/10.1016/j.virusres.2007.03.025] [PMID: 17499378]
[46]
Subbarao K, Roberts A. Is there an ideal animal model for SARS? Trends Microbiol 2006; 14(7): 299-303.
[http://dx.doi.org/10.1016/j.tim.2006.05.007] [PMID: 16759866]
[47]
Qin C, Wang J, Wei Q, et al. An animal model of SARS produced by infection of Macaca mulatta with SARS coronavirus. J Pathol 2005; 206(3): 251-9.
[http://dx.doi.org/10.1002/path.1769] [PMID: 15892035]
[48]
Osterhaus AD, Fouchier RA, Kuiken T. The aetiolo-gy of SARS: Koch’s postulates fulfilled. Philos Trans R Soc Lond B Biol Sci 2004; 359(1447)
[http://dx.doi.org/10.1098/rstb.2004.1489] [PMID: 15306393]
[49]
Kuiken T, Fouchier RA, Schutten M, et al. Newly discovered coronavirus as the primary cause of se-vere acute respiratory syndrome. Lancet 2003; 362(9380): 263-70.
[http://dx.doi.org/10.1016/S0140-6736(03)13967-0] [PMID: 12892955]
[50]
Nagata N, Iwata N, Hasegawa H, et al. Pathology and virus dispersion in Cynomolgus monkeys expe-ri-mentally infected with severe acute respiratory syndrome coronavirus via different inoculation routes. Int J Exp Pathol 2007; 88(6): 403-14.
[http://dx.doi.org/10.1111/j.1365-2613.2007.00567.x] [PMID: 18039277]
[51]
Lawler JV, Endy TP, Hensley LE, et al. Cynomolgus macaque as an animal model for severe acute res-piratory syndrome. PLoS Med 2006; 3(5)e149
[http://dx.doi.org/10.1371/journal.pmed.0030149] [PMID: 16605302]
[52]
Yang XH, Deng W, Tong Z, et al. Mice transgenic for human angiotensin-converting enzyme 2 provide a model for SARS coronavirus infection. Comp Med 2007; 57(5): 450-9.
[PMID: 17974127]
[53]
Martina BE, Haagmans BL, Kuiken T, et al. Virolo-gy: SARS virus infection of cats and ferrets. Nature 2003; 425(6961): 915.
[http://dx.doi.org/10.1038/425915a] [PMID: 14586458]
[54]
Coleman CM, Matthews KL, Goicochea L, Frieman MB. Wild-type and innate immune-deficient mice are not susceptible to the Middle East respiratory syndrome coronavirus. J Gen Virol 2014; 95(Pt 2): 408-12.
[http://dx.doi.org/10.1099/vir.0.060640-0] [PMID: 24197535]
[55]
Zhao J, Li K, Wohlford-Lenane C, et al. Rapid gen-eration of a mouse model for Middle East respirato-ry syndrome. Proc Natl Acad Sci USA 2014; 111(13): 4970-5.
[http://dx.doi.org/10.1073/pnas.1323279111] [PMID: 24599590]
[56]
Zhao G, Jiang Y, Qiu H, et al. Multi-organ damage in human dipeptidyl peptidase 4 transgenic mice in-fected with Middle East respiratory syndrome-coronavirus. PLoS One 2015; 10(12)e0145561
[http://dx.doi.org/10.1371/journal.pone.0145561] [PMID: 26701103]
[57]
de Wit E, Feldmann F, Horne E, et al. Domestic pig unlikely reservoir for MERS-CoV. Emerg Infect Dis 2017; 23(6): 985-8.
[http://dx.doi.org/10.3201/eid2306.170096] [PMID: 28318484]
[58]
Vergara-Alert J, Raj VS, Muñoz M, et al. Middle East respiratory syndrome coronavirus experimental transmission using a pig model. Transbound Emerg Dis 2017; 64(5): 1342-5.
[http://dx.doi.org/10.1111/tbed.12668] [PMID: 28653496]
[59]
Houser KV, Broadbent AJ, Gretebeck L, et al. En-hanced inflammation in New Zealand white rabbits when MERS-CoV reinfection occurs in the absence of neutralizing antibody. PLoS Pathog 2017; 13(8)e1006565
[http://dx.doi.org/10.1371/journal.ppat.1006565] [PMID: 28817732]
[60]
Adney DR, van Doremalen N, Brown VR, et al. Rep-lication and shedding of MERS-CoV in upper respir-atory tract of inoculated dromedary camels. Emerg Infect Dis 2014; 20(12): 1999-2005.
[http://dx.doi.org/10.3201/eid2012.141280] [PMID: 25418529]
[61]
Crameri G, Durr PA, Klein R, et al. Experimental infection and response to rechallenge of alpacas with Middle East respiratory syndrome coronavirus. Emerg Infect Dis 2016; 22(6): 1071-4.
[http://dx.doi.org/10.3201/eid2206.160007] [PMID: 27070733]
[62]
Yao Y, Bao L, Deng W, et al. An animal model of MERS produced by infection of rhesus macaques with MERS coronavirus. J Infect Dis 2014; 209(2): 236-42.
[http://dx.doi.org/10.1093/infdis/jit590] [PMID: 24218506]
[63]
Cockrell AS, Johnson JC, Moore IN, et al. A spike-modified Middle East respiratory syndrome corona-virus (MERS-CoV) infectious clone elicits mild res-piratory disease in infected rhesus macaques. Sci Rep 2018; 8(1): 10727.
[http://dx.doi.org/10.1038/s41598-018-28900-1] [PMID: 30013082]
[64]
Prescott J, Falzarano D, de Wit E, et al. Pathogenici-ty and viral shedding of MERS-CoV in immuno-compromised rhesus macaques. Front Immunol 2018; 9: 205.
[http://dx.doi.org/10.3389/fimmu.2018.00205] [PMID: 29483914]
[65]
Johnson RF, Via LE, Kumar MR, et al. Intratracheal exposure of common marmosets to MERS-CoV Jordan-n3/2012 or MERS-CoV EMC/2012 isolates does not result in lethal disease. Virology 2015; 485: 422-30.
[http://dx.doi.org/10.1016/j.virol.2015.07.013] [PMID: 26342468]
[66]
Falzarano D, de Wit E, Feldmann F, et al. Infection with MERS-CoV causes lethal pneumonia in the common marmoset. PLoS Pathog 2014; 10(8)e1004250
[http://dx.doi.org/10.1371/journal.ppat.1004250]
[67]
Reusken CB. ARtikEl G. Dromedaris en ‘Middle East respiratory syndrome’. Ned Tijdschr Geneeskd 2014; 158(A7806): A7806.
[PMID: 25248734]
[68]
Hemida MG, Chu DK, Poon LL, et al. MERS coro-navirus in dromedary camel herd, Saudi Arabia. Emerg Infect Dis 2014; 20(7): 1231-4.
[http://dx.doi.org/10.3201/eid2007.140571] [PMID: 24964193]
[69]
de Wit E, Rasmussen AL, Falzarano D, et al. Middle East respiratory syndrome coronavirus (MERS-CoV) causes transient lower respiratory tract infec-tion in rhesus macaques. Proc Natl Acad Sci USA 2013; 110(41): 16598-603.
[http://dx.doi.org/10.1073/pnas.1310744110] [PMID: 24062443]
[70]
Agrawal AS, Garron T, Tao X, et al. Generation of a transgenic mouse model of Middle East respiratory syndrome coronavirus infection and disease. J Virol 2015; 89(7): 3659-70.
[http://dx.doi.org/10.1128/JVI.03427-14] [PMID: 25589660]
[71]
Pascal KE, Coleman CM, Mujica AO, et al. Preand postexposure efficacy of fully human antibodies against Spike protein in a novel humanized mouse model of MERS-CoV infection. Proc Natl Acad Sci USA 2015; 112(28): 8738-43.
[http://dx.doi.org/10.1073/pnas.1510830112] [PMID: 26124093]
[72]
Li K, Wohlford-Lenane CL, Channappanavar R, et al. Mouse-adapted MERS coronavirus causes lethal lung disease in human DPP4 knockin mice. Proc Natl Acad Sci USA 2017; 114(15): E3119-28.
[http://dx.doi.org/10.1073/pnas.1619109114] [PMID: 28348219]
[73]
Tao X, Garron T, Agrawal AS, et al. Characteriza-tion and demonstration of the value of a lethal mouse model of Middle East respiratory syndrome coronavirus infection and disease. J Virol 2015; 90(1): 57-67.
[http://dx.doi.org/10.1128/JVI.02009-15] [PMID: 26446606]
[74]
Cockrell AS, Yount BL, Scobey T, et al. A mouse model for MERS coronavirus-induced acute respira-tory distress syndrome. Nat Microbiol 2016; 2(2): 16226.
[http://dx.doi.org/10.1038/nmicrobiol.2016.226] [PMID: 27892925]
[75]
Fan C, Wu X, Liu Q, et al. A human DPP4-knockin mouse’s susceptibility to infection by authentic and pseudotyped MERS-CoV. Viruses 2018; 10(9): 448.
[http://dx.doi.org/10.3390/v10090448] [PMID: 30142928]
[76]
Iwata-Yoshikawa N, Okamura T, Shimizu Y, et al. Acute respiratory infection in human dipeptidyl pep-tidase 4-transgenic mice infected with Middle East respiratory syndrome coronavirus. J Virol 2019; 93(6): e01818-18.
[http://dx.doi.org/10.1128/JVI.01818-18] [PMID: 30626685]
[77]
Ammerman NC, Beier-Sexton M, Azad AF. Growth and maintenance of vero cell lines. Curr Protoc Microbiol 2008; 4(Appendix): 4E.
[http://dx.doi.org/10.1002/9780471729259.mca04es11] [PMID: 19016439]
[78]
Kaye M, Druce J, Tran T, et al. SARS-associated coronavirus replication in cell lines. Emerg Infect Dis 2006; 12(1): 128-33.
[http://dx.doi.org/10.3201/eid1201.050496] [PMID: 16494729]
[79]
Takayama K. In vitro and animal models for SARS-CoV-2 research. Trends Pharmacol Sci 2020; 41(8): 513-7.
[http://dx.doi.org/10.1016/j.tips.2020.05.005] [PMID: 32553545]
[80]
Lu S, Zhao Y, Yu W, et al. Comparison of nonhu-man primates identified the suitable model for COVID-19. Signal Transduct Target Ther 2020; 5(1): 157.
[http://dx.doi.org/10.1038/s41392-020-00269-6] [PMID: 32814760]
[81]
Munster VJ, Adney DR, van Doremalen N, et al. Replication and shedding of MERS-CoV in Jamai-can fruit bats (Artibeus jamaicensis). Sci Rep 2016; 6(1): 21878.
[http://dx.doi.org/10.1038/srep21878] [PMID: 26899616]
[82]
Watanabe S, Masangkay JS, Nagata N, et al. Bat coronaviruses and experimental infection of bats, the Philippines. Emerg Infect Dis 2010; 16(8): 1217-23.
[http://dx.doi.org/10.3201/eid1608.100208] [PMID: 20678314]
[83]
Zhou J, Li C, Liu X, et al. Infection of bat and hu-man intestinal organoids by SARS-CoV-2. Nat Med 2020; 26(7): 1077-83.
[http://dx.doi.org/10.1038/s41591-020-0912-6] [PMID: 32405028]
[84]
Halfmann PJ, Hatta M, Chiba S, et al. Transmission of SARS-CoV-2 in domestic cats. N Engl J Med 2020; 383(6): 592-4.
[http://dx.doi.org/10.1056/NEJMc2013400] [PMID: 32402157]
[85]
Sailleau C, Dumarest M, Vanhomwegen J, et al. First detection and genome sequencing of SARS-CoV-2 in an infected cat in France. Transbound Emerg Dis 2020; 67(6): 2324-8.
[http://dx.doi.org/10.1111/tbed.13659] [PMID: 32500944]
[86]
Zhang Q, Zhang H, Huang K, et al. SARS-CoV-2 neutralizing serum antibodies in cats: a serological in-vestigation. BioRxiv 2020.
[http://dx.doi.org/10.1101/2020.04.01.021196]
[87]
Sit THC, Brackman CJ, Ip SM, et al. Infection of dogs with SARS-CoV-2. Nature 2020; 586(7831): 776-8.
[http://dx.doi.org/10.1038/s41586-020-2334-5] [PMID: 32408337]
[88]
Weingartl HM, Copps J, Drebot MA, et al. Suscepti-bility of pigs and chickens to SARS coronavirus. Emerg Infect Dis 2004; 10(2): 179-84.
[http://dx.doi.org/10.3201/eid1002.030677] [PMID: 15030680]
[89]
Swayne DE, Suarez DL, Spackman E, et al. Domes-tic poultry and SARS coronavirus, southern China. Emerg Infect Dis 2004; 10(5): 914-6. Beck JR, Erd-man D, Rollin PE, Ksiazek TG. Domestic poultry and SARS coronavirus, southern China. Infect Dis 2004; 10(5): 914.
[http://dx.doi.org/10.3201/eid1005.030827] [PMID: 15200830]
[90]
Wahba L, Jain N, Fire AZ, et al. An extensive meta-metagenomic search identifies SARS-CoV-2-homologous sequences in pangolin lung viromes. MSphere 2020; 5(3): e00160-20.
[http://dx.doi.org/10.1128/mSphere.00160-20] [PMID: 32376697]
[91]
Hoffmann M, Kleine-Weber H, Schroeder S, et al. SARS-CoV-2 cell entry depends on ACE2 and TM-PRSS2 and is blocked by a clinically proven prote-ase inhibitor. Cell 2020; 181(2): 271-280.e8.
[http://dx.doi.org/10.1016/j.cell.2020.02.052] [PMID: 32142651]
[92]
Ou X, Liu Y, Lei X, et al. Characterization of spike glycoprotein of SARS-CoV-2 on virus entry and its immune cross-reactivity with SARS-CoV. Nat Commun 2020; 11(1): 1620.
[http://dx.doi.org/10.1038/s41467-020-15562-9] [PMID: 32221306]
[93]
Sheahan TP, Sims AC, Zhou S, et al. An orally bioa-vailable broad-spectrum antiviral inhibits SARS-CoV-2 in human airway epithelial cell cultures and multiple coronaviruses in mice. Sci Transl Med 2020; 12(541)eabb5883
[http://dx.doi.org/10.1126/scitranslmed.abb5883] [PMID: 32253226]
[94]
Ramani A, Müller L, Ostermann PN, et al. SARS-CoV-2 targets neurons of 3D human brain organ-oids. EMBO J 2020; 39(20)e106230
[http://dx.doi.org/10.15252/embj.2020106230] [PMID: 32876341]
[95]
Song E, Zhang C, Israelow B, et al. Neuroinvasive potential of SARS-CoV-2 revealed in a human brain organoid model. bioRxiv 2020.
[96]
Bullen CK, Hogberg HT, Bahadirli-Talbott A, et al. Infectability of human brainsphere neurons suggests neurotropism of SARS-CoV-2. Altern Anim Exp 2020; 37(4): 665-71.
[http://dx.doi.org/10.14573/altex.2006111] [PMID: 32591839]
[97]
Mesci P, Macia A, Saleh A, et al. Sofosbuvir protects human brain organoids against SARS-CoV-2. bioRxiv 2020.
[http://dx.doi.org/10.1101/2020.05.30.125856]
[98]
[99]
[100]
[102]
[104]
Rao Z, Lou Z, Sun Y, Ma M, Guo Y, Xue F. Diterpenes diterpenoids natural product inhibitor for main protease of coronaviruses such as SARS and screen method thereof. CN101418334A CN101418334B. 2009. https://patents.google.com/patent/CN101418334A/en
[105]
Chung YH, Jeong YJ, Lee CY. Pharmaceutical compositions comprising dihydroxychromone derivatives as an active ingredient for treating and preventing diseases caused by coronaviruses 2011.https://patents.google.com/patent/KR101097189B1/en
[106]
Multi-herb medicament for the treatment of SARS https://patents.google.com/patent/GB2425476A/en

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy