A mathematical model of nonlinear differential equation for controlling global dynamics of coronavirus disease 2019 (COVID-19)

https://doi.org/10.53730/ijhs.v6nS2.5564

Authors

  • Vezhopalu University of Science & Technology, Meghalaya, Techno City, 9th Mile, Kling Road, Baridua, Ri-Bhoi, Meghalaya-793101
  • Gitumani Sarma University of Science & Technology, Meghalaya, Techno City, 9th Mile, Kling Road, Baridua, Ri-Bhoi, Meghalaya-793101

Keywords:

basic reproduction number, coronavirus disease, mathematical modeling, nonlinear dynamical systems, optimal control analysis

Abstract

 In this paper, we have introduced new mathematical model of Coronavirus Disease (COVID-19) Transmission Model as a system of six nonlinear differential equations to analyze the spread and control of this latest outbreak pandemic disease. This new mathematical model is analysed with the help of optimal control analysis. The main purpose of this optimal control theory which applied to the model is to show the existence of optimal controllers for the nonlinear dynamic system. Based on the assumptions, we also studied and formulate an optimal control model for a coronavirus disease dynamic system in terms of mathematical differential equations in order to focus the effects of prevention and control measures with minimal implementation cost. Then, we established the basic reproduction number  , which makes possible to check whether a prominent infectious disease will continue to spread or not in a susceptible population. The paper was also extended to assess the conditions under which the population will be free of disease. In particular, we focus to include in the mathematical model, quarantine procedure applied to both the infected individuals and to the highly risk of total population, which is expected to be useful.

Downloads

Download data is not yet available.

References

Chowell G, Blumberg S, Simonsen L, et al. (2014). Synthesizing data and models for the spread of MERS-CoV, 2013: Key role of index cases and hospital transmission. Epidemics, Volume-9. Pp.40-51. ISSN:1755-4365. http://dx.doi.org/10.1016/j.epidem.2014.09.011.

Lee D., Masud M. A., Kim B. N. and Oh C. (2017) Optimal control analysis for the MERS-CoV outbreak: South Korea perspectives J. KSIAM Vol.21, No.3, 143–154, ISSN: 1226-9433, http://dx.doi.org/10.12941/jksiam.2017.21.143.

“WHO Director-General’s opening remarks at the media briefing on COVID-19-11 March 2020”. World Health Organization. 11th March 2020. Retrieved 11 March 2020.

Reusken, C.B.E.M., Haagmans, B.L., Muller, M.A., et al. (2013). Middle East respiratory syndrome coronavirus neutralizing serum antibodies in dromedary camels: Acomparative serological study, Lancet Infectious Diseases 13(10):859-866.

Chinazzi M., Davis J.T., Ajelli M., et al (2020). The effect of travel restrictions on the spread of the 2019 novel coronavirus (2019-nCoV) outbreak, https://doi.org/10.1101/2020.02.09.20021261.

Zhou. Y and Zhien M.A. (2004). A Discrete Epidemic Model for SARS Transmission and control in china. Mathematical and Computer Modelling, vol.40, Pp 1491-1506. ISSN: 0895-7177; doi: 10.1016/j.mcm.2005.01.007.

Aldila D., Padma H., Khotimah K., et al. (2018). Analyzing the MERS Disease control strategy through an optimal control problem. Int. J. Appl. Math. Comput. Sci., 2018, Vol. 28, No. 1, 169–184, ISSN: 2083-8492(Online), DOI: 10.2478/amcs-2018-0013.

Kim Y.,Lee S. Shin Y., Chu C ., et al (2016). The Characteristics of Middle Eastern Respiratory Syndrome Coronavirus Transmission Dynamics in South Korea, Osong Public Health Res Perspect, 7 (2016), Pp.49–55. http://dx.doi.org/10.1016/j.phrp.2016.01.001.

Milligan, Gregg N.; Barrett, Alan D. T. (2015). Vaccinology: an essential guide. Chichester, West Sussex: Wiley Blackwell. p. 310. ISBN 978-1-118-63652-7. OCLC 881386962.

Delamater P.L., Street E.J., Leslie. (2019). Complexity of the Basic Reproduction Number (R_0 ), Emerging Infectious diseases, Vol. 25, No. 1-4, ISSN:1080-6059. DOI: https://doi.org/10.3201/eid2501.171901.

Lashari A.A., Hattaf K., Zaman G. (2012). A delay differential equation model of a vector borne disease with direct transmission. International Journal of Ecological Economics & Statistics (IJEES). Volume.27, Issue No.4, Pp 25-35. ISSN 0973-1385(Print), ISSN 0973-7537(online).

Diekmann O., Heesterbeek J.A.P(2000). Mathematical Epidemiology of Infectious Diseases: Model Building, Analysis and Interpretation, Wiley Series, John Wiley and Sons, USA.

Gonzalez-Parra G.C., Aranda D.F., Chen-Charpentier B., et al (2019). Mathematical Modeling and Characterization of the spread of Chikungunya in colombia. Mathematical and Computational Applications, Pp-1-24, 24,6; ISSN: 2297-8747, ISSN: 1300686X (for printed, edition) 22doi:10.3390/mca24010006.

Chowell G, Hengartnerb NW, Castillo-Chaveza C, Fenimorea PW, Hyman JM (2004). "The basic reproductive number of Ebola and the effects of public health measures: the cases of Congo and Uganda". Journal of Theoretical Biology. 229 (1): 119–126. ISSN: 0022-5193; doi:10.1016/j.jtbi.2004.03.006. PMID 15178190.

Zaman G (2016), Mathematical Modeling of Vector-Borne Diseases, Nonlinear Analysi: Real World Applications, Volume 13, Issue 1, Pp 203-212, ISSN 1468-1218.

Rachah A., Torres D.F.M. (2015). Mathematical Modelling, Simulation and Optimal Control of the 2014 Ebola Outbreak in West Africa. Hindawi Publication Corporation, Discrete Dynamics in Nature and Society, Article ID 842792, 9 pages, http://dx.doi.org/10.1155/2015/842792.

Blayneh K., Cao Y., Kwon H-D. (2009). Optimal Control of Vector-Borne Disease Treatment and Prevention. Discrete and Continuos Dynamical System Series B, Volume 11, Number 3, Pp 1-31; doi:10.3934/dcdsb.2009.11.587.

Siriprapaiwan S., Moore E.J., Koonprasert S. (2017). Generalized reproduction numbers,sensitivity analysis and critical immunity levels of an SEQIJR disease model with immunization and varying total population size. Mathematics and Computers in Simulation, Volume-146, Pp70-89, ISSN:0378-4754, https://doi.org/10.1016/j.matcom.2017.10.006.

Berhe H.W.,Makinde O.D., Theuri D.M.(2019). Parameter Estimation and sensitivity Analysis of Dysentery Diarrhea Epidemic Model. Article ID 8465747, https://doi.org/10.1155/2019/8465747.

Jones J.H(2007), Notes on R_0 , Department of Anthropological Sciences, Stanford University.

Lashari A.A., Zaman G.(2011), Global dynamics of vector-borne diseases with horizontal transmission in host population, Computers and Mathematics with Applications, Elsevier, Volume 61,745-754; doi:10.1016/j.camwa.2010.12.018.

Peter, O.J., Akinduko, O.B., OGUNTOLU, F.A., ISHOLA, C.Y. (2018). Mathematical Model for the Control of Infectious Disease, JASEM, Vol.22(4). Pp 447-451. ISSN 1119-8362; DOI: https://dx.doi.org/10.4314/jasem.v22i4.1 .

Chen TM., Rui J, Wang QP., et al (2020). A Mathematical Model for simulating the phase-based transmissibility of a novel coronavirus. Infectious Diseases of Poverty 9.24. Pp 1-8. ISSN: 2049-9957, https://doi.org/10.1186/s40249-020-00640-3.

Li Q, Guan X, Wu P, Wang X, Zhou L, Tong Y, et al.(2020).Early transmission dynamics in Wuhan, China, of novel coronavirus-infected pneumonia. New England Journal of Medicine. ISSN: 0028-4793(print), ISSN:1533-4406(web), https://doi.org/10.1056/NEJMoa2001316.

Wu JT., Leung K., Leung GM. (2020). Nowcasting and forecasting the potential domestic and international spread of the 2019-nCoV outbreak originating in Wuhan, China: a modelling study. Lancet. https://doi.org/10.1016/ S0140-6736(20)30260-9.

Ross, I.M. (2009). A Primer on Pontryan’s Principle in Optimal Control. Collegiate Publishers. ISBN 978-0-9843571-0-9.

Lashari A.A., Zaman G. (2012), Optimal control of a vector-borne diseases with horizontal transmission. Nonlinear Analysis: Real World Applications, volume-13, Pp 203-212. ISSN 1468-1218. doi: 10.016/j.nonrwa.2011.07.026.

Collins, O.C., Duffy K.J., (2018). Analysis and Optimal Control Intervention Strategies of a Waterborne Disease Model: A Realistic Case Study, Journal of Applied Mathematics, Volume 2018, Article ID 2528513, 14 pages, ISSN-1110-757X(Print), ISSN:1687-0042(Online).https://doi.org/10.1155/2018/2528513.

Gonzalez-Parra G.C., Aranda D.F.,Chen-Charpentier B., et al (2019) .Mathematical Modeling and Characterization of the Spread of Chikungunya in Colombia. Mathematical and Computational Applications, Pp 1-24, 6; ISSN: 2297-8747, ISSN 1300-686X, doi:10.3390/mca24010006.

Diekmann O., Heesterbeek J.A.P.,Metz J.AJ.(1990). On the definition and the computation of the basic reproduction ratio R_0 in models for infectious disease in heterogenous populations, Journal of Mathematical Biology, 28(4), Pp 365-382.

Luo J., Hager W.W., Wu R. (2009). A differential equation model for functional mapping of a virus-cell dynamic system. Journal of Mathematical Biology, ISSN:0303-6812(Print), ISSN: 1432-1416(Web), doi:10.1007/s00285-009-0288-1.

Published

06-04-2022

How to Cite

Vezhopalu, V., & Sarma, G. (2022). A mathematical model of nonlinear differential equation for controlling global dynamics of coronavirus disease 2019 (COVID-19). International Journal of Health Sciences, 6(S2), 2446–2458. https://doi.org/10.53730/ijhs.v6nS2.5564

Issue

Section

Peer Review Articles