Generic placeholder image

Current Pharmaceutical Biotechnology

Editor-in-Chief

ISSN (Print): 1389-2010
ISSN (Online): 1873-4316

Review Article

Current Overviews on COVID-19 Management Strategies

Author(s): Pankaj Kumar Rai, Zeba Mueed, Abhiroop Chowdhury, Ravi Deval, Dinesh Kumar, Mohammad A. Kamal, Yogeshwar Singh Negi, Shubhra Pareek, Hemlata Sharma and Nitesh Kumar Poddar*

Volume 23, Issue 3, 2022

Published on: 15 June, 2021

Page: [361 - 387] Pages: 27

DOI: 10.2174/1389201022666210509022313

Price: $65

Abstract

The coronavirus pandemic hit the world lately and caused acute respiratory syndrome in humans. The causative agent of the disease was soon identified by scientists as SARS-CoV-2 and later called a novel coronavirus by the general public. Due to the severity and rapid spread of the disease, WHO classifies the COVID-19 pandemic as the 6th public health emergency even after taking efforts like worldwide quarantine and restrictions. Since only symptomatic treatment is available, the best way to control the spread of the virus is by taking preventive measures. Various types of antigen/antibody detection kits and diagnostic methods are available for the diagnosis of COVID-19 patients. In recent years, various phytochemicals and repurposing drugs showing a broad range of anti-viral activities with different modes of actions have been identified. Repurposing drugs such as arbidol, hydroxychloroquine, chloroquine, lopinavir, favipiravir, remdesivir, hexamethylene amiloride, dexamethasone, tocilizumab, interferon-β, and neutralizing antibodies exhibit in vitro anti-coronaviral properties by inhibiting multiple processes in the virus life cycle. Various research groups are involved in drug trials and vaccine development. Plant-based antiviral compounds such as baicalin, calanolides, curcumin, oxymatrine, matrine, and resveratrol exhibit different modes of action against a wide range of positive/negative sense-RNA/DNA virus, and future researches need to be conducted to ascertain their role and use in managing SARS-CoV-2. Thus this article is an attempt to review the current understanding of COVID- 19 acute respiratory disease and summarize its clinical features with their prospective control and various aspects of the therapeutic approach.

Keywords: SARS-CoV-2, COVID-19, epidemiology, diagnosis, drug targets, therapeutic.

Graphical Abstract
[1]
Wu, F.; Zhao, S.; Yu, B.; Chen, Y.M.; Wang, W.; Song, Z.G.; Hu, Y.; Tao, Z.W.; Tian, J.H.; Pei, Y.Y.; Yuan, M.L.; Zhang, Y.L.; Dai, F.H.; Liu, Y.; Wang, Q.M.; Zheng, J.J.; Xu, L.; Holmes, E.C.; Zhang, Y.Z. A new coronavirus associated with human respiratory disease in China. Nature, 2020, 579(7798), 265-269.
[http://dx.doi.org/10.1038/s41586-020-2008-3] [PMID: 32015508]
[2]
Zhou, P.; Yang, X.L.; Wang, X.G.; Hu, B.; Zhang, L.; Zhang, W.; Si, H.R.; Zhu, Y.; Li, B.; Huang, C.L.; Chen, H.D.; Chen, J.; Luo, Y.; Guo, H.; Jiang, R.D.; Liu, M.Q.; Chen, Y.; Shen, X.R.; Wang, X.; Zheng, X.S.; Zhao, K.; Chen, Q.J.; Deng, F.; Liu, L.L.; Yan, B.; Zhan, F.X.; Wang, Y.Y.; Xiao, G.F.; Shi, Z.L. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature, 2020, 579(7798), 270-273.
[http://dx.doi.org/10.1038/s41586-020-2012-7] [PMID: 32015507]
[3]
WHO. Emergencies preparedness, response: Novel Coronavirus. China, 2020. Available at: . https://www.who.int/csr/don/12-january-2020-novel-coronavirus-china/en/
[4]
Lu, R.; Zhao, X.; Li, J.; Niu, P.; Yang, B.; Wu, H.; Wang, W.; Song, H.; Huang, B.; Zhu, N.; Bi, Y.; Ma, X.; Zhan, F.; Wang, L.; Hu, T.; Zhou, H.; Hu, Z.; Zhou, W.; Zhao, L.; Chen, J.; Meng, Y.; Wang, J.; Lin, Y.; Yuan, J.; Xie, Z.; Ma, J.; Liu, W.J.; Wang, D.; Xu, W.; Holmes, E.C.; Gao, G.F.; Wu, G.; Chen, W.; Shi, W.; Tan, W. Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. Lancet, 2020, 395(10224), 565-574.
[http://dx.doi.org/10.1016/S0140-6736(20)30251-8] [PMID: 32007145]
[5]
Letko, M.; Marzi, A.; Munster, V. Functional assessment of cell entry and receptor usage for SARS-CoV-2 and other lineage B betacoronaviruses. Nat. Microbiol., 2020, 5(4), 562-569.
[http://dx.doi.org/10.1038/s41564-020-0688-y] [PMID: 32094589]
[6]
WHO. Statement on the second meeting of the International Health Regulations (2005) Emergency Committee regarding the outbreak of novel coronavirus (2019-nCoV), 2020. Available at:. https://www.who.int/news-room/detail/30-01-2020-statement-on-the-second-meeting-of-the-international-health-regulations-(2005)-emergency-committee-regarding-the-outbreak-of-novel-coronavirus-(2019-ncov)
[7]
WHO. Coronavirus disease (COVID-19) Situation Report . 207, 2020. Available at: . https://www.who.int/docs/default-source/coronaviruse/situation-reports/20200814-covid-19-sitrep-207.pdf?sfvrsn=2f2154e6_2
[8]
Singhal, T. A review of coronavirus disease-2019 (COVID-19). Indian J. Pediatr., 2020, 87(4), 281-286.
[http://dx.doi.org/10.1007/s12098-020-03263-6] [PMID: 32166607]
[9]
Kampf, G.; Todt, D.; Pfaender, S.; Steinmann, E. Persistence of coronaviruses on inanimate surfaces and their inactivation with biocidal agents. J. Hosp. Infect., 2020, 104(3), 246-251.
[http://dx.doi.org/10.1016/j.jhin.2020.01.022] [PMID: 32035997]
[10]
Xiao, F.; Tang, M.; Zheng, X.; Liu, Y.; Li, X.; Shan, H. Evidence for gastrointestinal infection of Sars-CoV-2. Gastroenterol., 2020, 158(6), 1831-1833.e3.
[http://dx.doi.org/10.1053/j.gastro.2020.02.055] [PMID: 32142773]
[11]
Zhang, H.; Li, H.B.; Lyu, J.R.; Lei, X.M.; Li, W.; Wu, G.; Lyu, J.; Dai, Z.M. Specific ACE2 expression in small intestinal enterocytes may cause gastrointestinal symptoms and injury after 2019-nCoV infection. Int. J. Infect. Dis., 2020, 96, 19-24.
[http://dx.doi.org/10.1016/j.ijid.2020.04.027] [PMID: 32311451]
[12]
Wan, S.; Xiang, Y.; Fang, W.; Zheng, Y.; Li, B.; Hu, Y.; Lang, C.; Huang, D.; Sun, Q.; Xiong, Y.; Huang, X.; Lv, J.; Luo, Y.; Shen, L.; Yang, H.; Huang, G.; Yang, R. Clinical features and treatment of COVID-19 patients in northeast Chongqing. J. Med. Virol., 2020, 92(7), 797-806.
[http://dx.doi.org/10.1002/jmv.25783] [PMID: 32198776]
[13]
Chen, H.; Guo, J.; Wang, C.; Luo, F.; Yu, X.; Zhang, W.; Li, J.; Zhao, D.; Xu, D.; Gong, Q.; Liao, J.; Yang, H.; Hou, W.; Zhang, Y. Clinical characteristics and intrauterine vertical transmission potential of COVID-19 infection in nine pregnant women: a retrospective review of medical records. Lancet, 2020, 395(10226), 809-815.
[http://dx.doi.org/10.1016/S0140-6736(20)30360-3] [PMID: 32151335]
[14]
Wang, Y.; Zhang, D.; Du, G.; Du, R.; Zhao, J.; Jin, Y.; Fu, S.; Gao, L.; Cheng, Z.; Lu, Q.; Hu, Y.; Luo, G.; Wang, K.; Lu, Y.; Li, H.; Wang, S.; Ruan, S.; Yang, C.; Mei, C.; Wang, Y.; Ding, D.; Wu, F.; Tang, X.; Ye, X.; Ye, Y.; Liu, B.; Yang, J.; Yin, W.; Wang, A.; Fan, G.; Zhou, F.; Liu, Z.; Gu, X.; Xu, J.; Shang, L.; Zhang, Y.; Cao, L.; Guo, T.; Wan, Y.; Qin, H.; Jiang, Y.; Jaki, T.; Hayden, F.G.; Horby, P.W.; Cao, B.; Wang, C. Remdesivir in adults with severe COVID-19: a randomised, double-blind, placebo-controlled, multicentre trial. Lancet, 2020, 395(10236), 1569-1578.
[http://dx.doi.org/10.1016/S0140-6736(20)31022-9] [PMID: 32423584]
[15]
Huang, C.; Wang, Y.; Li, X.; Ren, L.; Zhao, J.; Hu, Y.; Zhang, L.; Fan, G.; Xu, J.; Gu, X.; Cheng, Z.; Yu, T.; Xia, J.; Wei, Y.; Wu, W.; Xie, X.; Yin, W.; Li, H.; Liu, M.; Xiao, Y.; Gao, H.; Guo, L.; Xie, J.; Wang, G.; Jiang, R.; Gao, Z.; Jin, Q.; Wang, J.; Cao, B. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet, 2020, 395(10223), 497-506.
[http://dx.doi.org/10.1016/S0140-6736(20)30183-5] [PMID: 31986264]
[16]
Adhikari, S.P.; Meng, S.; Wu, Y.J.; Mao, Y.P.; Ye, R.X.; Wang, Q.Z.; Sun, C.; Sylvia, S.; Rozelle, S.; Raat, H.; Zhou, H. Epidemiology, causes, clinical manifestation and diagnosis, prevention and control of coronavirus disease (COVID-19) during the early outbreak period: a scoping review. Infect. Dis. Poverty, 2020, 9(1), 29.
[http://dx.doi.org/10.1186/s40249-020-00646-x] [PMID: 32183901]
[17]
Bai, Y.; Yao, L.; Wei, T.; Tian, F.; Jin, D.Y.; Chen, L.; Wang, M. Presumed asymptomatic carrier transmission of COVID-19. JAMA, 2020, 323(14), 1406-1407.
[http://dx.doi.org/10.1001/jama.2020.2565] [PMID: 32083643]
[18]
Hu, Z.; Song, C.; Xu, C.; Jin, G.; Chen, Y.; Xu, X.; Ma, H.; Chen, W.; Lin, Y.; Zheng, Y.; Wang, J.; Hu, Z.; Yi, Y.; Shen, H. Clinical characteristics of 24 asymptomatic infections with COVID-19 screened among close contacts in Nanjing, China. Sci. China Life Sci., 2020, 63(5), 706-711.
[http://dx.doi.org/10.1007/s11427-020-1661-4] [PMID: 32146694]
[19]
Rocklöv, J.; Sjödin, H.; Wilder-Smith, A. COVID-19 outbreak on the Diamond Princess cruise ship: estimating the epidemic potential and effectiveness of public health countermeasures. J. Travel Med., 2020, 27(3), taaa030.,
[http://dx.doi.org/10.1093/jtm/taaa030] [PMID: 32109273]
[20]
Filatov, A.; Sharma, P.; Hindi, F.; Espinosa, P.S. Neurological complications of coronavirus disease (COVID-19): Encephalopathy. Cureus, 2020, 12(3)e7352
[http://dx.doi.org/10.7759/cureus.7352] [PMID: 32328364]
[21]
Jin, H.; Hong, C.; Chen, S.; Zhou, Y.; Wang, Y.; Mao, L.; Li, Y.; He, Q.; Li, M.; Su, Y.; Wang, D.; Wang, L.; Hu, B. Consensus for prevention and management of coronavirus disease 2019 (COVID-19) for neurologists. Stroke Vasc. Neurol., 2020, 5(2), 146-151.
[http://dx.doi.org/10.1136/svn-2020-000382] [PMID: 32385132]
[22]
Mao, L.; Jin, H.; Wang, M.; Hu, Y.; Chen, S.; He, Q.; Chang, J.; Hong, C.; Zhou, Y.; Wang, D.; Miao, X.; Li, Y.; Hu, B. Neurologic manifestations of hospitalized patients with coronavirus disease 2019 in wuhan, china. JAMA Neurol., 2020, 77(6), 683-690.
[http://dx.doi.org/10.1001/jamaneurol.2020.1127] [PMID: 32275288]
[23]
Grant, M.C.; Geoghegan, L.; Arbyn, M.; Mohammed, Z.; McGuiness, L.; Clarke, E.L. The prevalence of symptoms in 24,410 adults infected by the novel coronavirus (sars-cov-2; covid-19). A systematic review and meta-analysis of 148 studies from 9 countries. PLoS One, 2020, 15(6)e0234765
[http://dx.doi.org/10.1371/journal.pone.0234765.]]
[24]
Klopfenstein, T.; Zahra, H.; Kadiane-Oussou, N.J.; Lepiller, Q.; Royer, P.Y.; Toko, L.; Gendrin, V.; Zayet, S. New loss of smell and taste: Uncommon symptoms in COVID-19 patients on Nord Franche-Comte cluster, France. Int. J. Infect. Dis., 2020, 100, 117-122.
[http://dx.doi.org/10.1016/j.ijid.2020.08.012] [PMID: 32771635]
[25]
WHO. WHO-china joint mission on coronavirus disease 2019 (covid-19), 2020. Available at:. https://www.who.int/news-room/feature-stories/detail/who-china-joint-mission-on-coronavirus-disease-2019-(covid-19)
[26]
Tang, W.; Cao, Z.; Han, M.; Wang, Z.; Chen, J.; Sun, W.; Wu, Y.; Xiao, W.; Liu, S.; Chen, E.; Chen, W.; Wang, X.; Yang, J.; Lin, J.; Zhao, Q.; Yan, Y.; Xie, Z.; Li, D.; Yang, Y.; Liu, L.; Qu, J.; Ning, G.; Shi, G.; Xie, Q. Hydroxychloroquine in patients with mainly mild to moderate coronavirus disease 2019: open label, randomised controlled trial. BMJ, 2020, 369, m1849.
[http://dx.doi.org/10.1136/bmj.m1849] [PMID: 32409561]
[27]
Udugama, B.; Kadhiresan, P.; Kozlowski, H.N.; Malekjahani, A.; Osborne, M.; Li, V.Y.C.; Chen, H.; Mubareka, S.; Gubbay, J.B.; Chan, W.C.W. Diagnosing COVID-19. ACS Nano, 2020, 14(4), 3822-3835.
[http://dx.doi.org/10.1021/acsnano.0c02624] [PMID: 32223179]
[28]
Yang, W; Yan, F. Patients with RT-PCR-confirmed COVID-19 and Normal Chest CT.2020, 295(2), E3.,
[http://dx.doi.org/10.1148/radiol.2020200702]
[29]
Shi, H.; Han, X.; Jiang, N.; Cao, Y.; Alwalid, O.; Gu, J.; Fan, Y.; Zheng, C. Radiological findings from 81 patients with COVID-19 pneumonia in Wuhan, China: a descriptive study. Lancet Infect. Dis., 2020, 20(4), 425-434.
[http://dx.doi.org/10.1016/S1473-3099(20)30086-4] [PMID: 32105637]
[30]
Craw, P.; Balachandran, W. Isothermal nucleic acid amplification technologies for point-of-care diagnostics: a critical review. Lab Chip, 2012, 12(14), 2469-2486.
[http://dx.doi.org/10.1039/c2lc40100b] [PMID: 22592150]
[31]
Yu, L.; Wu, S.; Hao, X.; Dong, X.; Mao, L.; Pelechano, V.; Chen, W.H.; Yin, X. Rapid Detection of COVID-19 Coronavirus Using a Reverse Transcriptional Loop-Mediated Isothermal Amplification (RT-LAMP) Diagnostic Platform. Clin. Chem., 2020, 66(7), 975-977.
[http://dx.doi.org/10.1093/clinchem/hvaa102] [PMID: 32315390]
[32]
Broughton, JP; Deng, X; Yu, G; Fasching, CL; Servellita, V; Singh, J CRISPR-Cas12-based detection of SARS-CoV-2. 2020, 38(7), 870-874.,
[33]
Huang, Z.; Tian, D.; Liu, Y.; Lin, Z.; Lyon, C.J.; Lai, W.; Fusco, D.; Drouin, A.; Yin, X.; Hu, T.; Ning, B. Ultra-sensitive and high-throughput CRISPR-p owered COVID-19 diagnosis. Biosens. Bioelectron., 2020, 164112316
[http://dx.doi.org/10.1016/j.bios.2020.112316] [PMID: 32553350]
[34]
Notomi, T.; Okayama, H.; Masubuchi, H.; Yonekawa, T.; Watanabe, K.; Amino, N.; Hase, T. Loop-mediated isothermal amplification of DNA. Nucleic Acids Res., 2000, 28(12)E63
[http://dx.doi.org/10.1093/nar/28.12.e63] [PMID: 10871386]
[35]
Mori, Y.; Nagamine, K.; Tomita, N.; Notomi, T. Detection of loop-mediated isothermal amplification reaction by turbidity derived from magnesium pyrophosphate formation. Biochem. Biophys. Res. Commun., 2001, 289(1), 150-154.
[http://dx.doi.org/10.1006/bbrc.2001.5921] [PMID: 11708792]
[36]
Kashir, J.; Yaqinuddin, A. Loop mediated isothermal amplification (LAMP) assays as a rapid diagnostic for COVID-19. Med. Hypotheses, 2020, 141, 109786-109786.
[http://dx.doi.org/10.1016/j.mehy.2020.109786] [PMID: 32361529]
[37]
WHO Advice on the use of point-of-care immunodiagnostic tests for COVID-19., 2020.Available at:. https://www.who.int/news-room/commentaries/detail/advice-on-the-use-of-point-of-care-immunodiagnostic-tests-for-covid-19
[38]
Gorse, G.J.; Donovan, M.M.; Patel, G.B. Antibodies to coronaviruses are higher in older compared with younger adults and binding antibodies are more sensitive than neutralizing antibodies in identifying coronavirus-associated illnesses. J. Med. Virol., 2020, 92(5), 512-517.
[http://dx.doi.org/10.1002/jmv.25715] [PMID: 32073157]
[39]
Zhao, J.; Yuan, Q.; Wang, H.; Liu, W.; Liao, X.; Su, Y.; Wang, X.; Yuan, J.; Li, T.; Li, J.; Qian, S.; Hong, C.; Wang, F.; Liu, Y.; Wang, Z.; He, Q.; Li, Z.; He, B.; Zhang, T.; Fu, Y.; Ge, S.; Liu, L.; Zhang, J.; Xia, N.; Zhang, Z. Antibody responses to SARS-CoV-2 in patients of novel coronavirus disease 2019. Clin. Infect. Dis., 2020, 71(16), 2027-2034.
[http://dx.doi.org/10.1093/cid/ciaa344] [PMID: 32221519]
[40]
Okba, N.M.A.; Müller, M.A.; Li, W.; Wang, C. GeurtsvanKessel, C.H.; Corman, V.M.; Lamers, M.M.; Sikkema, R.S.; de Bruin, E.; Chandler, F.D.; Yazdanpanah, Y.; Le Hingrat, Q.; Descamps, D.; Houhou-Fidouh, N.; Reusken, C.B.E.M.; Bosch, B.J.; Drosten, C.; Koopmans, M.P.G.; Haagmans, B.L. Severe acute respiratory syndrome coronavirus 2-specific antibody responses in coronavirus disease patients. Emerg. Infect. Dis., 2020, 26(7), 1478-1488.
[http://dx.doi.org/10.3201/eid2607.200841] [PMID: 32267220]
[41]
Lin, D; Liu, L; Zhang, M; Hu, Y; Yang, Q; Guo, J Evaluations of the serological test in the diagnosis of 2019 novel coronavirus (SARS-CoV-2) infections during the COVID-19 outbreak. 2020, 1- 7.,
[42]
Wolfel, R; Corman, VM; Guggemos, W; Seilmaier, M; Zange, S; Muller, MA Virological assessment of hospitalized patients with COVID-2019., 2020.
[http://dx.doi.org/10.1038/s41586-020-2196-x]
[43]
Che, X.Y.; Qiu, L.W.; Liao, Z.Y.; Wang, Y.D.; Wen, K.; Pan, Y.X.; Hao, W.; Mei, Y.B.; Cheng, V.C.; Yuen, K.Y. Antigenic cross-reactivity between severe acute respiratory syndrome-associated coronavirus and human coronaviruses 229E and OC43. J. Infect. Dis., 2005, 191(12), 2033-2037.
[http://dx.doi.org/10.1086/430355] [PMID: 15897988]
[44]
Wang, N.; Li, S.Y.; Yang, X.L.; Huang, H.M.; Zhang, Y.J.; Guo, H.; Luo, C.M.; Miller, M.; Zhu, G.; Chmura, A.A.; Hagan, E.; Zhou, J.H.; Zhang, Y.Z.; Wang, L.F.; Daszak, P.; Shi, Z.L. Serological evidence of bat sars-related coronavirus infection in humans, China. Virol. Sin., 2018, 33(1), 104-107.
[http://dx.doi.org/10.1007/s12250-018-0012-7] [PMID: 29500691]
[45]
DRUG USF. Coronavirus (covid-19) update: fda authorizes first test for patient at-home sample collection, 2020. Available at:. https://www.fda.gov/news-events/pressannouncements/coronavirus-covid-19-update-fda-authorizes-firsttest-patient-home-sample-collection
[46]
Venter, M.; Richter, K. Towards effective diagnostic assays for COVID-19: a review. J. Clin. Pathol., 2020, 73(7), 370-377.
[http://dx.doi.org/10.1136/jclinpath-2020-206685] [PMID: 32404473]
[47]
Yüce, M.; Filiztekin, E.; Özkaya, K.G. COVID-19 diagnosis -A review of current methods. Biosens. Bioelectron., 2021, 172112752
[http://dx.doi.org/10.1016/j.bios.2020.112752] [PMID: 33126180]
[48]
Long, C.; Xu, H.; Shen, Q.; Zhang, X.; Fan, B.; Wang, C.; Zeng, B.; Li, Z.; Li, X.; Li, H. Diagnosis of the Coronavirus disease (COVID-19): rRT-PCR or CT? Eur. J. Radiol., 2020, 126108961
[http://dx.doi.org/10.1016/j.ejrad.2020.108961] [PMID: 32229322]
[49]
Zhang, X.; Qi, Q.; Jing, Q.; Ao, S.; Zhang, Z.; Ding, M. Electrical probing of COVID-19 spike protein receptor binding domain via a graphene field-effect transistor. arXiv preprint arXiv:2003.12529,, 2020.
[50]
Zhu, X.; Wang, X.; Han, L.; Chen, T.; Wang, L.; Li, H. Reverse transcription loop-mediated isothermal amplification combined with nanoparticles-based biosensor for diagnosis of COVID-19; MedRxiv, 2020.
[51]
Tan, X.; Lin, C.; Zhang, J.; Oo, M.K.K.; Fan, X. Rapid and quantitative detection of COVID-19 markers in micro-liter sized samples. bioRxiv, 2020.
[52]
Qiu, G.; Gai, Z.; Tao, Y.; Schmitt, J.; Kullak-Ublick, G.A.; Wang, J. Dual-functional plasmonic photothermal biosensors for highly accurate severe acute respiratory syndrome coronavirus 2 detection. ACS Nano, 2020, 14(5), 5268-5277.
[http://dx.doi.org/10.1021/acsnano.0c02439] [PMID: 32281785]
[53]
Tang, Y-W.; Schmitz, J.E.; Persing, D.H.; Stratton, C.W. Laboratory diagnosis of COVID-19: current issues and challenges. J. Clin. Microbiol., 2020, 58(6), e00512-20.
[http://dx.doi.org/10.1128/JCM.00512-20] [PMID: 32245835]
[54]
Djaileb, A; Charron, B; Jodaylami, MH; Thibault, V; Coutu, J; Stevenson, K A Rapid and Quantitative Serum Test for SARS-CoV-2 Antibodies with Portable Surface Plasmon Resonance Sensing., 2020.
[55]
Broughton, J.P.; Deng, X.; Yu, G.; Fasching, C.L.; Singh, J.; Streithorst, J. Rapid detection of 2019 novel coronavirus SARS-CoV-2 using a CRISPR-based DETECTR lateral flow assay; MedRxiv, 2020.
[56]
Li, F. Structure, Function, and Evolution of Coronavirus Spike Proteins. Annu. Rev. Virol., 2016, 3(1), 237-261.
[http://dx.doi.org/10.1146/annurev-virology-110615-042301] [PMID: 27578435]
[57]
Du, L.; He, Y.; Zhou, Y.; Liu, S.; Zheng, B.J.; Jiang, S. The spike protein of SARS-CoV--a target for vaccine and therapeutic development. Nat. Rev. Microbiol., 2009, 7(3), 226-236.
[http://dx.doi.org/10.1038/nrmicro2090] [PMID: 19198616]
[58]
Li, W.; Moore, M.J.; Vasilieva, N.; Sui, J.; Wong, S.K.; Berne, M.A.; Somasundaran, M.; Sullivan, J.L.; Luzuriaga, K.; Greenough, T.C.; Choe, H.; Farzan, M. Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus. Nature, 2003, 426(6965), 450-454.
[http://dx.doi.org/10.1038/nature02145] [PMID: 14647384]
[59]
Prabakaran, P.; Xiao, X.; Dimitrov, D.S. A model of the ACE2 structure and function as a SARS-CoV receptor. Biochem. Biophys. Res. Commun., 2004, 314(1), 235-241.
[http://dx.doi.org/10.1016/j.bbrc.2003.12.081] [PMID: 14715271]
[60]
Hu, H.; Li, L.; Kao, R.Y.; Kou, B.; Wang, Z.; Zhang, L.; Zhang, H.; Hao, Z.; Tsui, W.H.; Ni, A.; Cui, L.; Fan, B.; Guo, F.; Rao, S.; Jiang, C.; Li, Q.; Sun, M.; He, W.; Liu, G. Screening and identification of linear B-cell epitopes and entry-blocking peptide of severe acute respiratory syndrome (SARS)-associated coronavirus using synthetic overlapping peptide library. J. Comb. Chem., 2005, 7(5), 648-656.
[http://dx.doi.org/10.1021/cc0500607] [PMID: 16153058]
[61]
Han, D.P.; Penn-Nicholson, A.; Cho, M.W. Identification of critical determinants on ACE2 for SARS-CoV entry and development of a potent entry inhibitor. Virology, 2006, 350(1), 15-25.
[http://dx.doi.org/10.1016/j.virol.2006.01.029] [PMID: 16510163]
[62]
Xia, S; Yan, L. A pan-coronavirus fusion inhibitor targeting the HR1 domain of human coronavirus spike., 2019, 5(4)
[http://dx.doi.org/10.1126/sciadv.aav4580]
[63]
Adedeji, A.O.; Severson, W.; Jonsson, C.; Singh, K.; Weiss, S.R.; Sarafianos, S.G. Novel inhibitors of severe acute respiratory syndrome coronavirus entry that act by three distinct mechanisms. J. Virol., 2013, 87(14), 8017-8028.
[http://dx.doi.org/10.1128/JVI.00998-13] [PMID: 23678171]
[64]
Kao, R.Y.; Tsui, W.H.; Lee, T.S.; Tanner, J.A.; Watt, R.M.; Huang, J.D.; Hu, L.; Chen, G.; Chen, Z.; Zhang, L.; He, T.; Chan, K.H.; Tse, H.; To, A.P.; Ng, L.W.; Wong, B.C.; Tsoi, H.W.; Yang, D.; Ho, D.D.; Yuen, K.Y. Identification of novel small-molecule inhibitors of severe acute respiratory syndrome-associated coronavirus by chemical genetics. Chem. Biol., 2004, 11(9), 1293-1299.
[http://dx.doi.org/10.1016/j.chembiol.2004.07.013] [PMID: 15380189]
[65]
Wu, C.J.; Huang, H.W.; Liu, C.Y.; Hong, C.F.; Chan, Y.L. Inhibition of SARS-CoV replication by siRNA. Antiviral Res., 2005, 65(1), 45-48.
[http://dx.doi.org/10.1016/j.antiviral.2004.09.005] [PMID: 15652970]
[66]
Walls, A.C.; Xiong, X.; Park, Y.J.; Tortorici, M.A.; Snijder, J.; Quispe, J.; Cameroni, E.; Gopal, R.; Dai, M.; Lanzavecchia, A.; Zambon, M.; Rey, F.A.; Corti, D.; Veesler, D. Unexpected receptor functional mimicry elucidates activation of coronavirus fusion. Cell, 2019, 176(5), 1026-1039.e15.
[http://dx.doi.org/10.1016/j.cell.2018.12.028] [PMID: 30712865]
[67]
Prabakaran, P.; Gan, J.; Feng, Y.; Zhu, Z.; Choudhry, V.; Xiao, X.; Ji, X.; Dimitrov, D.S. Structure of severe acute respiratory syndrome coronavirus receptor-binding domain complexed with neutralizing antibody. J. Biol. Chem., 2006, 281(23), 15829-15836.
[http://dx.doi.org/10.1074/jbc.M600697200] [PMID: 16597622]
[68]
Okada, M.; Takemoto, Y.; Okuno, Y.; Hashimoto, S.; Yoshida, S.; Fukunaga, Y.; Tanaka, T.; Kita, Y.; Kuwayama, S.; Muraki, Y.; Kanamaru, N.; Takai, H.; Okada, C.; Sakaguchi, Y.; Furukawa, I.; Yamada, K.; Matsumoto, M.; Kase, T.; Demello, D.E.; Peiris, J.S.; Chen, P.J.; Yamamoto, N.; Yoshinaka, Y.; Nomura, T.; Ishida, I.; Morikawa, S.; Tashiro, M.; Sakatani, M. The development of vaccines against SARS corona virus in mice and SCID-PBL/hu mice. Vaccine, 2005, 23(17-18), 2269-2272.
[http://dx.doi.org/10.1016/j.vaccine.2005.01.036] [PMID: 15755609]
[69]
Arbely, E.; Khattari, Z.; Brotons, G.; Akkawi, M.; Salditt, T.; Arkin, I.T. A highly unusual palindromic transmembrane helical hairpin formed by SARS coronavirus E protein. J. Mol. Biol., 2004, 341(3), 769-779.
[http://dx.doi.org/10.1016/j.jmb.2004.06.044] [PMID: 15288785]
[70]
Kuo, L.; Hurst, K.R.; Masters, P.S. Exceptional flexibility in the sequence requirements for coronavirus small envelope protein function. J. Virol., 2007, 81(5), 2249-2262.
[http://dx.doi.org/10.1128/JVI.01577-06] [PMID: 17182690]
[71]
Venkatagopalan, P.; Daskalova, S.M.; Lopez, L.A.; Dolezal, K.A.; Hogue, B.G. Coronavirus envelope (E) protein remains at the site of assembly. Virology, 2015, 478, 75-85.
[http://dx.doi.org/10.1016/j.virol.2015.02.005] [PMID: 25726972]
[72]
Pervushin, K.; Tan, E.; Parthasarathy, K.; Lin, X.; Jiang, F.L.; Yu, D.; Vararattanavech, A.; Soong, T.W.; Liu, D.X.; Torres, J. Structure and inhibition of the SARS coronavirus envelope protein ion channel. PLoS Pathog., 2009, 5(7)e1000511
[http://dx.doi.org/10.1371/journal.ppat.1000511] [PMID: 19593379]
[73]
Schoeman, D Fielding, BC Coronavirus envelope protein: current knowledge. 2019, 16(1),
[http://dx.doi.org/10.1186/s12985-019-1182-0]
[74]
Chang, C.K.; Hou, M.H.; Chang, C.F.; Hsiao, C.D.; Huang, T.H. The SARS coronavirus nucleocapsid protein--forms and functions. Antiviral Res., 2014, 103, 39-50.
[http://dx.doi.org/10.1016/j.antiviral.2013.12.009] [PMID: 24418573]
[75]
McBride, R.; van Zyl, M.; Fielding, B.C. The coronavirus nucleocapsid is a multifunctional protein. Viruses, 2014, 6(8), 2991-3018.
[http://dx.doi.org/10.3390/v6082991] [PMID: 25105276]
[76]
Zhou, B.; Liu, J.; Wang, Q.; Liu, X.; Li, X.; Li, P.; Ma, Q.; Cao, C. The nucleocapsid protein of severe acute respiratory syndrome coronavirus inhibits cell cytokinesis and proliferation by interacting with translation elongation factor 1alpha. J. Virol., 2008, 82(14), 6962-6971.
[http://dx.doi.org/10.1128/JVI.00133-08] [PMID: 18448518]
[77]
Lin, S.Y.; Liu, C.L.; Chang, Y.M.; Zhao, J.; Perlman, S.; Hou, M.H. Structural basis for the identification of the N-terminal domain of coronavirus nucleocapsid protein as an antiviral target. J. Med. Chem., 2014, 57(6), 2247-2257.
[http://dx.doi.org/10.1021/jm500089r] [PMID: 24564608]
[78]
Chang, C.K.; Jeyachandran, S.; Hu, N.J.; Liu, C.L.; Lin, S.Y.; Wang, Y.S.; Chang, Y.M.; Hou, M.H. Structure-based virtual screening and experimental validation of the discovery of inhibitors targeted towards the human coronavirus nucleocapsid protein. Mol. Biosyst., 2016, 12(1), 59-66.
[http://dx.doi.org/10.1039/C5MB00582E] [PMID: 26542199]
[79]
Zeng, Q.; Langereis, M.A.; van Vliet, A.L.; Huizinga, E.G.; de Groot, R.J. Structure of coronavirus hemagglutinin-esterase offers insight into corona and influenza virus evolution. Proc. Natl. Acad. Sci. USA, 2008, 105(26), 9065-9069.
[http://dx.doi.org/10.1073/pnas.0800502105] [PMID: 18550812]
[80]
Frick, D.N.; Lam, A.M. Understanding helicases as a means of virus control. Curr. Pharm. Des., 2006, 12(11), 1315-1338.
[http://dx.doi.org/10.2174/138161206776361147] [PMID: 16611118]
[81]
Karpe, Y.A.; Lole, K.S. NTPase and 5′ to 3′ RNA duplex-unwinding activities of the hepatitis E virus helicase domain. J. Virol., 2010, 84(7), 3595-3602.
[http://dx.doi.org/10.1128/JVI.02130-09] [PMID: 20071563]
[82]
te Velthuis, A.J.; van den Worm, S.H.; Snijder, E.J. The SARS-coronavirus nsp7+nsp8 complex is a unique multimeric RNA polymerase capable of both de novo initiation and primer extension. Nucleic Acids Res., 2012, 40(4), 1737-1747.
[http://dx.doi.org/10.1093/nar/gkr893] [PMID: 22039154]
[83]
Stobart, C.C.; Sexton, N.R.; Munjal, H.; Lu, X.; Molland, K.L.; Tomar, S.; Mesecar, A.D.; Denison, M.R. Chimeric exchange of coronavirus nsp5 proteases (3CLpro) identifies common and divergent regulatory determinants of protease activity. J. Virol., 2013, 87(23), 12611-12618.
[http://dx.doi.org/10.1128/JVI.02050-13] [PMID: 24027335]
[84]
Wang, H.; Xue, S.; Yang, H.; Chen, C. Recent progress in the discovery of inhibitors targeting coronavirus proteases. Virol. Sin., 2016, 31(1), 24-30.
[http://dx.doi.org/10.1007/s12250-015-3711-3] [PMID: 26920707]
[85]
Turlington, M.; Chun, A.; Tomar, S.; Eggler, A.; Grum-Tokars, V.; Jacobs, J.; Daniels, J.S.; Dawson, E.; Saldanha, A.; Chase, P.; Baez-Santos, Y.M.; Lindsley, C.W.; Hodder, P.; Mesecar, A.D.; Stauffer, S.R. Discovery of N-(benzo[1,2,3]triazol-1-yl)-N-(benzyl)acetamido)phenyl) carboxamides as severe acute respiratory syndrome coronavirus (SARS-CoV) 3CLpro inhibitors: identification of ML300 and noncovalent nanomolar inhibitors with an induced-fit binding. Bioorg. Med. Chem. Lett., 2013, 23(22), 6172-6177.
[http://dx.doi.org/10.1016/j.bmcl.2013.08.112] [PMID: 24080461]
[86]
Jacobs, J.; Grum-Tokars, V.; Zhou, Y.; Turlington, M.; Saldanha, S.A.; Chase, P.; Eggler, A.; Dawson, E.S.; Baez-Santos, Y.M.; Tomar, S.; Mielech, A.M.; Baker, S.C.; Lindsley, C.W.; Hodder, P.; Mesecar, A.; Stauffer, S.R. Discovery, synthesis, and structure-based optimization of a series of N-(tert-butyl)-2-(N-arylamido)-2-(pyridin-3-yl) acetamides (ML188) as potent noncovalent small molecule inhibitors of the severe acute respiratory syndrome coronavirus (SARS-CoV) 3CL protease. J. Med. Chem., 2013, 56(2), 534-546.
[http://dx.doi.org/10.1021/jm301580n] [PMID: 23231439]
[87]
Hsu, M.F.; Kuo, C.J.; Chang, K.T.; Chang, H.C.; Chou, C.C.; Ko, T.P.; Shr, H.L.; Chang, G.G.; Wang, A.H.; Liang, P.H. Mechanism of the maturation process of SARS-CoV 3CL protease. J. Biol. Chem., 2005, 280(35), 31257-31266.
[http://dx.doi.org/10.1074/jbc.M502577200] [PMID: 15788388]
[88]
Baez-Santos, Y.M.; Barraza, S.J.; Wilson, M.W.; Agius, M.P.; Mielech, A.M.; Davis, N.M.; Baker, S.C.; Larsen, S.D.; Mesecar, A.D. X-ray structural and biological evaluation of a series of potent and highly selective inhibitors of human coronavirus papain-like proteases. J. Med. Chem., 2014, 57(6), 2393-2412.
[http://dx.doi.org/10.1021/jm401712t] [PMID: 24568342]
[89]
Hoffmann, M; Kleine-Weber, H; Schroeder, S; Kruger, N; Herrler, T; Erichsen, S SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor. Cell, 2020, 181(2), 271-280 e8.,
[90]
Wang, X; Cao, R; Zhang, H; Liu, J; Xu, M; Hu, H The anti-influenza virus drug, arbidol is an efficient inhibitor of SARS-CoV-2 in vitro., 2020. 6, 28..
[91]
Yao, X.; Ye, F.; Zhang, M.; Cui, C.; Huang, B.; Niu, P.; Liu, X.; Zhao, L.; Dong, E.; Song, C.; Zhan, S.; Lu, R.; Li, H.; Tan, W.; Liu, D. In Vitro antiviral activity and projection of optimized dosing design of hydroxychloroquine for the treatment of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Clin. Infect. Dis., 2020, 71(15), 732-739.
[http://dx.doi.org/10.1093/cid/ciaa237] [PMID: 32150618]
[92]
Pene, F.; Merlat, A.; Vabret, A.; Rozenberg, F.; Buzyn, A.; Dreyfus, F.; Cariou, A.; Freymuth, F.; Lebon, P. Coronavirus 229E-related pneumonia in immune compromised patients. Clin. Infect. Dis., 2003, 37(7), 929-932.
[http://dx.doi.org/10.1086/377612] [PMID: 13130404]
[93]
Gautret, P.; Lagier, J.C.; Parola, P.; Hoang, V.T.; Meddeb, L.; Mailhe, M.; Doudier, B.; Courjon, J.; Giordanengo, V.; Vieira, V.E.; Tissot Dupont, H.; Honoré, S.; Colson, P.; Chabrière, E.; La Scola, B.; Rolain, J.M.; Brouqui, P.; Raoult, D. Hydroxychloroquine and azithromycin as a treatment of COVID-19: results of an open-label non-randomized clinical trial. Int. J. Antimicrob. Agents, 2020, 56(1)105949
[http://dx.doi.org/10.1016/j.ijantimicag.2020.105949] [PMID: 32205204]
[94]
Elfiky, A.A. Anti-HCV, nucleotide inhibitors, repurposing against COVID-19. Life Sci., 2020, 248117477
[http://dx.doi.org/10.1016/j.lfs.2020.117477] [PMID: 32119961]
[95]
Brown, A.J.; Won, J.J.; Graham, R.L.; Dinnon, K.H., III; Sims, A.C.; Feng, J.Y.; Cihlar, T.; Denison, M.R.; Baric, R.S.; Sheahan, T.P. Broad spectrum antiviral remdesivir inhibits human endemic and zoonotic deltacoronaviruses with a highly divergent RNA dependent RNA polymerase. Antiviral Res., 2019, 169104541
[http://dx.doi.org/10.1016/j.antiviral.2019.104541] [PMID: 31233808]
[96]
Sheahan, TP; Sims, AC Broad-spectrum antiviral GS-5734 inhibits both epidemic and zoonotic coronaviruses., 2017. 9(396).
[http://dx.doi.org/10.1126/scitranslmed.aal3653]
[97]
Abdelkarim, G.E.; Gertz, K.; Harms, C.; Katchanov, J.; Dirnagl, U.; Szabó, C.; Endres, M. Protective effects of PJ34, a novel, potent inhibitor of poly(ADP-ribose) polymerase (PARP) in in vitro and in vivo models of stroke. Int. J. Mol. Med., 2001, 7(3), 255-260.
[http://dx.doi.org/10.3892/ijmm.7.3.255] [PMID: 11179503]
[98]
Dyall, J.; Coleman, C.M.; Hart, B.J.; Venkataraman, T.; Holbrook, M.R.; Kindrachuk, J.; Johnson, R.F.; Olinger, G.G., Jr; Jahrling, P.B.; Laidlaw, M.; Johansen, L.M.; Lear-Rooney, C.M.; Glass, P.J.; Hensley, L.E.; Frieman, M.B. Repurposing of clinically developed drugs for treatment of Middle East respiratory syndrome coronavirus infection. Antimicrob. Agents Chemother., 2014, 58(8), 4885-4893.
[http://dx.doi.org/10.1128/AAC.03036-14] [PMID: 24841273]
[99]
Wilson, L.; Gage, P.; Ewart, G. Hexamethylene amiloride blocks E protein ion channels and inhibits coronavirus replication. Virology, 2006, 353(2), 294-306.
[http://dx.doi.org/10.1016/j.virol.2006.05.028] [PMID: 16815524]
[100]
Chan, J.F.; Chan, K.H.; Kao, R.Y.; To, K.K.; Zheng, B.J.; Li, C.P.; Li, P.T.; Dai, J.; Mok, F.K.; Chen, H.; Hayden, F.G.; Yuen, K.Y. Broad-spectrum antivirals for the emerging Middle East respiratory syndrome coronavirus. J. Infect., 2013, 67(6), 606-616.
[http://dx.doi.org/10.1016/j.jinf.2013.09.029] [PMID: 24096239]
[101]
Hart, B.J.; Dyall, J.; Postnikova, E.; Zhou, H.; Kindrachuk, J.; Johnson, R.F.; Olinger, G.G.; Frieman, M.B.; Holbrook, M.R.; Jahrling, P.B.; Hensley, L. Interferon-β and mycophenolic acid are potent inhibitors of Middle East respiratory syndrome coronavirus in cell-based assays. J. Gen. Virol., 2014, 95(Pt 3), 571-577.
[http://dx.doi.org/10.1099/vir.0.061911-0] [PMID: 24323636]
[102]
Runfeng, L.; Yunlong, H.; Jicheng, H.; Weiqi, P.; Qinhai, M.; Yongxia, S.; Chufang, L.; Jin, Z.; Zhenhua, J.; Haiming, J.; Kui, Z.; Shuxiang, H.; Jun, D.; Xiaobo, L.; Xiaotao, H.; Lin, W.; Nanshan, Z.; Zifeng, Y. Lianhuaqingwen exerts anti-viral and anti-inflammatory activity against novel coronavirus (SARS-CoV-2). Pharmacol. Res., 2020, 156104761
[http://dx.doi.org/10.1016/j.phrs.2020.104761] [PMID: 32205232]
[103]
Xu, X.; Han, M.; Li, T.; Sun, W.; Wang, D.; Fu, B.; Zhou, Y.; Zheng, X.; Yang, Y.; Li, X.; Zhang, X.; Pan, A.; Wei, H. Effective treatment of severe COVID-19 patients with tocilizumab. Proc. Natl. Acad. Sci. USA, 2020, 117(20), 10970-10975.
[http://dx.doi.org/10.1073/pnas.2005615117] [PMID: 32350134]
[104]
Kaly, L.; Rosner, I. Tocilizumab - a novel therapy for non-organ-specific autoimmune diseases. Best Pract. Res. Clin. Rheumatol., 2012, 26(1), 157-165.
[http://dx.doi.org/10.1016/j.berh.2012.01.001] [PMID: 22424201]
[105]
Group, R.C. Dexamethasone in hospitalized patients with Covid-19—preliminary report. N. Engl. J. Med., 2020.
[106]
Leng, Z.; Zhu, R.; Hou, W.; Feng, Y.; Yang, Y.; Han, Q.; Shan, G.; Meng, F.; Du, D.; Wang, S.; Fan, J.; Wang, W.; Deng, L.; Shi, H.; Li, H.; Hu, Z.; Zhang, F.; Gao, J.; Liu, H.; Li, X.; Zhao, Y.; Yin, K.; He, X.; Gao, Z.; Wang, Y.; Yang, B.; Jin, R.; Stambler, I.; Lim, L.W.; Su, H.; Moskalev, A.; Cano, A.; Chakrabarti, S.; Min, K.J.; Ellison-Hughes, G.; Caruso, C.; Jin, K.; Zhao, R.C. Transplantation of ACE2-mesenchymal stem cells improves the outcome of patients with COVID-19 pneumonia. Aging Dis., 2020, 11(2), 216-228.
[http://dx.doi.org/10.14336/AD.2020.0228] [PMID: 32257537]
[107]
Yeleswaram, S.; Smith, P.; Burn, T.; Covington, M.; Juvekar, A.; Li, Y.; Squier, P.; Langmuir, P. Inhibition of cytokine signaling by ruxolitinib and implications for COVID-19 treatment. Clin. Immunol., 2020, 218108517
[http://dx.doi.org/10.1016/j.clim.2020.108517] [PMID: 32585295]
[108]
Rogers, T.F.; Zhao, F.; Huang, D.; Beutler, N.; Burns, A.; He, W.T.; Limbo, O.; Smith, C.; Song, G.; Woehl, J.; Yang, L.; Abbott, R.K.; Callaghan, S.; Garcia, E.; Hurtado, J.; Parren, M.; Peng, L.; Ramirez, S.; Ricketts, J.; Ricciardi, M.J.; Rawlings, S.A.; Wu, N.C.; Yuan, M.; Smith, D.M.; Nemazee, D.; Teijaro, J.R.; Voss, J.E.; Wilson, I.A.; Andrabi, R.; Briney, B.; Landais, E.; Sok, D.; Jardine, J.G.; Burton, D.R. Isolation of potent SARS-CoV-2 neutralizing antibodies and protection from disease in a small animal model. Science, 2020, 369(6506), 956-963.
[http://dx.doi.org/10.1126/science.abc7520] [PMID: 32540903]
[109]
Corti, D.; Misasi, J.; Mulangu, S.; Stanley, D.A.; Kanekiyo, M.; Wollen, S.; Ploquin, A.; Doria-Rose, N.A.; Staupe, R.P.; Bailey, M.; Shi, W.; Choe, M.; Marcus, H.; Thompson, E.A.; Cagigi, A.; Silacci, C.; Fernandez-Rodriguez, B.; Perez, L.; Sallusto, F.; Vanzetta, F.; Agatic, G.; Cameroni, E.; Kisalu, N.; Gordon, I.; Ledgerwood, J.E.; Mascola, J.R.; Graham, B.S.; Muyembe-Tamfun, J.J.; Trefry, J.C.; Lanzavecchia, A.; Sullivan, N.J. Protective monotherapy against lethal Ebola virus infection by a potently neutralizing antibody. Science, 2016, 351(6279), 1339-1342.
[http://dx.doi.org/10.1126/science.aad5224] [PMID: 26917593]
[110]
Simmons, G.; Gosalia, D.N.; Rennekamp, A.J.; Reeves, J.D.; Diamond, S.L.; Bates, P. Inhibitors of cathepsin L prevent severe acute respiratory syndrome coronavirus entry. Proc. Natl. Acad. Sci. USA, 2005, 102(33), 11876-11881.
[http://dx.doi.org/10.1073/pnas.0505577102] [PMID: 16081529]
[111]
Bertram, S.; Glowacka, I.; Müller, M.A.; Lavender, H.; Gnirss, K.; Nehlmeier, I.; Niemeyer, D.; He, Y.; Simmons, G.; Drosten, C.; Soilleux, E.J.; Jahn, O.; Steffen, I.; Pöhlmann, S. Cleavage and activation of the severe acute respiratory syndrome coronavirus spike protein by human airway trypsin-like protease. J. Virol., 2011, 85(24), 13363-13372.
[http://dx.doi.org/10.1128/JVI.05300-11] [PMID: 21994442]
[112]
Stadler, K.; Ha, H.R.; Ciminale, V.; Spirli, C.; Saletti, G.; Schiavon, M.; Bruttomesso, D.; Bigler, L.; Follath, F.; Pettenazzo, A.; Baritussio, A. Amiodarone alters late endosomes and inhibits SARS coronavirus infection at a post-endosomal level. Am. J. Respir. Cell Mol. Biol., 2008, 39(2), 142-149.
[http://dx.doi.org/10.1165/rcmb.2007-0217OC] [PMID: 18314540]
[113]
Duan, K; Liu, B; Li, C; Zhang, H Effectiveness of convalescent plasma therapy in severe COVID-19 patients., 2020.117(17), 9490-9496..
[http://dx.doi.org/10.1073/pnas.2004168117]
[114]
Lu, H. Drug treatment options for the 2019-new coronavirus (2019-nCoV). Biosci. Trends, 2020, 14(1), 69-71.
[http://dx.doi.org/10.5582/bst.2020.01020] [PMID: 31996494]
[115]
Holshue, M.L.; DeBolt, C.; Lindquist, S.; Lofy, K.H.; Wiesman, J.; Bruce, H.; Spitters, C.; Ericson, K.; Wilkerson, S.; Tural, A.; Diaz, G.; Cohn, A.; Fox, L.; Patel, A.; Gerber, S.I.; Kim, L.; Tong, S.; Lu, X.; Lindstrom, S.; Pallansch, M.A.; Weldon, W.C.; Biggs, H.M.; Uyeki, T.M.; Pillai, S.K. Washington state 2019-ncov case investigation team. first case of 2019 novel coronavirus in the united states. N. Engl. J. Med., 2020, 382(10), 929-936.
[http://dx.doi.org/10.1056/NEJMoa2001191] [PMID: 32004427]
[116]
Russell, C.D.; Millar, J.E.; Baillie, J.K. Clinical evidence does not support corticosteroid treatment for 2019-nCoV lung injury. Lancet, 2020, 395(10223), 473-475.
[http://dx.doi.org/10.1016/S0140-6736(20)30317-2] [PMID: 32043983]
[117]
Shang, L.; Zhao, J.; Hu, Y.; Du, R.; Cao, B. On the use of corticosteroids for 2019-nCoV pneumonia. Lancet, 2020, 395(10225), 683-684.
[http://dx.doi.org/10.1016/S0140-6736(20)30361-5] [PMID: 32122468]
[118]
Warren, T.K.; Jordan, R.; Lo, M.K.; Ray, A.S.; Mackman, R.L.; Soloveva, V.; Siegel, D.; Perron, M.; Bannister, R.; Hui, H.C.; Larson, N.; Strickley, R.; Wells, J.; Stuthman, K.S.; Van Tongeren, S.A.; Garza, N.L.; Donnelly, G.; Shurtleff, A.C.; Retterer, C.J.; Gharaibeh, D.; Zamani, R.; Kenny, T.; Eaton, B.P.; Grimes, E.; Welch, L.S.; Gomba, L.; Wilhelmsen, C.L.; Nichols, D.K.; Nuss, J.E.; Nagle, E.R.; Kugelman, J.R.; Palacios, G.; Doerffler, E.; Neville, S.; Carra, E.; Clarke, M.O.; Zhang, L.; Lew, W.; Ross, B.; Wang, Q.; Chun, K.; Wolfe, L.; Babusis, D.; Park, Y.; Stray, K.M.; Trancheva, I.; Feng, J.Y.; Barauskas, O.; Xu, Y.; Wong, P.; Braun, M.R.; Flint, M.; McMullan, L.K.; Chen, S.S.; Fearns, R.; Swaminathan, S.; Mayers, D.L.; Spiropoulou, C.F.; Lee, W.A.; Nichol, S.T.; Cihlar, T.; Bavari, S. Therapeutic efficacy of the small molecule GS-5734 against Ebola virus in rhesus monkeys. Nature, 2016, 531(7594), 381-385.
[http://dx.doi.org/10.1038/nature17180] [PMID: 26934220]
[119]
Mulangu, S.; Dodd, L.E.; Davey, R.T., Jr; Tshiani Mbaya, O.; Proschan, M.; Mukadi, D.; Lusakibanza Manzo, M.; Nzolo, D.; Tshomba Oloma, A.; Ibanda, A.; Ali, R.; Coulibaly, S.; Levine, A.C.; Grais, R.; Diaz, J.; Lane, H.C.; Muyembe-Tamfum, J.J.; Sivahera, B.; Camara, M.; Kojan, R.; Walker, R.; Dighero-Kemp, B.; Cao, H.; Mukumbayi, P.; Mbala-Kingebeni, P.; Ahuka, S.; Albert, S.; Bonnett, T.; Crozier, I.; Duvenhage, M.; Proffitt, C.; Teitelbaum, M.; Moench, T.; Aboulhab, J.; Barrett, K.; Cahill, K.; Cone, K.; Eckes, R.; Hensley, L.; Herpin, B.; Higgs, E.; Ledgerwood, J.; Pierson, J.; Smolskis, M.; Sow, Y.; Tierney, J.; Sivapalasingam, S.; Holman, W.; Gettinger, N.; Vallée, D.; Nordwall, J. PALM writing group; PALM consortium study team. A randomized, controlled trial of ebola virus disease therapeutics. N. Engl. J. Med., 2019, 381(24), 2293-2303.
[http://dx.doi.org/10.1056/NEJMoa1910993] [PMID: 31774950]
[120]
Su, B.; Wang, Y.; Zhou, R.; Jiang, T.; Zhang, H.; Li, Z.; Liu, A.; Shao, Y.; Hua, W.; Zhang, T.; Wu, H.; He, S.; Dai, L.; Sun, L. Efficacy and tolerability of lopinavir/ritonavir- and efavirenz-based initial antiretroviral therapy in hiv-1-infected patients in a tertiary care hospital in beijing, china. Front. Pharmacol., 2019, 10, 1472.
[http://dx.doi.org/10.3389/fphar.2019.01472] [PMID: 31920659]
[121]
Chu, C.M.; Cheng, V.C.; Hung, I.F.; Wong, M.M.; Chan, K.H.; Chan, K.S.; Kao, R.Y.; Poon, L.L.; Wong, C.L.; Guan, Y.; Peiris, J.S.; Yuen, K.Y. HKU/UCH SARS Study Group.Role of lopinavir/ritonavir in the treatment of SARS: initial virological and clinical findings. Thorax, 2004, 59(3), 252-256.
[http://dx.doi.org/10.1136/thorax.2003.012658] [PMID: 14985565]
[122]
Cheng, Y.; Wong, R.; Soo, Y.O.; Wong, W.S.; Lee, C.K.; Ng, M.H.; Chan, P.; Wong, K.C.; Leung, C.B.; Cheng, G. Use of convalescent plasma therapy in SARS patients in Hong Kong. Eur. J. Clin. Microbiol. Infect. Dis., 2005, 24(1), 44-46.
[http://dx.doi.org/10.1007/s10096-004-1271-9] [PMID: 15616839]
[123]
Zhou, B.; Zhong, N.; Guan, Y. Treatment with convalescent plasma for influenza A (H5N1) infection. N. Engl. J. Med., 2007, 357(14), 1450-1451.
[http://dx.doi.org/10.1056/NEJMc070359] [PMID: 17914053]
[124]
Hung, I.F.; To, K.K.; Lee, C.K.; Lee, K.L.; Chan, K.; Yan, W.W.; Liu, R.; Watt, C.L.; Chan, W.M.; Lai, K.Y.; Koo, C.K.; Buckley, T.; Chow, F.L.; Wong, K.K.; Chan, H.S.; Ching, C.K.; Tang, B.S.; Lau, C.C.; Li, I.W.; Liu, S.H.; Chan, K.H.; Lin, C.K.; Yuen, K.Y. Convalescent plasma treatment reduced mortality in patients with severe pandemic influenza A (H1N1) 2009 virus infection. Clin. Infect. Dis., 2011, 52(4), 447-456.
[http://dx.doi.org/10.1093/cid/ciq106] [PMID: 21248066]
[125]
Eickmann, M.; Gravemann, U.; Handke, W.; Tolksdorf, F.; Reichenberg, S.; Müller, T.H.; Seltsam, A. Inactivation of Ebola virus and Middle East respiratory syndrome coronavirus in platelet concentrates and plasma by ultraviolet C light and methylene blue plus visible light, respectively. Transfusion, 2018, 58(9), 2202-2207.
[http://dx.doi.org/10.1111/trf.14652] [PMID: 29732571]
[126]
Mora-Rillo, M.; Arsuaga, M.; Ramírez-Olivencia, G.; de la Calle, F.; Borobia, A.M.; Sánchez-Seco, P.; Lago, M.; Figueira, J.C.; Fernández-Puntero, B.; Viejo, A.; Negredo, A.; Nuñez, C.; Flores, E.; Carcas, A.J.; Jiménez-Yuste, V.; Lasala, F.; García-de-Lorenzo, A.; Arnalich, F.; Arribas, J.R. La Paz-Carlos III University Hospital Isolation Unit. Acute respiratory distress syndrome after convalescent plasma use: treatment of a patient with Ebola virus disease contracted in Madrid, Spain. Lancet Respir. Med., 2015, 3(7), 554-562.
[http://dx.doi.org/10.1016/S2213-2600(15)00180-0] [PMID: 26041403]
[127]
Luo, H.; Tang, Q.L.; Shang, Y.X.; Liang, S.B.; Yang, M.; Robinson, N.; Liu, J.P. Can chinese medicine be used for prevention of corona virus disease 2019 (covid-19)? A review of historical classics, research evidence and current prevention programs. Chin. J. Integr. Med., 2020, 26(4), 243-250.
[http://dx.doi.org/10.1007/s11655-020-3192-6] [PMID: 32065348]
[128]
Wang, L.; Wang, Y.; Ye, D.; Liu, Q. Review of the 2019 novel coronavirus (SARS-CoV-2) based on current evidence. Int. J. Antimicrob. Agents, 2020, 55(6)105948
[http://dx.doi.org/10.1016/j.ijantimicag.2020.105948] [PMID: 32201353]
[129]
Mani, J.S.; Johnson, J.B.; Steel, J.C.; Broszczak, D.A.; Neilsen, P.M.; Walsh, K.B.; Naiker, M. Natural product-derived phytochemicals as potential agents against coronaviruses: A review. Virus Res., 2020, 284197989
[http://dx.doi.org/10.1016/j.virusres.2020.197989] [PMID: 32360300]
[130]
Wan, S; Xiang, Y; Fang, W; Zheng, Y Clinical features and treatment of COVID-19 patients in northeast Chongqing., 2020.
[http://dx.doi.org/10.1002/jmv.25783]
[131]
Srivastava, A.; Chaurasia, J.; Khan, R.; Dhand, C.; Verma, S. Role of Medicinal plants of Traditional Use in Recuperating Devastating COVID-19 Situation. Med Aromat Plants (Los Angeles), 2020, 9(359), 2167-0412.
[132]
Yang, Y.; Islam, M.S.; Wang, J.; Li, Y.; Chen, X. Traditional chinese medicine in the treatment of patients infected with 2019-new coronavirus (sars-cov-2): a review and perspective. Int. J. Biol. Sci., 2020, 16(10), 1708-1717.
[http://dx.doi.org/10.7150/ijbs.45538] [PMID: 32226288]
[133]
Zhang, K.; Tian, M.; Zeng, Y.; Wang, L.; Luo, S.; Xia, W.; Zhang, X.; Zha, Y. The combined therapy of a traditional Chinese medicine formula and Western medicine for a critically ill case infected with COVID-19. Complement. Ther. Med., 2020, 52102473
[http://dx.doi.org/10.1016/j.ctim.2020.102473] [PMID: 32951723]
[134]
Balkrishna, A.; Nain, P.; Chauhan, A.; Sharma, N.; Gupta, A.; Ranjan, R.; Varshney, A. Super critical fluid extracted fatty acids from withania somnifera seeds repair psoriasis-like skin lesions and attenuate pro-inflammatory cytokines (TNF-α and IL-6) Release. Biomolecules, 2020, 10(2), 185.
[http://dx.doi.org/10.3390/biom10020185] [PMID: 31991752]
[135]
Lung, J; Lin, YS; Yang, YH; Chou, YL; Shu, LH; Cheng, YC The potential chemical structure of anti-SARS-CoV-2 RNA-dependent RNA polymerase., 2020.
[http://dx.doi.org/10.1002/jmv.25761]
[136]
Fiolet, T.; Guihur, A.; Rebeaud, M.E.; Mulot, M.; Peiffer-Smadja, N.; Mahamat-Saleh, Y. Effect of hydroxychloroquine with or without azithromycin on the mortality of coronavirus disease 2019 (COVID-19) patients: a systematic review and meta-analysis. Clin. Microbiol. Infect., 2020.
[http://dx.doi.org/32860962]
[137]
Devaux, C.A.; Rolain, J.M.; Colson, P.; Raoult, D. New insights on the antiviral effects of chloroquine against coronavirus: what to expect for COVID-19? Int. J. Antimicrob. Agents, 2020, 55(5)105938
[http://dx.doi.org/10.1016/j.ijantimicag.2020.105938] [PMID: 32171740]
[138]
Wang, M; Cao, R; Zhang, L; Yang, X; Liu, J; Xu, M Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus 2019nCoV) in vitro. 2020, 30(3), 269-271.,
[139]
Gao, J.; Tian, Z.; Yang, X. Breakthrough: Chloroquine phosphate has shown apparent efficacy in treatment of COVID-19 associated pneumonia in clinical studies. Biosci. Trends, 2020, 14(1), 72-73.
[http://dx.doi.org/10.5582/bst.2020.01047] [PMID: 32074550]
[140]
Kupferschmidt, K.; Cohen, J. Race to find COVID-19 treatments accelerates. Science, 2020, 367(6485), 1412-1413.
[http://dx.doi.org/10.1126/science.367.6485.1412] [PMID: 32217705]
[141]
Zhang, S.; Li, L.; Shen, A.; Chen, Y.; Qi, Z. Rational use of tocilizumab in the treatment of novel coronavirus pneumonia. Clin. Drug Investig., 2020, 40(6), 511-518.
[http://dx.doi.org/10.1007/s40261-020-00917-3] [PMID: 32337664]
[142]
Zhang, C.; Wu, Z.; Li, J.W.; Zhao, H.; Wang, G.Q. Cytokine release syndrome in severe COVID-19: interleukin-6 receptor antagonist tocilizumab may be the key to reduce mortality. Int. J. Antimicrob. Agents, 2020, 55(5)105954
[http://dx.doi.org/10.1016/j.ijantimicag.2020.105954] [PMID: 32234467]
[143]
Stockman, L.J.; Bellamy, R.; Garner, P. SARS: systematic review of treatment effects. PLoS Med., 2006, 3(9)e343
[http://dx.doi.org/10.1371/journal.pmed.0030343] [PMID: 16968120]
[144]
Dong, L.; Hu, S.; Gao, J. Discovering drugs to treat coronavirus disease 2019 (COVID-19). Drug Discov. Ther., 2020, 14(1), 58-60.
[http://dx.doi.org/10.5582/ddt.2020.01012] [PMID: 32147628]
[145]
Delang, L.; Abdelnabi, R.; Neyts, J. Favipiravir as a potential countermeasure against neglected and emerging RNA viruses. Antiviral Res., 2018, 153, 85-94.
[http://dx.doi.org/10.1016/j.antiviral.2018.03.003] [PMID: 29524445]
[146]
Furuta, Y.; Komeno, T.; Nakamura, T. Favipiravir (T-705), a broad spectrum inhibitor of viral RNA polymerase. Proc. Jpn. Acad., Ser. B, Phys. Biol. Sci., 2017, 93(7), 449-463.
[http://dx.doi.org/10.2183/pjab.93.027] [PMID: 28769016]
[147]
Coleman, C.M.; Sisk, J.M.; Mingo, R.M.; Nelson, E.A.; White, J.M.; Frieman, M.B. Abelson kinase inhibitors are potent inhibitors of severe acute respiratory syndrome coronavirus and middle east respiratory syndrome coronavirus fusion. J. Virol., 2016, 90(19), 8924-8933.
[http://dx.doi.org/10.1128/JVI.01429-16] [PMID: 27466418]
[148]
Esposito, I.; Labarga, P.; Barreiro, P.; Fernandez-Montero, J.V.; de Mendoza, C.; Benítez-Gutiérrez, L.; Peña, J.M.; Soriano, V. Dual antiviral therapy for HIV and hepatitis C - drug interactions and side effects. Expert Opin. Drug Saf., 2015, 14(9), 1421-1434.
[http://dx.doi.org/10.1517/14740338.2015.1073258] [PMID: 26212044]
[149]
Sandmann, L.; Schulte, B.; Manns, M.P.; Maasoumy, B. Treatment of chronic hepatitis c: efficacy, side effects and complications. Visc. Med., 2019, 35(3), 161-170.
[http://dx.doi.org/10.1159/000500963] [PMID: 31367613]
[150]
Richman, D.D. Antiviral drug resistance. Antiviral Res., 2006, 71(2-3), 117-121.
[http://dx.doi.org/10.1016/j.antiviral.2006.03.004] [PMID: 16621040]
[151]
Yin, P.D.; Das, D.; Mitsuya, H. Overcoming HIV drug resistance through rational drug design based on molecular, biochemical, and structural profiles of HIV resistance. Cell. Mol. Life Sci., 2006, 63(15), 1706-1724.
[http://dx.doi.org/10.1007/s00018-006-6009-7] [PMID: 16715409]
[152]
Shafer, R.W.; Rhee, S.Y.; Pillay, D.; Miller, V.; Sandstrom, P.; Schapiro, J.M.; Kuritzkes, D.R.; Bennett, D. HIV-1 protease and reverse transcriptase mutations for drug resistance surveillance. AIDS, 2007, 21(2), 215-223.
[http://dx.doi.org/10.1097/QAD.0b013e328011e691] [PMID: 17197813]
[153]
Sheu, T.G.; Deyde, V.M.; Okomo-Adhiambo, M.; Garten, R.J.; Xu, X.; Bright, R.A.; Butler, E.N.; Wallis, T.R.; Klimov, A.I.; Gubareva, L.V. Surveillance for neuraminidase inhibitor resistance among human influenza A and B viruses circulating worldwide from 2004 to 2008. Antimicrob. Agents Chemother., 2008, 52(9), 3284-3292.
[http://dx.doi.org/10.1128/AAC.00555-08] [PMID: 18625765]
[154]
Geretti, A.M.; Armenia, D.; Ceccherini-Silberstein, F. Emerging patterns and implications of HIV-1 integrase inhibitor resistance. Curr. Opin. Infect. Dis., 2012, 25(6), 677-686.
[http://dx.doi.org/10.1097/QCO.0b013e32835a1de7] [PMID: 23086187]
[155]
Benarba, B.; Pandiella, A. Medicinal Plants as Sources of Active Molecules Against COVID-19. Front. Pharmacol., 2020, 11, 1189.
[http://dx.doi.org/10.3389/fphar.2020.01189] [PMID: 32848790]
[156]
Wijayasinghe, Y.S.; Bhansali, P.; Viola, R.E.; Kamal, M.A.; Poddar, N.K. Natural products: a rich source of antiviral drug lead candidates for the management of covid-19. Curr. Pharm. Des., 2020.
[http://dx.doi.org/10.2174/1381612826666201118111151] [PMID: 33213322]
[157]
Kitamura, K.; Honda, M.; Yoshizaki, H.; Yamamoto, S.; Nakane, H.; Fukushima, M.; Ono, K.; Tokunaga, T. Baicalin, an inhibitor of HIV-1 production in vitro. Antiviral Res., 1998, 37(2), 131-140.
[http://dx.doi.org/10.1016/S0166-3542(97)00069-7] [PMID: 9588845]
[158]
Bruzewicz, S.; Malicki, A.; Oszmiañski, J.; Jaroslawska, A.; Jarmoluk, A.; Pawlas, K. Baicalin, added as the only preservative, improves the microbiological quality of homemade mayonnaise. Pak. J. Nutr., 2006, 5, 30-33.
[http://dx.doi.org/10.3923/pjn.2006.30.33]
[159]
Scheck, A.C.; Perry, K.; Hank, N.C.; Clark, W.D. Anticancer activity of extracts derived from the mature roots of Scutellaria baicalensis on human malignant brain tumor cells. BMC Complement. Altern. Med., 2006, 6, 27.
[http://dx.doi.org/10.1186/1472-6882-6-27] [PMID: 16914050]
[160]
Ye, F.; Jiang, S.; Volshonok, H.; Wu, J.; Zhang, D.Y. Molecular mechanism of anti-prostate cancer activity of Scutellaria baicalensis extract. Nutr. Cancer, 2007, 57(1), 100-110.
[http://dx.doi.org/10.1080/01635580701268352] [PMID: 17516867]
[161]
Xu, Y.; Zhou, B.; Wu, D.; Yin, Z.; Luo, D. Baicalin modulates microRNA expression in UVB irradiated mouse skin. J. Biomed. Res., 2012, 26(2), 125-134.
[http://dx.doi.org/10.1016/S1674-8301(12)60022-0] [PMID: 23554741]
[162]
Li, R.; Wang, L. Baicalin inhibits influenza virus A replication via activation of type I IFN signaling by reducing miR 146a. Mol. Med. Rep., 2019, 20(6), 5041-5049.
[http://dx.doi.org/10.3892/mmr.2019.10743] [PMID: 31638222]
[163]
Wang, L.; Zhang, R.; Chen, J.; Wu, Q.; Kuang, Z. Baicalin Protects against TNF-α-Induced Injury by Down-Regulating miR-191a That Targets the Tight Junction Protein ZO-1 in IEC-6 Cells. Biol. Pharm. Bull., 2017, 40(4), 435-443.
[http://dx.doi.org/10.1248/bpb.b16-00789] [PMID: 28111380]
[164]
Ma, T.; Liu, L.; Xue, H.; Li, L.; Han, C.; Wang, L.; Chen, Z.; Liu, G. Chemical library and structure-activity relationships of 11-demethyl-12-oxo calanolide A analogues as anti-HIV-1 agents. J. Med. Chem., 2008, 51(5), 1432-1446.
[http://dx.doi.org/10.1021/jm701405p] [PMID: 18284187]
[165]
Buckheit, R.W., Jr; White, E.L.; Fliakas-Boltz, V.; Russell, J.; Stup, T.L.; Kinjerski, T.L.; Osterling, M.C.; Weigand, A.; Bader, J.P. Unique anti-human immunodeficiency virus activities of the nonnucleoside reverse transcriptase inhibitors calanolide A, costatolide, and dihydrocostatolide. Antimicrob. Agents Chemother., 1999, 43(8), 1827-1834.
[http://dx.doi.org/10.1128/AAC.43.8.1827] [PMID: 10428899]
[166]
Xu, Z.Q.; Flavin, M.T.; Jenta, T.R. Calanolides, the naturally occurring anti-HIV agents. Curr. Opin. Drug Discov. Devel., 2000, 3(2), 155-166.
[PMID: 19649847]
[167]
Lin, Y-M.; Anderson, H.M.; Jenta, T.R.; Williams, M.J.; Flavin, M.T.; Xu, Z-Q. An efficient and scalable method for the isolation of costatolide, a naturally-occurring anti-HIV agent, from the latex of Calophyllum teysmannii var. inophylloide. Pharm. Biol., 1999, 37(1), 71-76.
[http://dx.doi.org/10.1076/phbi.37.1.71.6326]
[168]
Gu, Y.; Lu, J.; Sun, W.; Jin, R.; Ohira, T.; Zhang, Z.; Tian, X. Oxymatrine and its metabolite matrine contribute to the hepatotoxicity induced by radix Sophorae tonkinensis in mice. Exp. Ther. Med., 2019, 17(4), 2519-2528.
[http://dx.doi.org/10.3892/etm.2019.7237] [PMID: 30906440]
[169]
Zhang, X.; Zong, C.; Zhang, L.; Garner, E.; Sugie, S.; Huang, C.; Wu, W.; Chang, J.; Sakurai, T.; Kato, M.; Ichihara, S.; Kumagai, S.; Ichihara, G. Exposure of Mice to 1,2-Dichloropropane Induces CYP450-Dependent Proliferation and Apoptosis of Cholangiocytes. Toxicol. Sci., 2018, 162(2), 559-569.
[http://dx.doi.org/10.1093/toxsci/kfx272] [PMID: 29228347]
[170]
You, L.; Yang, C.; Du, Y.; Wang, W.; Sun, M.; Liu, J.; Ma, B.; Pang, L.; Zeng, Y.; Zhang, Z.; Dong, X.; Yin, X.; Ni, J. A Systematic Review of the Pharmacology, Toxicology and Pharmacokinetics of Matrine. Front. Pharmacol., 2020, 11(1067), 01067.
[http://dx.doi.org/10.3389/fphar.2020.01067] [PMID: 33041782]
[171]
Lu, H.; Zhang, L.; Gu, L.L.; Hou, B.Y.; Du, G.H. Oxymatrine induces liver injury through jnk signalling pathway mediated by tnf-ƒ¿ In Vivo. Basic Clin. Pharmacol. Toxicol., 2016, 119(4), 405-411.
[http://dx.doi.org/10.1111/bcpt.12608] [PMID: 27097917]
[172]
Wang, L.; Lu, J.; Sun, W.; Gu, Y.; Zhang, C.; Jin, R.; Li, L.; Zhang, Z.; Tian, X. Hepatotoxicity induced by radix Sophorae tonkinensis in mice and increased serum cholinesterase as a potential supplemental biomarker for liver injury. Exp. Toxicol. Pathol., 2017, 69(4), 193-202.
[http://dx.doi.org/10.1016/j.etp.2017.01.003] [PMID: 28126209]
[173]
Rechtman, M.M.; Har-Noy, O.; Bar-Yishay, I.; Fishman, S.; Adamovich, Y.; Shaul, Y.; Halpern, Z.; Shlomai, A. Curcumin inhibits hepatitis B virus via down-regulation of the metabolic coactivator PGC-1alpha. FEBS Lett., 2010, 584(11), 2485-2490.
[http://dx.doi.org/10.1016/j.febslet.2010.04.067] [PMID: 20434445]
[174]
Kim, H.J.; Yoo, H.S.; Kim, J.C.; Park, C.S.; Choi, M.S.; Kim, M.; Choi, H.; Min, J.S.; Kim, Y.S.; Yoon, S.W.; Ahn, J.K. Antiviral effect of Curcuma longa Linn extract against hepatitis B virus replication. J. Ethnopharmacol., 2009, 124(2), 189-196.
[http://dx.doi.org/10.1016/j.jep.2009.04.046] [PMID: 19409970]
[175]
Wei, Z.Q.; Zhang, Y.H.; Ke, C.Z.; Chen, H.X.; Ren, P.; He, Y.L.; Hu, P.; Ma, D.Q.; Luo, J.; Meng, Z.J. Curcumin inhibits hepatitis B virus infection by down-regulating cccDNA-bound histone acetylation. World J. Gastroenterol., 2017, 23(34), 6252-6260.
[http://dx.doi.org/10.3748/wjg.v23.i34.6252] [PMID: 28974891]
[176]
Fadus, M.C.; Lau, C.; Bikhchandani, J.; Lynch, H.T. Curcumin: An age-old anti-inflammatory and anti-neoplastic agent. J. Tradit. Complement. Med., 2016, 7(3), 339-346.
[http://dx.doi.org/10.1016/j.jtcme.2016.08.002] [PMID: 28725630]
[177]
Varoni, E.M.; Lo Faro, A.F.; Sharifi-Rad, J.; Iriti, M. Anticancer Molecular Mechanisms of Resveratrol. Front. Nutr., 2016, 3, 8.
[http://dx.doi.org/10.3389/fnut.2016.00008] [PMID: 27148534]
[178]
Lin, S.C.; Ho, C.T.; Chuo, W.H.; Li, S.; Wang, T.T.; Lin, C.C. Effective inhibition of MERS-CoV infection by resveratrol. BMC Infect. Dis., 2017, 17(1), 144.
[http://dx.doi.org/10.1186/s12879-017-2253-8] [PMID: 28193191]
[179]
Kovacic, P.; Somanathan, R. Multifaceted approach to resveratrol bioactivity: Focus on antioxidant action, cell signaling and safety. Oxid. Med. Cell. Longev., 2010, 3(2), 86-100.
[http://dx.doi.org/10.4161/oxim.3.2.11147] [PMID: 20716933]
[180]
Banerjee Mustafi, S.; Chakraborty, P.K.; Raha, S. Modulation of Akt and ERK1/2 pathways by resveratrol in chronic myelogenous leukemia (CML) cells results in the downregulation of Hsp70. PLoS One, 2010, 5(1)e8719
[http://dx.doi.org/10.1371/journal.pone.0008719] [PMID: 20090934]
[181]
Kaihatsu, K; Yamabe, M; Ebara, Y Antiviral mechanism of action of epigallocatechin-3-o-gallate and its fatty acid esters., 2018, 23(10)
[http://dx.doi.org/10.3390/molecules23102475]
[182]
Wang, M.; Cao, R.; Zhang, L.; Yang, X.; Liu, J.; Xu, M.; Shi, Z.; Hu, Z.; Zhong, W.; Xiao, G. Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell Res., 2020, 30(3), 269-271.
[http://dx.doi.org/10.1038/s41422-020-0282-0] [PMID: 32020029]
[183]
Cerdá, B.; Cerón, J.J.; Tomás-Barberán, F.A.; Espín, J.C. Repeated oral administration of high doses of the pomegranate ellagitannin punicalagin to rats for 37 days is not toxic. J. Agric. Food Chem., 2003, 51(11), 3493-3501.
[http://dx.doi.org/10.1021/jf020842c] [PMID: 12744688]
[184]
Huang, Y.N.; Zhao, D.D.; Gao, B.; Zhong, K.; Zhu, R.X.; Zhang, Y.; Xie, W.J.; Jia, L.R.; Gao, H. Anti-hyperglycemic effect of chebulagic acid from the fruits of Terminalia chebula Retz. Int. J. Mol. Sci., 2012, 13(5), 6320-6333.
[http://dx.doi.org/10.3390/ijms13056320] [PMID: 22754367]
[185]
Yoshida, T.; Amakura, Y.; Yoshimura, M. Structural features and biological properties of ellagitannins in some plant families of the order Myrtales. Int. J. Mol. Sci., 2010, 11(1), 79-106.
[http://dx.doi.org/10.3390/ijms11010079] [PMID: 20162003]
[186]
Pouységu, L.; Deffieux, D.; Malik, G.; Natangelo, A.; Quideau, S. Synthesis of ellagitannin natural products. Nat. Prod. Rep., 2011, 28(5), 853-874.
[http://dx.doi.org/10.1039/c0np00058b] [PMID: 21321753]
[187]
Pommier, Y.; Johnson, A.A.; Marchand, C. Integrase inhibitors to treat HIV/AIDS. Nat. Rev. Drug Discov., 2005, 4(3), 236-248.
[http://dx.doi.org/10.1038/nrd1660] [PMID: 15729361]
[188]
Kostova, I. Coumarins as inhibitors of HIV reverse transcriptase. Curr. HIV Res., 2006, 4(3), 347-363.
[http://dx.doi.org/10.2174/157016206777709393] [PMID: 16842086]
[189]
Chang, C.W.; Hsu, F.L.; Lin, J.Y. Inhibitory Effects of Polyphenolic Catechins from Chinese Green Tea on HIV Reverse Transcriptase Activity. J. Biomed. Sci., 1994, 1(3), 163-166.
[http://dx.doi.org/10.1007/BF02253344] [PMID: 11725021]
[190]
Kawai, K.; Tsuno, N.H.; Kitayama, J.; Okaji, Y.; Yazawa, K.; Asakage, M.; Hori, N.; Watanabe, T.; Takahashi, K.; Nagawa, H. Epigallocatechin gallate, the main component of tea polyphenol, binds to CD4 and interferes with gp120 binding. J. Allergy Clin. Immunol., 2003, 112(5), 951-957.
[http://dx.doi.org/10.1016/S0091-6749(03)02007-4] [PMID: 14610487]
[191]
Williamson, M.P.; McCormick, T.G.; Nance, C.L.; Shearer, W.T. Epigallocatechin gallate, the main polyphenol in green tea, binds to the T-cell receptor, CD4: Potential for HIV-1 therapy. J. Allergy Clin. Immunol., 2006, 118(6), 1369-1374.
[http://dx.doi.org/10.1016/j.jaci.2006.08.016] [PMID: 17157668]
[192]
Miki, K.; Nagai, T.; Suzuki, K.; Tsujimura, R.; Koyama, K.; Kinoshita, K.; Furuhata, K.; Yamada, H.; Takahashi, K. Anti-influenza virus activity of biflavonoids. Bioorg. Med. Chem. Lett., 2007, 17(3), 772-775.
[http://dx.doi.org/10.1016/j.bmcl.2006.10.075] [PMID: 17110111]
[193]
Nagai, T.; Miyaichi, Y.; Tomimori, T.; Suzuki, Y.; Yamada, H. In vivo anti-influenza virus activity of plant flavonoids possessing inhibitory activity for influenza virus sialidase. Antiviral Res., 1992, 19(3), 207-217.
[http://dx.doi.org/10.1016/0166-3542(92)90080-O] [PMID: 1444327]
[194]
Serkedjieva, J.; Velcheva, M. In vitro anti-influenza virus activity of the pavine alkaloid (-)-thalimonine isolated from Thalictrum simplex L. Antivir. Chem. Chemother., 2003, 14(2), 75-80.
[http://dx.doi.org/10.1177/095632020301400202] [PMID: 12856918]
[195]
Nakayama, M.; Suzuki, K.; Toda, M.; Okubo, S.; Hara, Y.; Shimamura, T. Inhibition of the infectivity of influenza virus by tea polyphenols. Antiviral Res., 1993, 21(4), 289-299.
[http://dx.doi.org/10.1016/0166-3542(93)90008-7] [PMID: 8215301]
[196]
Kuzuhara, T.; Iwai, Y.; Takahashi, H.; Hatakeyama, D.; Echigo, N. Green tea catechins inhibit the endonuclease activity of influenza A virus RNA polymerase. PLoS Curr., 2009, 1RRN1052
[http://dx.doi.org/10.1371/currents.RRN1052] [PMID: 20025206]
[197]
Kim, M.; Kim, S.Y.; Lee, H.W.; Shin, J.S.; Kim, P.; Jung, Y.S.; Jeong, H.S.; Hyun, J.K.; Lee, C.K. Inhibition of influenza virus internalization by (-)-epigallocatechin-3-gallate. Antiviral Res., 2013, 100(2), 460-472.
[http://dx.doi.org/10.1016/j.antiviral.2013.08.002] [PMID: 23954192]
[198]
Cheng, P.W.; Ng, L.T.; Chiang, L.C.; Lin, C.C. Antiviral effects of saikosaponins on human coronavirus 229E in vitro. Clin. Exp. Pharmacol. Physiol., 2006, 33(7), 612-616.
[http://dx.doi.org/10.1111/j.1440-1681.2006.04415.x] [PMID: 16789928]
[199]
Kim, K.; Kim, K.H.; Kim, H.Y.; Cho, H.K.; Sakamoto, N.; Cheong, J. Curcumin inhibits hepatitis C virus replication via suppressing the Akt-SREBP-1 pathway. FEBS Lett., 2010, 584(4), 707-712.
[http://dx.doi.org/10.1016/j.febslet.2009.12.019] [PMID: 20026048]
[200]
Mao, Y-M.; Zeng, M-D.; Lu, L-G.; Wan, M-B.; Li, C-Z.; Chen, C-W.; Fu, Q.C.; Wang, J.Y.; She, W.M.; Cai, X.; Ye, J.; Zhou, X.Q.; Wang, H.; Wu, S.M.; Tang, M.F.; Zhu, J.S.; Chen, W.X.; Zhang, H.Q. Capsule oxymatrine in treatment of hepatic fibrosis due to chronic viral hepatitis: a randomized, double blind, placebo-controlled, multicenter clinical study. World J. Gastroenterol., 2004, 10(22), 3269-3273.
[http://dx.doi.org/10.3748/wjg.v10.i22.3269] [PMID: 15484298]
[201]
Liu, J.; Manheimer, E.; Tsutani, K.; Gluud, C. Medicinal herbs for hepatitis C virus infection: a Cochrane hepatobiliary systematic review of randomized trials. Am. J. Gastroenterol., 2003, 98(3), 538-544.
[http://dx.doi.org/10.1111/j.1572-0241.2003.07298.x] [PMID: 12650784]
[202]
Zandi, K.; Teoh, B-T.; Sam, S-S.; Wong, P-F.; Mustafa, M.R.; Abubakar, S. Novel antiviral activity of baicalein against dengue virus. BMC Complement. Altern. Med., 2012, 12(1), 214.
[http://dx.doi.org/10.1186/1472-6882-12-214] [PMID: 23140177]
[203]
Zandi, K.; Teoh, B-T.; Sam, S-S.; Wong, P-F.; Mustafa, M.R.; Abubakar, S. Antiviral activity of four types of bioflavonoid against dengue virus type-2. Virol. J., 2011, 8(1), 560.
[http://dx.doi.org/10.1186/1743-422X-8-560] [PMID: 22201648]
[204]
Raekiansyah, M.; Buerano, C.C.; Luz, M.A.D.; Morita, K. Inhibitory effect of the green tea molecule EGCG against dengue virus infection. Arch. Virol., 2018, 163(6), 1649-1655.
[http://dx.doi.org/10.1007/s00705-018-3769-y] [PMID: 29429035]
[205]
Kaur, P.; Thiruchelvan, M.; Lee, R.C.H.; Chen, H.; Chen, K.C.; Ng, M.L.; Chu, J.J. Inhibition of chikungunya virus replication by harringtonine, a novel antiviral that suppresses viral protein expression. Antimicrob. Agents Chemother., 2013, 57(1), 155-167.
[http://dx.doi.org/10.1128/AAC.01467-12] [PMID: 23275491]
[206]
Ozçelik, B.; Kartal, M.; Orhan, I. Cytotoxicity, antiviral and antimicrobial activities of alkaloids, flavonoids, and phenolic acids. Pharm. Biol., 2011, 49(4), 396-402.
[http://dx.doi.org/10.3109/13880209.2010.519390] [PMID: 21391841]
[207]
Lin, L-T.; Chen, T-Y.; Lin, S-C.; Chung, C-Y.; Lin, T-C.; Wang, G-H.; Anderson, R.; Lin, C.C.; Richardson, C.D. Broad-spectrum antiviral activity of chebulagic acid and punicalagin against viruses that use glycosaminoglycans for entry. BMC Microbiol., 2013, 13(1), 187.
[http://dx.doi.org/10.1186/1471-2180-13-187] [PMID: 23924316]
[208]
Zang, N.; Xie, X.; Deng, Y.; Wu, S.; Wang, L.; Peng, C.; Li, S.; Ni, K.; Luo, Y.; Liu, E. Resveratrol-mediated gamma interferon reduction prevents airway inflammation and airway hyperresponsiveness in respiratory syncytial virus-infected immunocompromised mice. J. Virol., 2011, 85(24), 13061-13068.
[http://dx.doi.org/10.1128/JVI.05869-11] [PMID: 21937650]
[209]
Drago, L.; Nicola, L.; Ossola, F.; De Vecchi, E. In vitro antiviral activity of resveratrol against respiratory viruses. J. Chemother., 2008, 20(3), 393-394.
[http://dx.doi.org/10.1179/joc.2008.20.3.393] [PMID: 18606601]
[210]
Ho, H-Y.; Cheng, M-L.; Weng, S-F.; Leu, Y-L.; Chiu, D.T-Y. Antiviral effect of epigallocatechin gallate on enterovirus 71. J. Agric. Food Chem., 2009, 57(14), 6140-6147.
[http://dx.doi.org/10.1021/jf901128u] [PMID: 19537794]
[211]
Chiang, L.C.; Ng, L.T.; Cheng, P.W.; Chiang, W.; Lin, C.C. Antiviral activities of extracts and selected pure constituents of Ocimum basilicum. Clin. Exp. Pharmacol. Physiol., 2005, 32(10), 811-816.
[http://dx.doi.org/10.1111/j.1440-1681.2005.04270.x] [PMID: 16173941]
[212]
Thanh Le, T.; Andreadakis, Z.; Kumar, A.; Gómez Román, R.; Tollefsen, S.; Saville, M.; Mayhew, S. The COVID-19 vaccine development landscape. Nat. Rev. Drug Discov., 2020, 19(5), 305-306.
[http://dx.doi.org/10.1038/d41573-020-00073-5] [PMID: 32273591]
[213]
Amanat, F.; Krammer, F. SARS-CoV-2 Vaccines: Status Report. Immunity, 2020, 52(4), 583-589.
[http://dx.doi.org/10.1016/j.immuni.2020.03.007] [PMID: 32259480]
[214]
Enayatkhani, M; Hasaniazad, M; Faezi, S Reverse vaccinology approach to design a novel multi-epitope vaccine candidate against COVID-19: an in silico study., 2020, 1-16.
[215]
Dhama, K; Sharun, K. COVID-19, an emerging coronavirus infection: advances and prospects in designing and developing vaccines, immunotherapeutics, and therapeutics. 2020, 16(6), 1232-1238.,
[216]
Jain, V.K.; Iyengar, K.; Vaish, A.; Vaishya, R. Differential mortality in COVID-19 patients from India and western countries. Diabetes Metab. Syndr., 2020, 14(5), 1037-1041.
[http://dx.doi.org/10.1016/j.dsx.2020.06.067] [PMID: 32640415]
[217]
Redelman-Sidi, G. Could BCG be used to protect against COVID-19? Nat. Rev. Urol., 2020, 17(6), 316-317.
[http://dx.doi.org/10.1038/s41585-020-0325-9] [PMID: 32341531]
[218]
Miyasaka, M. Is BCG vaccination causally related to reduced COVID-19 mortality? EMBO Mol. Med., 2020, 12(6)e12661
[http://dx.doi.org/10.15252/emmm.202012661] [PMID: 32379923]
[219]
Rabaan, A.A.; Al-Ahmed, S.H.; Sah, R.; Tiwari, R.; Yatoo, M.I.; Patel, S.K.; Pathak, M.; Malik, Y.S.; Dhama, K.; Singh, K.P.; Bonilla-Aldana, D.K.; Haque, S.; Martinez-Pulgarin, D.F.; Rodriguez-Morales, A.J.; Leblebicioglu, H. SARS-CoV-2/COVID-19 and advances in developing potential therapeutics and vaccines to counter this emerging pandemic. Ann. Clin. Microbiol. Antimicrob., 2020, 19(1), 40.
[http://dx.doi.org/10.1186/s12941-020-00384-w] [PMID: 32878641]
[220]
Chang, D.; Xu, H.; Rebaza, A.; Sharma, L.; Dela Cruz, C.S. Protecting health-care workers from subclinical coronavirus infection. Lancet Respir. Med., 2020, 8(3)e13
[http://dx.doi.org/10.1016/S2213-2600(20)30066-7] [PMID: 32061333]
[221]
. Newsweek. Over 100 Doctors and Nurses Have Died Combating Coronavirus Across the World, 2020. Available at:, https://www.newsweek.com/coronavirus-deaths-infections-doctors-nurses-healthcare-workers-medical-staff-1496056
[223]
WHO Clinical management of COVID-19., 2020.Available at:. https://www.who.int/publications/i/item/clinical-management-of-covid-19
[224]
Hemilä, H.; Louhiala, P. Vitamin C may affect lung infections. J. R. Soc. Med., 2007, 100(11), 495-498.
[http://dx.doi.org/10.1177/014107680710001109] [PMID: 18048704]
[225]
Hemilä, H. Vitamin C intake and susceptibility to pneumonia. Pediatr. Infect. Dis. J., 1997, 16(9), 836-837.
[http://dx.doi.org/10.1097/00006454-199709000-00003] [PMID: 9306475]
[226]
Glazebrook, A.J.; Thomson, S. The administration of vitamin C in a large institution and its effect on general health and resistance to infection. J. Hyg. (Lond.), 1942, 42(1), 1-19.
[http://dx.doi.org/10.1017/S0022172400012596] [PMID: 20475613]
[227]
Pitt, H.A.; Costrini, A.M. Vitamin C prophylaxis in marine recruits. JAMA, 1979, 241(9), 908-911.
[http://dx.doi.org/10.1001/jama.1979.03290350028016] [PMID: 368370]
[228]
Nonnecke, B.J.; McGill, J.L.; Ridpath, J.F.; Sacco, R.E.; Lippolis, J.D.; Reinhardt, T.A. Acute phase response elicited by experimental bovine diarrhea virus (BVDV) infection is associated with decreased vitamin D and E status of vitamin-replete preruminant calves. J. Dairy Sci., 2014, 97(9), 5566-5579.
[http://dx.doi.org/10.3168/jds.2014-8293] [PMID: 25022687]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy