Generic placeholder image

Coronaviruses

Editor-in-Chief

ISSN (Print): 2666-7967
ISSN (Online): 2666-7975

Review Article

Overview of SARS-CoV-2 and Possible Targets for the Management of COVID-19 Infections

Author(s): Arunachalam Muthuraman*, Muthusamy Ramesh, Aswinprakash Subramanian, Jagadeesh Dhamodharan and Lim Khian Giap

Volume 3, Issue 5, 2022

Published on: 06 September, 2022

Article ID: e230622206308 Pages: 19

DOI: 10.2174/2666796703666220623090158

Abstract

COVID-19 is a respiratory infection caused by a newer strain of coronavirus known as SARSCoV- 2. The major problem of COVID-19 infections is the ARDS, followed by respiratory failure, organ failure, and even death with multiple organ dysfunction, including cardiovascular collapse. Moreover, it affects the old age population with co-morbid conditions. The deficiency of diet, micronutrients, and vitamins also plays a key role in diminishing the immune power, and increases the rate of viral infectivity. The possible reasons and management methods are discussed in this review. The management methods enhance the host immune system via multi-functional and multi-targeted actions. The global rate of COVID-19 outbreak necessitates the need to develop newer medicines. The drug discovery process is based on the exposure of viral proteins, genome sequence, replication mechanisms, pathophysiological mechanisms, and host cell components (as a target) reactions. This article highlights the overview of coronavirus components, the replications process, and possible targets for the management of coronavirus infections. It may lead to the rapid development of newer medicines for the treatment of coronavirus infections.

Keywords: Coronavirus, COVID-19, cytokine storm, angiotensin-converting enzyme-2, golden milk, happy hypoxia.

Graphical Abstract
[1]
Cascella M, Rajnik M, Aleem A, Dulebohn SC, Di Napoli R. Features, evaluation, and treatment of coronavirus (COVID-19) StatPearls. Treasure Island, FL: StatPearls Publishing 2022. http://www.ncbi.nlm.nih.gov/books/NBK554776/
[2]
Gibson PG, Qin L, Puah SH. COVID-19 acute respiratory distress syndrome (ARDS): Clinical features and differences from typical pre-COVID-19 ARDS. Med J Aust 2020; 213(2): 54-56.e1.
[http://dx.doi.org/10.5694/mja2.50674] [PMID: 32572965]
[3]
Lopes-Pacheco M, Silva PL, Cruz FF, et al. Pathogenesis of multiple organ injury in COVID-19 and potential therapeutic strategies. Front Physiol 2021; 12: 593223.
[http://dx.doi.org/10.3389/fphys.2021.593223] [PMID: 33584343]
[4]
Gorbalenya AE, Baker SC, Baric RS, et al. Severe acute respiratory syndrome-related coronavirus: The species and its viruses – a statement of the coronavirus study group. bioRxiv 2020.
[http://dx.doi.org/10.1101/2020.02.07.937862]
[5]
Ferrer R. COVID-19 pandemic: The greatest challenge in the history of critical care. Med Intensiva 2020; 44(6): 323-4.
[http://dx.doi.org/10.1016/j.medine.2020.04.005] [PMID: 32376091]
[6]
Raskin S. Genetics of COVID-19. J Pediatr (Rio J) 2021; 97(4): 378-86.
[http://dx.doi.org/10.1016/j.jped.2020.09.002] [PMID: 33058776]
[7]
Schoch CL, Ciufo S, Domrachev M, et al. NCBI taxonomy: A comprehensive update on curation, resources and tools. Database (Oxford) 2020; 2020: baaa062.
[http://dx.doi.org/10.1093/database/baaa062]
[8]
Musa TH, Ahmad T, Khan M, Haroon H, Wei P. Global outbreak of COVID-19: A new challenge? J Infect Dev Ctries 2020; 14(3): 244-5.
[http://dx.doi.org/10.3855/jidc.12530] [PMID: 32235083]
[9]
Wise J. COVID-19: Delta variant doubles risk of hospital admission compared with alpha variant, study shows. BMJ 2021; 374(2152)
[http://dx.doi.org/10.1136/bmj.n2152]
[10]
Gallo Marin B, Aghagoli G, Lavine K, et al. Predictors of COVID-19 severity: A literature review. Rev Med Virol 2021; 31(1): 1-10.
[http://dx.doi.org/10.1002/rmv.2146] [PMID: 32845042]
[11]
Lee SC, Son KJ, Han CH, Jung JY, Park SC. Impact of comorbid asthma on severity of coronavirus disease (COVID-19). Sci Rep 2020; 10(1): 21805.
[http://dx.doi.org/10.1038/s41598-020-77791-8] [PMID: 33311519]
[12]
Tan W, Zhao X, Ma X, et al. A novel coronavirus genome identified in a cluster of pneumonia cases-Wuhan, China 2019-2020. China CDC Weekly 2020; 2(4): 61-2.
[http://dx.doi.org/10.46234/ccdcw2020.017] [PMID: 34594763]
[13]
Zhou P, Yang XL, Wang XG, et al. Discovery of a novel coronavirus associated with the recent pneumonia outbreak in humans and its potential bat origin. bioRxiv 2020.
[http://dx.doi.org/10.1101/2020.01.22.914952]
[14]
Lei KC, Zhang XD. Conservation analysis of SARS-CoV-2 spike suggests complicated viral adaptation history from bat to human. Evol Med Public Health 2020; 2020(1): 290-303.
[http://dx.doi.org/10.1093/emph/eoaa041] [PMID: 33372198]
[15]
Le Poder S. Feline and canine coronaviruses: Common genetic and pathobiological features. Adv Virol 2011; 2011: 609465.
[http://dx.doi.org/10.1155/2011/609465] [PMID: 22312347]
[16]
Alekseev KP, Vlasova AN, Jung K, et al. Bovine-like coronaviruses isolated from four species of captive wild ruminants are homologous to bovine coronaviruses, based on complete genomic sequences. J Virol 2008; 82(24): 12422-31.
[http://dx.doi.org/10.1128/JVI.01586-08] [PMID: 18842722]
[17]
Vijgen L, Keyaerts E, Moës E, et al. Complete genomic sequence of human coronavirus OC43: Molecular clock analysis suggests a relatively recent zoonotic coronavirus transmission event. J Virol 2005; 79(3): 1595-604.
[http://dx.doi.org/10.1128/JVI.79.3.1595-1604.2005] [PMID: 15650185]
[18]
Lorusso A, Decaro N, Schellen P, et al. Gain, preservation, and loss of a group 1a coronavirus accessory glycoprotein. J Virol 2008; 82(20): 10312-7.
[http://dx.doi.org/10.1128/JVI.01031-08] [PMID: 18667517]
[19]
Perlman S, Netland J. Coronaviruses post-SARS: Update on replication and pathogenesis. Nat Rev Microbiol 2009; 7(6): 439-50.
[http://dx.doi.org/10.1038/nrmicro2147] [PMID: 19430490]
[20]
Boileau MJ, Kapil S. Bovine coronavirus associated syndromes. Vet Clin North Am Food Anim Pract 2010; 26(1): 123-46.
[http://dx.doi.org/10.1016/j.cvfa.2009.10.003] [PMID: 20117547]
[21]
Ji W, Wang W, Zhao X, Zai J, Li X. Homologous recombination within the spike glycoprotein of the newly identified coronavirus may boost cross-species transmission from snake to human. J Med Virol 2020; 92(4): 433-40.
[22]
Shahhosseini N, Wong G, Kobinger GP, Chinikar S. SARS-CoV-2 spillover transmission due to recombination event. Gene Rep 2021; 23: 101045.
[http://dx.doi.org/10.1016/j.genrep.2021.101045] [PMID: 33615041]
[23]
Ramaiah A, Arumugaswami V. Insights into cross-species evolution of novel human coronavirus SARS-CoV-2 and defining immune determinants for vaccine development. bioRxiv 2020.
[http://dx.doi.org/10.1101/2020.01.29.925867]
[24]
Cyranoski D. Did pangolins spread the China coronavirus to people? Nature 2020.
[http://dx.doi.org/10.1038/d41586-020-00364-2]
[25]
Chan JFW, Yuan S, Kok KH, et al. A familial cluster of pneumonia associated with the 2019 novel coronavirus indicating person-to-person transmission: a study of a family cluster. Lancet 2020; 395(10223): 514-23.
[http://dx.doi.org/10.1016/S0140-6736(20)30154-9] [PMID: 31986261]
[26]
Nations U. WHO press conference: Update on the situation regarding novel coronavirus (COVID-19). 2020. Available from: https://media.un.org/asset/k11/k11mzvl38x
[27]
Guan Y, Zheng BJ, He YQ, et al. Isolation and characterization of viruses related to the SARS coronavirus from animals in southern China. Science 2003; 302(5643): 276-8.
[http://dx.doi.org/10.1126/science.1087139] [PMID: 12958366]
[28]
Parasher A. COVID-19: Current understanding of its pathophysiology, clinical presentation and treatment. Postgrad Med J 2021; 97(1147): 312-20.
[http://dx.doi.org/10.1136/postgradmedj-2020-138577] [PMID: 32978337]
[29]
Jiang B, Wei H. Oxygen therapy strategies and techniques to treat hypoxia in COVID-19 patients. Eur Rev Med Pharmacol Sci 2020; 24(19): 10239-46.
[http://dx.doi.org/10.26355/eurrev_202010_23248] [PMID: 33090435]
[30]
Ejaz H, Alsrhani A, Zafar A, et al. COVID-19 and comorbidities: Deleterious impact on infected patients. J Infect Public Health 2020; 13(12): 1833-9.
[http://dx.doi.org/10.1016/j.jiph.2020.07.014] [PMID: 32788073]
[31]
Gold MS, Sehayek D, Gabrielli S, Zhang X, McCusker C, Ben-Shoshan M. COVID-19 and comorbidities: A systematic review and meta-analysis. Postgrad Med 2020; 132(8): 749-55.
[http://dx.doi.org/10.1080/00325481.2020.1786964] [PMID: 32573311]
[32]
Tsai SC, Lu CC, Bau DT, et al. Approaches towards fighting the COVID 19 pandemic (Review). Int J Mol Med 2021; 47(1): 3-22.
[http://dx.doi.org/10.3892/ijmm.2020.4794] [PMID: 33236131]
[33]
Alsharif W, Qurashi A. Effectiveness of COVID-19 diagnosis and management tools: A review. Radiography 2021; 27(2): 682-7.
[http://dx.doi.org/10.1016/j.radi.2020.09.010] [PMID: 33008761]
[34]
Infectious diseases society of America guidelines on infection prevention for healthcare personnel caring for patients with suspected or known COVID-19. Available from: https://www.idsociety.org/practice-guideline/covid-19-guideline-infection-prevention/
[35]
Advice for the public on COVID-19 – World Health Organization. https://www.who.int/emergencies/diseases/novel-coronavirus-2019/advice-for-public
[36]
CDC. COVID-19 and your health Centers for Disease Control and Prevention. 2021. Available from: https://www.cdc.gov/coronavirus/2019-ncov/prevent-getting-sick/prevention.html
[37]
COVID-19 Malaysia updates. COVID-19 Malaysia. Available from: http://covid-19.moh.gov.my
[38]
Goh Y, Tan BYQ, Bhartendu C, Ong JJY, Sharma VK. The face mask: How a real protection becomes a psychological symbol during COVID-19? Brain Behav Immun 2020; 88: 1-5.
[http://dx.doi.org/10.1016/j.bbi.2020.05.060] [PMID: 32526447]
[39]
CDC. Community, work, and school Centers for disease control and prevention. 2020. Available from: https://www.cdc.gov/coronavirus/2019-ncov/community/disinfecting-building-facility.html
[40]
Bar-On YM, Flamholz A, Phillips R, Milo R. SARS-CoV-2 (COVID-19) by the numbers. eLife 2020; 9: e57309.
[http://dx.doi.org/10.7554/eLife.57309] [PMID: 32228860]
[41]
Boopathi S, Poma AB, Kolandaivel P. Novel 2019 coronavirus structure, mechanism of action, antiviral drug promises and rule out against its treatment. J Biomol Struct Dyn 2019; 39(9): 3409-18.
[http://dx.doi.org/10.1080/07391102.2020.1758788]
[42]
Wang MY, Zhao R, Gao LJ, Gao XF, Wang DP, Cao JM. SARS-CoV-2: Structure, biology, and structure-based therapeutics development. Front Cell Infect Microbiol 2020; 10: 587269.
[http://dx.doi.org/10.3389/fcimb.2020.587269] [PMID: 33324574]
[43]
Mousavizadeh L, Ghasemi S. Genotype and phenotype of COVID-19: Their roles in pathogenesis. J Microbiol Immunol Infect 2021; 54(2): 159-63.
[http://dx.doi.org/10.1016/j.jmii.2020.03.022] [PMID: 32265180]
[44]
Su S, Wong G, Shi W, et al. Epidemiology, genetic recombination, and pathogenesis of coronaviruses. Trends Microbiol 2016; 24(6): 490-502.
[http://dx.doi.org/10.1016/j.tim.2016.03.003] [PMID: 27012512]
[45]
Cui J, Li F, Shi ZL. Origin and evolution of pathogenic coronaviruses. Nat Rev Microbiol 2019; 17(3): 181-92.
[http://dx.doi.org/10.1038/s41579-018-0118-9] [PMID: 30531947]
[46]
Letko M, Munster V. Functional assessment of cell entry and receptor usage for lineage B β-coronaviruses, including 2019-nCoV. Microbiology 2020; 2020.01.22.915660.
[http://dx.doi.org/10.1101/2020.01.22.915660] [PMID: 32511294]
[47]
Zhang M, Li L, Luo M, Liang B. Genomic characterization and evolution of SARS-CoV-2 of a Canadian population. PLoS ONE 2021; 16(3): e0247799.
[http://dx.doi.org/10.1371/journal.pone.0247799]
[48]
Machitani M, Yasukawa M, Nakashima J, Furuichi Y, Masutomi K. RNA-dependent RNA polymerase, RdRP, a promising therapeutic target for cancer and potentially COVID-19. Cancer Sci 2020; 111(11): 3976-84.
[http://dx.doi.org/10.1111/cas.14618] [PMID: 32805774]
[49]
Naqvi AAT, Fatima K, Mohammad T, et al. Insights into SARS-CoV-2 genome, structure, evolution, pathogenesis and therapies: Structural genomics approach. Biochim Biophys Acta Mol Basis Dis 2020; 1866(10): 165878.
[http://dx.doi.org/10.1016/j.bbadis.2020.165878] [PMID: 32544429]
[50]
Kim CH. SARS-CoV-2 evolutionary adaptation toward host entry and recognition of receptor O-acetyl sialylation in virus-host interaction. Int J Mol Sci 2020; 21(12): 4549.
[http://dx.doi.org/10.3390/ijms21124549] [PMID: 32604730]
[51]
Yang M, He S, Chen X, et al. Structural insight into the SARS-CoV-2 nucleocapsid protein C-terminal domain reveals a novel recognition mechanism for viral transcriptional regulatory sequences. Front Chem 2021; 8: 624765.
[http://dx.doi.org/10.3389/fchem.2020.624765] [PMID: 33511102]
[52]
Yang Y, Yan W, Hall AB, Jiang X. Characterizing transcriptional regulatory sequences in coronaviruses and their role in recombination. Mol Biol Evol 2021; 38(4): 1241-8.
[http://dx.doi.org/10.1093/molbev/msaa281]
[53]
Forni D, Cagliani R, Clerici M, Sironi M. Molecular evolution of human coronavirus genomes. Trends Microbiol 2017; 25(1): 35-48.
[http://dx.doi.org/10.1016/j.tim.2016.09.001] [PMID: 27743750]
[54]
Cella E, Benedetti F, Fabris S, et al. SARS-CoV-2 lineages and sub-lineages circulating worldwide: A dynamic overview. Chemotherapy 2021; 66(1-2): 3-7.
[http://dx.doi.org/10.1159/000515340] [PMID: 33735881]
[55]
Kumar A, Prasoon P, Kumari C, et al. SARS-CoV-2-specific virulence factors in COVID-19. J Med Virol 2021; 93(3): 1343-50.
[http://dx.doi.org/10.1002/jmv.26615] [PMID: 33085084]
[56]
Gussow AB, Auslander N, Faure G, Wolf YI, Zhang F, Koonin EV. Genomic determinants of pathogenicity in SARS-CoV-2 and other human coronaviruses. Proc Natl Acad Sci 2020; 117(26): 15193-9.
[http://dx.doi.org/10.1073/pnas.2008176117] [PMID: 32522874]
[57]
Schoeman D, Fielding BC. Coronavirus envelope protein: Current knowledge. Virol J 2019; 16(1): 69.
[http://dx.doi.org/10.1186/s12985-019-1182-0] [PMID: 31133031]
[58]
Huang Y, Yang C, Xu XF, Xu W, Liu SW. Structural and functional properties of SARS-CoV-2 spike protein: Potential antivirus drug development for COVID-19. Acta Pharmacol Sin 2020; 41(9): 1141-9.
[http://dx.doi.org/10.1038/s41401-020-0485-4] [PMID: 32747721]
[59]
Tripp RA, Haynes LM, Moore D, et al. Monoclonal antibodies to SARS-associated coronavirus (SARS-CoV): Identification of neutralizing and antibodies reactive to S, N, M and E viral proteins. J Virol Methods 2005; 128(1-2): 21-8.
[http://dx.doi.org/10.1016/j.jviromet.2005.03.021] [PMID: 15885812]
[60]
Solinas C, Perra L, Aiello M, Migliori E, Petrosillo N. A critical evaluation of glucocorticoids in the management of severe COVID-19. Cytokine Growth Factor Rev 2020; 54: 8-23.
[http://dx.doi.org/10.1016/j.cytogfr.2020.06.012] [PMID: 32616381]
[61]
Xue B, Blocquel D, Habchi J, et al. Structural disorder in viral proteins. Chem Rev 2014; 114(13): 6880-911.
[http://dx.doi.org/10.1021/cr4005692] [PMID: 24823319]
[62]
Jayaram H, Fan H, Bowman BR, et al. X-ray structures of the N- and C-terminal domains of a coronavirus nucleocapsid protein: Implications for nucleocapsid fromation. J Virol 2006; 80(13): 6612-20.
[http://dx.doi.org/10.1128/JVI.00157-06] [PMID: 16775348]
[63]
Javorsky A, Humbert PO, Kvansakul M. Structural basis of coronavirus E protein interactions with human PALS1 PDZ domain. Commun Biol 2021; 4(1): 724.
[http://dx.doi.org/10.1038/s42003-021-02250-7] [PMID: 34117354]
[64]
Ababneh MM. Immune response to nucleocapsid protein of turkey coronavirus and its protective efficacy in turkeys. Purdue University ProQuest Dissertations Publishing 2005; p. 3210686.
[65]
Thomas S. The Structure of the membrane protein of SARS-CoV-2 resembles the sugar transporter SemiSWEET. Pathog Immun 2020; 5(1): 342-63.
[http://dx.doi.org/10.20411/pai.v5i1.377] [PMID: 33154981]
[66]
Zhang H, Kang Z, Gong H, et al. Digestive system is a potential route of COVID-19: An analysis of single-cell coexpression pattern of key proteins in viral entry process. Gut 2020; 69(6): 1010-8.
[http://dx.doi.org/10.1136/gutjnl-2020-320953] [PMID: 33028666]
[67]
Shang J, Wan Y, Luo C, et al. Cell entry mechanisms of SARS-CoV-2. Proc Natl Acad Sci 2020; 117(21): 11727-34.
[http://dx.doi.org/10.1073/pnas.2003138117] [PMID: 32376634]
[68]
Trougakos IP, Stamatelopoulos K, Terpos E, et al. Insights to SARS-CoV-2 life cycle, pathophysiology, and rationalized treatments that target COVID-19 clinical complications. J Biomed Sci 2021; 28(1): 9.
[http://dx.doi.org/10.1186/s12929-020-00703-5] [PMID: 33435929]
[69]
V’kovski P, Kratzel A, Steiner S, Stalder H, Thiel V. Coronavirus biology and replication: Implications for SARS-CoV-2. Nat Rev Microbiol 2021; 19(3): 155-70.
[http://dx.doi.org/10.1038/s41579-020-00468-6] [PMID: 33116300]
[70]
Romano M, Ruggiero A, Squeglia F, Maga G, Berisio R. A structural view of SARS-CoV-2 RNA replication machinery: RNA synthesis, proofreading and final capping. Cells 2020; 9(5): 1267.
[http://dx.doi.org/10.3390/cells9051267] [PMID: 32443810]
[71]
van Boheemen S, de Graaf M, Lauber C, et al. Genomic characterization of a newly discovered coronavirus associated with acute respiratory distress syndrome in humans. MBio 2012; 3(6): e00473-12.
[http://dx.doi.org/10.1128/mBio.00473-12]
[72]
Mohan J, Wollert T. Membrane remodeling by SARS-CoV-2 - double-enveloped viral replication. Fac Rev 2021; 10: 17.
[http://dx.doi.org/10.12703/r/10-17] [PMID: 33718934]
[73]
Hartenian E, Nandakumar D, Lari A, Ly M, Tucker JM, Glaunsinger BA. The molecular virology of coronaviruses. J Biol Chem 2020; 295(37): 12910-34.
[http://dx.doi.org/10.1074/jbc.REV120.013930] [PMID: 32661197]
[74]
Hefeda MM. CT chest findings in patients infected with COVID-19: Review of literature. Egypt J Radiol Nucl Med 2020; 51(1): 239.
[http://dx.doi.org/10.1186/s43055-020-00355-3]
[75]
Pinto BGG, Oliveira AER, Singh Y, et al. ACE2 expression is increased in the lungs of patients with comorbidities associated with severe COVID-19. J Infect Dis 2020; 222(4): 556-63.
[http://dx.doi.org/10.1093/infdis/jiaa332] [PMID: 32526012]
[76]
García LF. Immune response, inflammation, and the clinical spectrum of COVID-19. Front Immunol 2020; 11: 1441.
[http://dx.doi.org/10.3389/fimmu.2020.01441] [PMID: 32612615]
[77]
Bissonnette EY, Lauzon-Joset JF, Debley JS, Ziegler SF. Cross-talk between alveolar macrophages and lung epithelial cells is essential to maintain lung homeostasis. Front Immunol 2020; 11: 583042.
[http://dx.doi.org/10.3389/fimmu.2020.583042] [PMID: 33178214]
[78]
Chuquimia OD, Petursdottir DH, Rahman MJ, Hartl K, Singh M, Fernández C. The role of alveolar epithelial cells in initiating and shaping pulmonary immune responses: Communication between innate and adaptive immune systems. PLoS ONE 2012; 7(2): e32125.
[http://dx.doi.org/10.1371/journal.pone.0032125]
[79]
Boechat JL, Chora I, Morais A, Delgado L. The immune response to SARS-CoV-2 and COVID-19 immunopathology - Current perspectives. Pulmonology 2021; 27(5): 423-37.
[http://dx.doi.org/10.1016/j.pulmoe.2021.03.008] [PMID: 33867315]
[80]
Yao Y, Wang H, Liu Z. Expression of ACE2 in airways: Implication for COVID-19 risk and disease management in patients with chronic inflammatory respiratory diseases. Clin Exp Allergy 2020; 50(12): 1313-24.
[http://dx.doi.org/10.1111/cea.13746] [PMID: 32975865]
[81]
Tang Y, Liu J, Zhang D, Xu Z, Ji J, Wen C. Cytokine storm in COVID-19: The current evidence and treatment strategies. Front Immunol 2020; 11: 1708.
[http://dx.doi.org/10.3389/fimmu.2020.01708] [PMID: 32754163]
[82]
Costela-Ruiz VJ, Illescas-Montes R, Puerta-Puerta JM, Ruiz C, Melguizo-Rodríguez L. SARS-CoV-2 infection: The role of cytokines in COVID-19 disease. Cytokine Growth Factor Rev 2020; 54: 62-75.
[http://dx.doi.org/10.1016/j.cytogfr.2020.06.001] [PMID: 32513566]
[83]
Patra T, Meyer K, Geerling L, et al. SARS-CoV-2 spike protein promotes IL-6 trans-signaling by activation of angiotensin II receptor signaling in epithelial cells. PLoS Pathog 2020; 16(12): e1009128.
[http://dx.doi.org/10.1371/journal.ppat.1009128]
[84]
Li L, Li J, Gao M, et al. Interleukin-8 as a biomarker for disease prognosis of coronavirus disease-2019 patients. Front Immunol 2021; 11: 602395.
[http://dx.doi.org/10.3389/fimmu.2020.602395] [PMID: 33488599]
[85]
Abers MS, Delmonte OM, Ricotta EE, et al. An immune-based biomarker signature is associated with mortality in COVID-19 patients. JCI Insight 2021; 6(1): e144455.
[http://dx.doi.org/10.1172/jci.insight.144455] [PMID: 33232303]
[86]
Cron RQ, Caricchio R, Chatham WW. Calming the cytokine storm in COVID-19. Nat Med 2021; 27(10): 1674-5.
[http://dx.doi.org/10.1038/s41591-021-01500-9] [PMID: 34480126]
[87]
Luci C, Vieira E, Perchet T, Gual P, Golub R. Natural killer cells and type 1 innate lymphoid cells are new actors in non-alcoholic fatty liver disease. Front Immunol 2019; 10: 1192.
[http://dx.doi.org/10.3389/fimmu.2019.01192] [PMID: 31191550]
[88]
Russell MW, Moldoveanu Z, Ogra PL, Mestecky J. Mucosal immunity in COVID-19: A neglected but critical aspect of SARS-CoV-2 infection. Front Immunol 2020; 11: 611337.
[http://dx.doi.org/10.3389/fimmu.2020.611337] [PMID: 33329607]
[89]
Ambardar SR, Hightower SL, Huprikar NA, Chung KK, Singhal A, Collen JF. Post-COVID-19 pulmonary fibrosis: Novel sequelae of the current pandemic. J Clin Med 2021; 10(11): 2452.
[http://dx.doi.org/10.3390/jcm10112452] [PMID: 34205928]
[90]
Fajgenbaum DC, June CH. Cytokine storm. N Engl J Med 2020; 383(23): 2255-73.
[http://dx.doi.org/10.1056/NEJMra2026131]
[91]
Liu H, Wang Z, Sun H, et al. Thrombosis and coagulopathy in COVID-19: Current understanding and implications for antithrombotic treatment in patients treated with percutaneous coronary intervention. Front Cardiovasc Med 2021; 7: 599334.
[http://dx.doi.org/10.3389/fcvm.2020.599334] [PMID: 33537347]
[92]
Connors JM, Levy JH. COVID-19 and its implications for thrombosis and anticoagulation. Blood 2020; 135(23): 2033-40.
[http://dx.doi.org/10.1182/blood.2020006000] [PMID: 32339221]
[93]
Couzin-Frankel J. The mystery of the pandemic’s ‘happy hypoxia’. Science 2020; 368(6490): 455-6.
[http://dx.doi.org/10.1126/science.368.6490.455] [PMID: 32355007]
[94]
Østergaard L. SARS CoV-2 related microvascular damage and symptoms during and after COVID-19: Consequences of capillary transit-time changes, tissue hypoxia and inflammation. Physiol Rep 2021; 9(3): e14726.
[http://dx.doi.org/10.14814/phy2.14726] [PMID: 33523608]
[95]
WHO coronavirus (COVID-19) dashboard. Available from: https://covid19.who.int
[96]
Corticosteroids. COVID-19 treatment guidelines. Available from: https://www.covid19treatmentguidelines.nih.gov/therapies/immunomodulators/corticosteroids/
[97]
Mishra GP, Mulani J. Corticosteroids for COVID-19: The search for an optimum duration of therapy. Lancet Respir Med 2021; 9(1): e8.
[http://dx.doi.org/10.1016/S2213-2600(20)30530-0] [PMID: 33248469]
[98]
Grein J, Ohmagari N, Shin D, et al. Compassionate use of remdesivir for patients with severe COVID-19. N Engl J Med 2020; 382(24): 2327-36.
[http://dx.doi.org/10.1056/NEJMoa2007016] [PMID: 32275812]
[99]
Rodriguez PO. High versus low dose dexamethasone for the treatment of COVID-19 related ARDS: A multicenter and randomized open-label clinical trial. 2021. Available from: https://clinicaltrials.gov/ct2/show/NCT04395105
[100]
Kim CH. Anti–SARS-CoV-2 natural products as potentially therapeutic agents. Front Pharmacol 2021; 12: 590509.
[http://dx.doi.org/10.3389/fphar.2021.590509] [PMID: 34122058]
[101]
Lobo-Galo N, Gálvez-Ruíz JC, Balderrama-Carmona AP, Silva-Beltrán NP, Ruiz-Bustos E. Recent biotechnological advances as potential intervention strategies against COVID-19. 3 Biotech 2021; 11(2): 41.
[http://dx.doi.org/10.1007/s13205-020-02619-1]
[102]
Gil C, Ginex T, Maestro I, et al. COVID-19: Drug targets and potential treatments. J Med Chem 2020; 63(21): 12359-86.
[http://dx.doi.org/10.1021/acs.jmedchem.0c00606] [PMID: 32511912]
[103]
Mishra SK, Tripathi T. One year update on the COVID-19 pandemic: Where are we now? Acta Trop 2021; 214: 105778.
[http://dx.doi.org/10.1016/j.actatropica.2020.105778] [PMID: 33253656]
[104]
Ni W, Yang X, Yang D, et al. Role of angiotensin-converting enzyme 2 (ACE2) in COVID-19. Crit Care 2020; 24(1): 422.
[http://dx.doi.org/10.1186/s13054-020-03120-0] [PMID: 32660650]
[105]
Wu C, Liu Y, Yang Y, et al. Analysis of therapeutic targets for SARS-CoV-2 and discovery of potential drugs by computational methods. Acta Pharm Sin B 2020; 10(5): 766-88.
[http://dx.doi.org/10.1016/j.apsb.2020.02.008] [PMID: 32292689]
[106]
Kumar P, Kumar M, Bedi O, et al. Role of vitamins and minerals as immunity boosters in COVID-19. Inflammopharmacol 2021; 29(4): 1001-16.
[http://dx.doi.org/10.1007/s10787-021-00826-7] [PMID: 34110533]
[107]
Zhao J, Zhao S, Ou J, et al. COVID-19: Coronavirus vaccine development updates. Front Immunol 2020; 11: 602256.
[http://dx.doi.org/10.3389/fimmu.2020.602256] [PMID: 33424848]
[108]
Jeyanathan M, Afkhami S, Smaill F, Miller MS, Lichty BD, Xing Z. Immunological considerations for COVID-19 vaccine strategies. Nat Rev Immunol 2020; 20(10): 615-32.
[http://dx.doi.org/10.1038/s41577-020-00434-6] [PMID: 32887954]
[109]
Yao YF, Wang ZJ, Jiang RD, et al. Protective efficacy of inactivated vaccine against SARS-CoV-2 infection in mice and non-human primates. Virol Sin 2021; 36(5): 879-89.
[http://dx.doi.org/10.1007/s12250-021-00376-w] [PMID: 33835391]
[110]
Yuan S, Balaji S, Lomakin IB, Xiong Y. Coronavirus Nsp1: Immune response suppression and protein expression inhibition. Front Microbiol 2021; 12: 752214.
[http://dx.doi.org/10.3389/fmicb.2021.752214] [PMID: 34659188]
[111]
Lei J, Kusov Y, Hilgenfeld R. NSP3 of coronaviruses: Structures and functions of a large multi-domain protein. Antiviral Res 2018; 149: 58-74.
[http://dx.doi.org/10.1016/j.antiviral.2017.11.001] [PMID: 29128390]
[112]
Zhou Z, Huang C, Zhou Z, et al. Structural insight reveals SARS-CoV-2 ORF7a as an immunomodulating factor for human CD14+ monocytes. iScience 2021; 24(3): 102187.
[http://dx.doi.org/10.1016/j.isci.2021.102187] [PMID: 33615195]
[113]
Vazquez C, Swanson SE, Negatu SG, et al. SARS-CoV-2 viral proteins NSP1 and NSP13 inhibit interferon activation through distinct mechanisms. PLoS One 2021; 16(6): e0253089.
[http://dx.doi.org/10.1371/journal.pone.0253089]
[114]
Frick DN, Virdi RS, Vuksanovic N, Dahal N, Silvaggi NR. Molecular basis for ADP-ribose binding to the Mac1 domain of SARS-CoV-2 NSP3. Biochemistry 2020; 59(28): 2608-15.
[http://dx.doi.org/10.1021/acs.biochem.0c00309] [PMID: 32578982]
[115]
Muhammed Y. Molecular targets for COVID-19 drug development: Enlightening Nigerians about the pandemic and future treatment. Biosaf Health 2020; 2(4): 210-6.
[http://dx.doi.org/10.1016/j.bsheal.2020.07.002] [PMID: 32838282]
[116]
Chowdhury MA, Hossain N, Kashem MA, Shahid MA, Alam A. Immune response in COVID-19: A review. J Infect Public Health 2020; 13(11): 1619-29.
[http://dx.doi.org/10.1016/j.jiph.2020.07.001] [PMID: 32718895]
[117]
Xia X. Domains and functions of spike protein in SARS-CoV-2 in the context of vaccine design. Viruses 2021; 13(1): 109.
[http://dx.doi.org/10.3390/v13010109] [PMID: 33466921]
[118]
Hoffmann M, Kleine-Weber H, Pöhlmann S. A multibasic cleavage site in the spike protein of SARS-CoV-2 is essential for infection of human lung cells. Mol Cell 2020; 78(4): 779-784.e5.
[http://dx.doi.org/10.1016/j.molcel.2020.04.022] [PMID: 32362314]
[119]
Wang C, Li W, Drabek D, et al. A human monoclonal antibody blocking SARS-CoV-2 infection. Nat Commun 2020; 11(1): 2251.
[http://dx.doi.org/10.1038/s41467-020-16256-y] [PMID: 32366817]
[120]
Zhang Q, Xiang R, Huo S, et al. Molecular mechanism of interaction between SARS-CoV-2 and host cells and interventional therapy. Signal Transduct Target Ther 2021; 6(1): 233.
[http://dx.doi.org/10.1038/s41392-021-00653-w] [PMID: 34117216]
[121]
Lee C. Griffithsin, a highly potent broad-spectrum antiviral lectin from red algae: From discovery to clinical application. Mar Drugs 2019; 17(10): 567.
[http://dx.doi.org/10.3390/md17100567] [PMID: 31590428]
[122]
Kouokam JC, Lasnik AB, Palmer KE. Studies in a murine model confirm the safety of griffithsin and advocate its further development as a microbicide targeting HIV-1 and other enveloped viruses. Viruses 2016; 8(11): 311.
[http://dx.doi.org/10.3390/v8110311] [PMID: 27869695]
[123]
Pandey SC, Pande V, Sati D, Upreti S, Samant M. Vaccination strategies to combat novel corona virus SARS-CoV-2. Life Sci 2020; 256: 117956.
[http://dx.doi.org/10.1016/j.lfs.2020.117956] [PMID: 32535078]
[124]
Dutta NK, Mazumdar K, Gordy JT. The nucleocapsid protein of SARS–CoV-2: A target for vaccine development. In: Dutch RE, Ed J Virol. 2020; 94.(13)
[http://dx.doi.org/10.1128/JVI.00647-20]
[125]
Wondmkun YT, Mohammed OA. A review on novel drug targets and future directions for COVID-19 treatment. Biologics 2020; 14: 77-82.
[http://dx.doi.org/10.2147/BTT.S266487] [PMID: 32921981]
[126]
Yadav R, Chaudhary JK, Jain N, et al. Role of structural and non-structural proteins and therapeutic targets of SARS-CoV-2 for COVID-19. Cells 2021; 10(4): 821.
[http://dx.doi.org/10.3390/cells10040821] [PMID: 33917481]
[127]
Hillen HS, Kokic G, Farnung L, Dienemann C, Tegunov D, Cramer P. Structure of replicating SARS-CoV-2 polymerase. Nature 2020; 584(7819): 154-6.
[http://dx.doi.org/10.1038/s41586-020-2368-8] [PMID: 32438371]
[128]
Gao Y, Yan L, Huang Y, et al. Structure of the RNA-dependent RNA polymerase from COVID-19 virus. Science 2020; 368(6492): 779-82.
[http://dx.doi.org/10.1126/science.abb7498] [PMID: 32277040]
[129]
Zhu W, Chen CZ, Gorshkov K, Xu M, Lo DC, Zheng W. RNA-dependent RNA polymerase as a target for COVID-19 drug discovery. SLAS Discov 2020; 25(10): 1141-51.
[http://dx.doi.org/10.1177/2472555220942123] [PMID: 32660307]
[130]
Báez-Santos YM, St John SE, Mesecar AD. The SARS-coronavirus papain-like protease: Structure, function and inhibition by designed antiviral compounds. Antiviral Res 2015; 115: 21-38.
[http://dx.doi.org/10.1016/j.antiviral.2014.12.015] [PMID: 25554382]
[131]
Osipiuk J, Azizi SA, Dvorkin S, et al. Structure of papain-like protease from SARS-CoV-2 and its complexes with non-covalent inhibitors. Nat Commun 2021; 12(1): 743.
[http://dx.doi.org/10.1038/s41467-021-21060-3] [PMID: 33531496]
[132]
Shin D, Mukherjee R, Grewe D, et al. Papain-like protease regulates SARS-CoV-2 viral spread and innate immunity. Nature 2020; 587(7835): 657-62.
[http://dx.doi.org/10.1038/s41586-020-2601-5] [PMID: 32726803]
[133]
Kumar S, Zhi K, Mukherji A, Gerth K. Repurposing antiviral protease inhibitors using extracellular vesicles for potential therapy of COVID-19. Viruses 2020; 12(5): 486.
[http://dx.doi.org/10.3390/v12050486] [PMID: 32357553]
[134]
Lin MH, Moses DC, Hsieh CH, et al. Disulfiram can inhibit MERS and SARS coronavirus papain-like proteases via different modes. Antiviral Res 2018; 150: 155-63.
[http://dx.doi.org/10.1016/j.antiviral.2017.12.015] [PMID: 29289665]
[135]
Sisay M. 3CLpro inhibitors as a potential therapeutic option for COVID-19: Available evidence and ongoing clinical trials. Pharmacol Res 2020; 156: 104779.
[http://dx.doi.org/10.1016/j.phrs.2020.104779] [PMID: 32247821]
[136]
Muhseen ZT, Hameed AR, Al-Hasani HMH, Ahmad S, Li G. Computational determination of potential multiprotein targeting natural compounds for rational drug design against SARS-CoV-2. Molecules 2021; 26(3): 674.
[http://dx.doi.org/10.3390/molecules26030674] [PMID: 33525411]
[137]
Qamar MTU, Alqahtani SM, Alamri MA, Chen LL. Structural basis of SARS-CoV-2 3CLpro and anti-COVID-19 drug discovery from medicinal plants. J Pharm Anal 2020; 10(4): 313-9.
[http://dx.doi.org/10.1016/j.jpha.2020.03.009] [PMID: 32296570]
[138]
Khan MT, Irfan M, Ahsan H, et al. Structures of SARS-CoV-2 RNA-binding proteins and therapeutic targets. Intervirology 2021; 64(2): 55-68.
[http://dx.doi.org/10.1159/000513686] [PMID: 33454715]
[139]
Wang H, He S, Deng W, et al. Comprehensive insights into the catalytic mechanism of middle east respiratory syndrome 3C-like protease and severe acute respiratory syndrome 3C-like protease. ACS Catal 2020; 10(10): 5871-90.
[http://dx.doi.org/10.1021/acscatal.0c00110] [PMID: 32391184]
[140]
Xiang R, Yu Z, Wang Y, et al. Recent advances in developing small-molecule inhibitors against SARS-CoV-2. Acta Pharm Sin B 2022; 12(4): 1591-623.
[http://dx.doi.org/10.1016/j.apsb.2021.06.016]
[141]
Ayele AG, Enyew EF, Kifle ZD. Roles of existing drug and drug targets for COVID-19 management. Metabolism Open 2021; 11: 100103.
[http://dx.doi.org/10.1016/j.metop.2021.100103] [PMID: 34222852]
[142]
Vallamkondu J, John A, Wani WY, et al. SARS-CoV-2 pathophysiology and assessment of coronaviruses in CNS diseases with a focus on therapeutic targets. Biochim Biophys Acta Mol Basis Dis 2020; 1866(10): 165889.
[http://dx.doi.org/10.1016/j.bbadis.2020.165889] [PMID: 32603829]
[143]
Zaporozhets TS, Besednova NN. Biologically active compounds from marine organisms in the strategies for combating coronaviruses. AIMS Microbiol 2020; 6(4): 470-94.
[http://dx.doi.org/10.3934/microbiol.2020028] [PMID: 33364539]
[144]
Windgassen TA, Keck JL. An aromatic-rich loop couples DNA binding and ATP hydrolysis in the PriA DNA helicase. Nucleic Acids Res 2016; 44(20): 9745-57.
[http://dx.doi.org/10.1093/nar/gkw690]
[145]
White MA, Lin W, Cheng X. Discovery of COVID-19 inhibitors targeting the SARS-CoV-2 NSP13 helicase. J Phys Chem Lett 2020; 11(21): 9144-51.
[http://dx.doi.org/10.1021/acs.jpclett.0c02421] [PMID: 33052685]
[146]
Deng Z, Lehmann KC, Li X, et al. Structural basis for the regulatory function of a complex zinc-binding domain in a replicative arterivirus helicase resembling a nonsense-mediated mRNA decay helicase. Nucleic Acids Res 2014; 42(5): 3464-77.
[http://dx.doi.org/10.1093/nar/gkt1310] [PMID: 24369429]
[147]
Spratt AN, Gallazzi F, Quinn TP, Lorson CL, Sönnerborg A, Singh K. Coronavirus helicases: Attractive and unique targets of antiviral drug-development and therapeutic patents. Expert Opin Ther Pat 2021; 31(4): 339-50.
[http://dx.doi.org/10.1080/13543776.2021.1884224] [PMID: 33593200]
[148]
Conti P. Induction of pro-inflammatory cytokines (IL-1 and IL-6) and lung inflammation by COVID-19: Anti-inflammatory strategies. J Biol Regul Homeost Agents 2020; 34(2): 1.
[http://dx.doi.org/10.23812/CONTI-E] [PMID: 32171193]
[149]
Su Z, Tao X. Current understanding of IL-37 in human health and disease. Front Immunol 2021; 12: 696605.
[http://dx.doi.org/10.3389/fimmu.2021.696605] [PMID: 34248996]
[150]
Seif F, Khoshmirsafa M, Aazami H, Mohsenzadegan M, Sedighi G, Bahar M. The role of JAK-STAT signaling pathway and its regulators in the fate of T helper cells. Cell Commun Signal 2017; 15(1): 23.
[http://dx.doi.org/10.1186/s12964-017-0177-y] [PMID: 28637459]
[151]
Seif F, Aazami H, Khoshmirsafa M, et al. JAK inhibition as a new treatment strategy for patients with COVID-19. Int Arch Allergy Immunol 2020; 181(6): 467-75.
[http://dx.doi.org/10.1159/000508247] [PMID: 32392562]
[152]
Russell B, Moss C, George G, et al. Associations between immunesuppressive and stimulating drugs and novel COVID-19-a systematic review of current evidence. ecancer 2020; 14: 1022.
[http://dx.doi.org/10.3332/ecancer.2020.1022]
[153]
Rabaan AA, Al-Ahmed SH, Haque S, et al. SARS-CoV-2, SARS-CoV, and MERS-COV: A comparative overview. Infez Med 2020; 28(2): 174-84.
[PMID: 32275259]
[154]
Tizard IR. Vaccination against coronaviruses in domestic animals. Vaccine 2020; 38(33): 5123-30.
[http://dx.doi.org/10.1016/j.vaccine.2020.06.026] [PMID: 32563608]
[155]
[156]
Dai L, Gao GF. Viral targets for vaccines against COVID-19. Nat Rev Immunol 2021; 21(2): 73-82.
[http://dx.doi.org/10.1038/s41577-020-00480-0] [PMID: 33340022]
[157]
Peng HT, Rhind SG, Beckett A. Convalescent plasma for the prevention and treatment of COVID-19: A systematic review and quantitative analysis. JMIR Public Health Surveill 2021; 7(4): e25500.
[http://dx.doi.org/10.2196/25500] [PMID: 33825689]
[158]
Balagholi S, Dabbaghi R, Eshghi P, Mousavi SA, Heshmati F, Mohammadi S. Potential of therapeutic plasmapheresis in treatment of COVID-19 patients: Immunopathogenesis and coagulopathy. Transfus Apheresis Sci 2020; 59(6): 102993.
[http://dx.doi.org/10.1016/j.transci.2020.102993] [PMID: 33162341]
[159]
Jahanshahlu L, Rezaei N. Monoclonal antibody as a potential anti-COVID-19. Biomed Pharmacother 2020; 129: 110337.
[http://dx.doi.org/10.1016/j.biopha.2020.110337] [PMID: 32534226]
[160]
Coronavirus (COVID-19) update: FDA authorizes monoclonal antibodies for treatment of COVID-19. FDA 2020.https://www.fda.gov/news-events/press-announcements/coronavirus-covid-19-update-fda-authorizes-monoclonal-antibodies-treatment-covid-19
[161]
Sette A, Crotty S. Adaptive immunity to SARS-CoV-2 and COVID-19. Cell 2021; 184(4): 861-80.
[http://dx.doi.org/10.1016/j.cell.2021.01.007] [PMID: 33497610]
[162]
Cruz-Teran C, Tiruthani K, McSweeney M, Ma A, Pickles R, Lai SK. Challenges and opportunities for antiviral monoclonal antibodies as COVID-19 therapy. Adv Drug Deliv Rev 2021; 169: 100-17.
[http://dx.doi.org/10.1016/j.addr.2020.12.004] [PMID: 33309815]
[163]
Reyneveld GI, Savelkoul HFJ, Parmentier HK. Current understanding of natural antibodies and exploring the possibilities of modulation using veterinary models. A review. Front Immunol 2020; 11: 2139.
[http://dx.doi.org/10.3389/fimmu.2020.02139] [PMID: 33013904]
[164]
Ulrich H, Pillat MM, Tárnok A. Dengue fever, COVID-19 (SARS-CoV-2), and antibody-dependent enhancement (ADE): A Perspective. Cytometry A 2020; 97(7): 662-7.
[http://dx.doi.org/10.1002/cyto.a.24047] [PMID: 32506725]
[165]
Ehmann R, Kristen-Burmann C, Bank-Wolf B, et al. Reverse genetics for type I feline coronavirus field isolate to study the molecular pathogenesis of feline infectious peritonitis. MBio 2018; 9(4): e01422-18.
[http://dx.doi.org/10.1128/mBio.01422-18]
[166]
Lee WS, Wheatley AK, Kent SJ, DeKosky BJ. Antibody-dependent enhancement and SARS-CoV-2 vaccines and therapies. Nat Microbiol 2020; 5(10): 1185-91.
[http://dx.doi.org/10.1038/s41564-020-00789-5] [PMID: 32908214]
[167]
Li D, Edwards RJ, Manne K, et al. In vitro and in vivo functions of SARS-CoV-2 infection-enhancing and neutralizing antibodies. Cell 2021; 184(16): 4203-4219.e32.
[http://dx.doi.org/10.1016/j.cell.2021.06.021] [PMID: 34242577]
[168]
Okhotin A. Effectiveness of an inactivated SARS-CoV-2 vaccine. N Engl J Med 2021; 385(14): 1336-7.
[http://dx.doi.org/10.1056/NEJMc2112423] [PMID: 34525278]
[169]
Izda V, Jeffries MA, Sawalha AH. COVID-19: A review of therapeutic strategies and vaccine candidates. Clin Immunol 2021; 222: 108634.
[http://dx.doi.org/10.1016/j.clim.2020.108634] [PMID: 33217545]
[170]
Brisse M, Vrba SM, Kirk N, Liang Y, Ly H. Emerging concepts and technologies in vaccine development. Front Immunol 2020; 11: 583077.
[http://dx.doi.org/10.3389/fimmu.2020.583077] [PMID: 33101309]
[171]
Balkrishna A, Arya V, Rohela A, et al. Nanotechnology interventions in the management of COVID-19: Prevention, diagnosis and virus-like particle vaccines. Vaccines 2021; 9(10): 1129.
[http://dx.doi.org/10.3390/vaccines9101129] [PMID: 34696237]
[172]
Samrat SK, Tharappel AM, Li Z, Li H. Prospect of SARS-CoV-2 spike protein: Potential role in vaccine and therapeutic development. Virus Res 2020; 288: 198141.
[http://dx.doi.org/10.1016/j.virusres.2020.198141] [PMID: 32846196]
[173]
Crommelin DJA, Volkin DB, Hoogendoorn KH, Lubiniecki AS, Jiskoot W. The science is there: Key considerations for stabilizing viral vector-based COVID-19 vaccines. J Pharm Sci 2021; 110(2): 627-34.
[http://dx.doi.org/10.1016/j.xphs.2020.11.015] [PMID: 33242452]
[174]
Callaway E. The race for coronavirus vaccines: A graphical guide. Nature 2020; 580(7805): 576-7.
[http://dx.doi.org/10.1038/d41586-020-01221-y] [PMID: 32346146]
[175]
Silveira MM, Moreira GMSG, Mendonça M. DNA vaccines against COVID-19: Perspectives and challenges. Life Sci 2021; 267: 118919.
[http://dx.doi.org/10.1016/j.lfs.2020.118919] [PMID: 33352173]
[176]
Smith TRF, Patel A, Ramos S, et al. Immunogenicity of a DNA vaccine candidate for COVID-19. Nat Commun 2020; 11(1): 2601.
[http://dx.doi.org/10.1038/s41467-020-16505-0] [PMID: 32433465]
[177]
Abassi M, Boulware DR, Rhein J. Cryptococcal meningitis: Diagnosis and management update. Curr Trop Med Rep 2015; 2(2): 90-9.
[http://dx.doi.org/10.1007/s40475-015-0046-y] [PMID: 26279970]
[178]
Huang Q, Zeng J, Yan J. COVID-19 mRNA vaccines. J Genet Genomics 2021; 48(2): 107-14.
[http://dx.doi.org/10.1016/j.jgg.2021.02.006] [PMID: 34006471]
[179]
Alsulaiman JW, Khasawneh AI, Kheirallah KA. Could “trained immunity” be induced by live attenuated vaccines protect against COVID-19? Review of available evidence. J Infect Dev Ctries 2020; 14(9): 957-62.
[http://dx.doi.org/10.3855/jidc.12805] [PMID: 33031080]
[180]
Okamura S, Ebina H. Could live attenuated vaccines better control COVID-19? Vaccine 2021; 39(39): 5719-26.
[http://dx.doi.org/10.1016/j.vaccine.2021.08.018] [PMID: 34426024]
[181]
Gaborit BJ, Bergmann JF, Mussini C, et al. Plea for multitargeted interventions for severe COVID-19. Lancet Infect Dis 2020; 20(10): 1122-3.
[http://dx.doi.org/10.1016/S1473-3099(20)30312-1] [PMID: 32325035]
[182]
Ahmed MH, Hassan A, Molnár J. The role of micronutrients to support immunity for COVID-19 prevention. Rev Bras Farmacogn 2021; 31(4): 361-74.
[http://dx.doi.org/10.1007/s43450-021-00179-w] [PMID: 34493880]
[183]
Abdel-Aziz SM, Aeron A, Garg N. Fortified foods and medicinal plants as immunomodulators. In: Garg N, Abdel-Aziz SM, Aeron A, Eds. Microbes in Food and Health. Springer: Cham International Publishing 2016; pp. 143-62.
[http://dx.doi.org/10.1007/978-3-319-25277-3_8]
[184]
di Sotto A, Vitalone A, Di Giacomo S. Plant-derived nutraceuticals and immune system modulation: An evidence-based overview. Vaccines 2020; 8(3): 468.
[http://dx.doi.org/10.3390/vaccines8030468] [PMID: 32842641]
[185]
Rizk JG, Kalantar-Zadeh K, Mehra MR, Lavie CJ, Rizk Y, Forthal DN. Pharmaco-immunomodulatory therapy in COVID-19. Drugs 2020; 80(13): 1267-92.
[http://dx.doi.org/10.1007/s40265-020-01367-z] [PMID: 32696108]
[186]
Zemour K, Labdelli A, Adda A, Dellal A, Talou T, Merah O. Phenol content and antioxidant and antiaging activity of safflower seed oil (Carthamus tinctorius L.). Cosmetics 2019; 6(3): 55.
[http://dx.doi.org/10.3390/cosmetics6030055]
[187]
Manoharan Y, Haridas V, Vasanthakumar KC, Muthu S, Thavoorullah FF, Shetty P. Curcumin: A wonder drug as a preventive measure for COVID19 management. Indian J Clin Biochem 2020; 35(3): 373-5.
[http://dx.doi.org/10.1007/s12291-020-00902-9] [PMID: 32641876]
[188]
Kataria S, Sharma P, Ram JP, et al. A pilot clinical study of an add-on Ayurvedic fromulation containing Tinospora cordifolia and Piper longum in mild to moderate COVID-19. J Ayurveda Integr Med 2022; 13(2): 100454.
[http://dx.doi.org/10.1016/j.jaim.2021.05.008]
[189]
Song Y, Zhang M, Yin L, et al. COVID-19 treatment: Close to a cure? A rapid review of pharmacotherapies for the novel coronavirus (SARS-CoV-2). Int J Antimicrob Agents 2020; 56(2): 106080.
[http://dx.doi.org/10.1016/j.ijantimicag.2020.106080] [PMID: 32634603]
[190]
Ren X, Shao XX, Li XX, et al. Identifying potential treatments of COVID-19 from Traditional Chinese Medicine (TCM) by using a data-driven approach. J Ethnopharmacol 2020; 258: 112932.
[http://dx.doi.org/10.1016/j.jep.2020.112932] [PMID: 32376368]
[191]
Singh AK, Singh A, Shaikh A, Singh R, Misra A. Chloroquine and hydroxychloroquine in the treatment of COVID-19 with or without diabetes: A systematic search and a narrative review with a special reference to India and other developing countries. Diabetes Metab Syndr 2020; 14(3): 241-6.
[http://dx.doi.org/10.1016/j.dsx.2020.03.011] [PMID: 32247211]
[192]
Nina PB, Dash AP. Hydroxychloroquine as prophylaxis or treatment for COVID-19: What does the evidence say? Indian J Public Health 2020; 64(6): S125-7.
[http://dx.doi.org/10.4103/ijph.IJPH_496_20] [PMID: 32496241]
[193]
Alexaki VI, Henneicke H. The role of glucocorticoids in the management of COVID-19. Horm Metab Res 2021; 53(1): 9-15.
[http://dx.doi.org/10.1055/a-1300-2550] [PMID: 33207372]
[194]
Stachowska E, Folwarski M, Jamioł-Milc D, Maciejewska D, Skonieczna-Żydecka K. Nutritional support in coronavirus 2019 disease. Medicina 2020; 56(6): 289.
[http://dx.doi.org/10.3390/medicina56060289] [PMID: 32545556]
[195]
Akhtar S, Das JK, Ismail T, Wahid M, Saeed W, Bhutta ZA. Nutritional perspectives for the prevention and mitigation of COVID-19. Nutr Rev 2021; 79(3): 289-300.
[http://dx.doi.org/10.1093/nutrit/nuaa063] [PMID: 33570583]
[196]
Muscogiuri G, Barrea L, Savastano S, Colao A. Nutritional recommendations for COVID-19 quarantine. Eur J Clin Nutr 2020; 74(6): 850-1.
[http://dx.doi.org/10.1038/s41430-020-0635-2] [PMID: 32286533]
[197]
Nieman DC, Wentz LM. The compelling link between physical activity and the body’s defense system. J Sport Health Sci 2019; 8(3): 201-17.
[http://dx.doi.org/10.1016/j.jshs.2018.09.009] [PMID: 31193280]
[198]
Farhan Aslam M, Majeed S, Aslam S, Irfan JA. Vitamins: Key role players in boosting up immune response-a mini review. Vitam Miner 2017; 6(1): 153.
[http://dx.doi.org/10.4172/2376-1318.1000153]
[199]
Ali N. Role of vitamin D in preventing of COVID-19 infection, progression and severity. J Infect Public Health 2020; 13(10): 1373-80.
[http://dx.doi.org/10.1016/j.jiph.2020.06.021] [PMID: 32605780]
[200]
Boucher BJ. The problems of vitamin D insufficiency in older people. Aging Dis 2012; 3(4): 313-29.
[PMID: 23185713]
[201]
Leaf DE, Ginde AA. Vitamin D3 to treat COVID-19: Different disease, same answer. JAMA 2021; 325(11): 1047-8.
[http://dx.doi.org/10.1001/jama.2020.26850] [PMID: 33595641]
[202]
Amrein K, Scherkl M, Hoffmann M, et al. Vitamin D deficiency 2.0: An update on the current status worldwide. Eur J Clin Nutr 2020; 74(11): 1498-513.
[http://dx.doi.org/10.1038/s41430-020-0558-y] [PMID: 31959942]
[203]
Sobczyk MK, Gaunt TR. The effect of circulating zinc, selenium, copper and vitamin K 1 on COVID-19 outcomes: A Mendelian randomization study. Nutrients 2022; 14(2): 233.
[http://dx.doi.org/10.1101/2021.10.18.21265128]
[204]
Pecora F, Persico F, Argentiero A, Neglia C, Esposito S. The role of micronutrients in support of the immune response against viral infections. Nutrients 2020; 12(10): 3198.
[http://dx.doi.org/10.3390/nu12103198] [PMID: 33092041]
[205]
Gać P, Czerwińska K, Macek P, et al. The importance of selenium and zinc deficiency in cardiovascular disorders. Environ Toxicol Pharmacol 2021; 82: 103553.
[http://dx.doi.org/10.1016/j.etap.2020.103553] [PMID: 33238203]
[206]
Jahromi SR, Tabriz HM, Togha M, et al. The correlation between serum selenium, zinc, and COVID-19 severity: An observational study. BMC Infect Dis 2021; 21(1): 899.
[http://dx.doi.org/10.1186/s12879-021-06617-3] [PMID: 34479494]
[207]
Skrajnowska D, Bobrowska-Korczak B. Role of zinc in immune system and anti-cancer defense mechanisms. Nutrients 2019; 11(10): 2273.
[http://dx.doi.org/10.3390/nu11102273] [PMID: 31546724]
[208]
Wessels I, Rolles B, Rink L. The potential impact of zinc supplementation on COVID-19 pathogenesis. Front Immunol 2020; 11: 1712.
[http://dx.doi.org/10.3389/fimmu.2020.01712] [PMID: 32754164]
[209]
Mayor-Ibarguren A, Busca-Arenzana C, Robles-Marhuenda Á. A hypothesis for the possible role of zinc in the immunological pathways related to COVID-19 infection. Front Immunol 2020; 11: 1736.
[http://dx.doi.org/10.3389/fimmu.2020.01736] [PMID: 32754165]
[210]
Name JJ, Souza ACR, Vasconcelos AR, Prado PS, Pereira CPM. Zinc, vitamin D and vitamin C: Perspectives for COVID-19 with a focus on physical tissue barrier integrity. Front Nutr 2020; 7: 606398.
[http://dx.doi.org/10.3389/fnut.2020.606398] [PMID: 33365326]
[211]
Zoidis E, Seremelis I, Kontopoulos N, Danezis GP. Selenium-dependent antioxidant enzymes: Actions and properties of selenoproteins. Antioxidants 2018; 7(5): 66.
[http://dx.doi.org/10.3390/antiox7050066] [PMID: 29758013]
[212]
Kieliszek M, Lipinski B. Selenium supplementation in the prevention of coronavirus infections (COVID-19). Med Hypotheses 2020; 143: 109878.
[http://dx.doi.org/10.1016/j.mehy.2020.109878] [PMID: 32464491]
[213]
Prakash P, Meena R, Stanley Abraham L, et al. Evidence-based traditional Siddha fromulations for prophylaxis and management of respiratory symptoms in COVID-19 pandemic-a review. Biocatal Agric Biotechnol 2021; 35: 102056.
[http://dx.doi.org/10.1016/j.bcab.2021.102056] [PMID: 34122672]
[214]
Natarajan S, Anbarasi C, Sathiyarajeswaran P, et al. The efficacy of Siddha Medicine, Kabasura Kudineer (KSK) compared to Vitamin C & Zinc (CZ) supplementation in the management of asymptomatic COVID-19 cases: A structured summary of a study protocol for a randomised controlled trial. Trials 2020; 21(1): 892.
[http://dx.doi.org/10.1186/s13063-020-04823-z] [PMID: 33109252]
[215]
Sunil Kumar KN, Divya KG, Mattummal R, Erni B, Sathiyarajeswaran P, Kanakavalli K. Pharmacological actions of contents of Kabasura Kudineer. A Siddha fromulation for fever with respiratory illness. IJPER 2021; 55(1): 36-55.
[http://dx.doi.org/10.5530/ijper.55.1.7]
[216]
Kabasura Kudineer. Benefits, ingredients and side effects of this wonder herbal fromulation. 2020. Netmedshttps://www.netmeds.com/health-library/post/kabasura-kudineer-benefits-ingredients-and-side-effects-of-this-wonder-herbal-fromulation
[217]
Nikkhah Bodagh M, Maleki I, Hekmatdoost A. Ginger in gastrointestinal disorders: A systematic review of clinical trials. Food Sci Nutr 2018; 7(1): 96-108.
[http://dx.doi.org/10.1002/fsn3.807] [PMID: 30680163]
[218]
Adnan M, Chy MNU, Kama ATMM, et al. Comparative study of Piper sylvaticum Roxb. leaves and stems for anxiolytic and antioxidant properties through in vivo, in vitro, and in silico approaches. Biomedicines 2020; 8(4): 68.
[http://dx.doi.org/10.3390/biomedicines8040068] [PMID: 32218219]
[219]
Batiha GE, Alkazmi LM, Wasef LG, Beshbishy AM, Nadwa EH, Rashwan EK. Syzygium aromaticum L. (Myrtaceae): Traditional uses, bioactive chemical constituents, pharmacological and toxicological activities. Biomolecules 2020; 10(2): 202.
[http://dx.doi.org/10.3390/biom10020202] [PMID: 32019140]
[220]
Pallie MS, Perera PK, Kumarasinghe N, Arawwawala M, Goonasekara CL. Ethnopharmacological use and biological activities of Tragia involucrata L. Evid Based Complement Alternat Med 2020; 2020: 8848676.
[http://dx.doi.org/10.1155/2020/8848676]
[221]
Jawhari FZ, El Moussaoui A, Bourhia M, et al. Anacyclus pyrethrum (L): Chemical composition, analgesic, anti-inflammatory, and wound healing properties. Molecules 2020; 25(22): 5469.
[http://dx.doi.org/10.3390/molecules25225469] [PMID: 33238392]
[222]
Nigam M, Mishra AP, Adhikari-Devkota A, et al. Fruits of Terminalia chebula Retz.: A review on traditional uses, bioactive chemical constituents and pharmacological activities. Phytother Res 2020; 34(10): 2518-33.
[http://dx.doi.org/10.1002/ptr.6702] [PMID: 32307775]
[223]
Sethiya NK, Ahmed NM, Shekh RM, Kumar V, Kumar Singh P, Kumar V. Ethnomedicinal, phytochemical and pharmacological updates on Hygrophila auriculata (Schum.) Hiene: An overview. J Integr Med 2018; 16(5): 299-311.
[http://dx.doi.org/10.1016/j.joim.2018.07.002] [PMID: 30007830]
[224]
Khan I, Ahmad B, Azam S, et al. Pharmacological activities of Justicia adhatoda. Pak J Pharm Sci 2018; 31(2): 371-7.
[PMID: 29618423]
[225]
Bairwa R, Sodha RS, Rajawat BS. Trachyspermum ammi. Pharmacogn Rev 2012; 6(11): 56-60.
[http://dx.doi.org/10.4103/0973-7847.95871] [PMID: 22654405]
[226]
Lim TK. Cheilocostus speciosus. In: Edible medicinal and non-medicinal plants. Springer: Dordrecht 2014; pp. 712-25.
[http://dx.doi.org/10.1007/978-94-007-7395-0_52]
[227]
Singh D, Chaudhuri PK. Chemistry and pharmacology of Tinospora cordifolia. Nat Prod Commun 2017; 12(2): 299-308.
[http://dx.doi.org/10.1177/1934578X1701200240] [PMID: 30428235]
[228]
Patel JJ, Acharya SR, Acharya NS. Clerodendrum serratum (L.) Moon. A review on traditional uses, phytochemistry and pharmacological activities. J Ethnopharmacol 2014; 154(2): 268-85.
[http://dx.doi.org/10.1016/j.jep.2014.03.071] [PMID: 24727551]
[229]
Dai Y, Chen SR, Chai L, Zhao J, Wang Y, Wang Y. Overview of pharmacological activities of Andrographis paniculata and its major compound andrographolide. Crit Rev Food Sci Nutr 2019; 59(sup1): S17-29.
[http://dx.doi.org/10.1080/10408398.2018.1501657]
[230]
Kumari S. Anmol, Bhatt V, Suresh PS, Sharma U. Cissampelos pareira L. A review of its traditional uses, phytochemistry, and pharmacology. J Ethnopharmacol 2021; 274: 113850.
[http://dx.doi.org/10.1016/j.jep.2021.113850] [PMID: 33485976]
[231]
Pirzada AM, Ali HH, Naeem M, Latif M, Bukhari AH, Tanveer A. Cyperus rotundus L. Traditional uses, phytochemistry, and pharmacological activities. J Ethnopharmacol 2015; 174: 540-60.
[http://dx.doi.org/10.1016/j.jep.2015.08.012] [PMID: 26297840]
[232]
Khanal P, Duyu T, Patil BM, et al. Network pharmacology of AYUSH recommended immune-boosting medicinal plants against COVID-19. J Ayurveda Integr Med
[http://dx.doi.org/10.1016/j.jaim.2020.11.004]
[233]
Terashima A, Takayanagi H. Bone and stem cells. Immune cell regulation by the bone marrow niche. Clin Calcium 2014; 24(4): 533-9.
[234]
Sharifi-Rad J, Rayess YE, Rizk AA, et al. Turmeric and its major compound curcumin on health: Bioactive effects and safety profiles for food, pharmaceutical, biotechnological and medicinal applications. Front Pharmacol 2020; 11: 01021.
[http://dx.doi.org/10.3389/fphar.2020.01021] [PMID: 33041781]
[235]
Lu C, Amin MA, Fox DA. CD13/Aminopeptidase N is a potential therapeutic target for inflammatory disorders. J Immunol 2020; 204(1): 3-11.
[http://dx.doi.org/10.4049/jimmunol.1900868]
[236]
Mao QQ, Xu XY, Cao SY, et al. Bioactive compounds and bioactivities of ginger (Zingiber officinale Roscoe). Foods 2019; 8(6): 185.
[http://dx.doi.org/10.3390/foods8060185] [PMID: 31151279]
[237]
Prasad S, Tyagi AK. Ginger and its constituents: Role in prevention and treatment of gastrointestinal cancer. Gastroenterol Res Pract 2015; 2015: 142979.
[http://dx.doi.org/10.1155/2015/142979] [PMID: 25838819]
[238]
Jafarzadeh A, Jafarzadeh S, Nemati M. Therapeutic potential of ginger against COVID-19: Is there enough evidence? J Tradit Chin Med Sci 2021; 8(4): 267-79.
[http://dx.doi.org/10.1016/j.jtcms.2021.10.001]
[239]
Butt MS, Pasha I, Sultan MT, Randhawa MA, Saeed F, Ahmed W. Black pepper and health claims: A comprehensive treatise. Crit Rev Food Sci Nutr 2013; 53(9): 875-86.
[http://dx.doi.org/10.1080/10408398.2011.571799] [PMID: 23768180]
[240]
Nag A, Chowdhury RR. Piperine, an alkaloid of black pepper seeds can effectively inhibit the antiviral enzymes of Dengue and Ebola viruses, an in silico molecular docking study. Virusdisease 2020; 31(3): 308-15.
[http://dx.doi.org/10.1007/s13337-020-00619-6] [PMID: 32904842]
[241]
Wang C, Cai Z, Wang W, et al. Piperine attenuates cognitive impairment in an experimental mouse model of sporadic Alzheimer’s disease. J Nutr Biochem 2019; 70: 147-55.
[http://dx.doi.org/10.1016/j.jnutbio.2019.05.009] [PMID: 31207354]
[242]
Yu JW, Li S, Bao LD, Wang L. Piperine treating sciatica through regulating inflammation and miR-520a/P65 pathway. Chin J Nat Med 2021; 19(6): 412-21.
[http://dx.doi.org/10.1016/S1875-5364(21)60040-7] [PMID: 34092292]
[243]
Ghayur MN, Gilani AH. Pharmacological basis for the medicinal use of ginger in gastrointestinal disorders. Dig Dis Sci 2005; 50(10): 1889-97.
[http://dx.doi.org/10.1007/s10620-005-2957-2] [PMID: 16187193]
[244]
Alam J, Hussain T, Pati S. Bio-active compounds (Curcumin, Allicin and Gingerol) of common spices used in Indian and South-east Asian countries might protect against COVID-19 infection: A short review. European J Med Plants 2020; 31(20): 65-78.
[http://dx.doi.org/10.9734/ejmp/2020/v31i2030363]
[245]
Puvača N, Ljubojević D, Lukač D, et al. Bioactive compounds of garlic, black pepper and hot red pepper. In: XVI International symposium “Feed Technology”. 2014; October; Novi Sad, Serbia: pp. 116-22.
[246]
Khalili-Fomeshi M, Azizi MG, Esmaeili MR, et al. Piperine restores streptozotocin-induced cognitive impairments: Insights into oxidative balance in cerebrospinal fluid and hippocampus. Behav Brain Res 2018; 337: 131-8.
[http://dx.doi.org/10.1016/j.bbr.2017.09.031] [PMID: 28939403]
[247]
Sánchez-Trujillo LA, Mendoza-Monroy JL, Rocha-González HI, Quiñonez-Bastidas GN, Balderas-López JL, Navarrete A. Antiallodynic effect of piperine in neuropathic rats. Rev Bras Farmacogn 2020; 2020(30): 482-7.
[http://dx.doi.org/10.1007/s43450-020-00047-z]
[248]
Pawar KS, Mastud RN, Pawar SK, et al. Oral curcumin with piperine as adjuvant therapy for the treatment of COVID-19: A randomized clinical trial. Front Pharmacol 2021; 12: 669362.
[http://dx.doi.org/10.3389/fphar.2021.669362] [PMID: 34122090]

© 2024 Bentham Science Publishers | Privacy Policy