Issue 3-20, 2021
Review article
The Importance of Physical Activity in the Rehabilitation of Patients with Cardiovascular Diseases
1 Vladimir E. Vladimirsky, 1
Evgeniy V. Vladimirsky, 1 Anna N. Lunina, 2
Anatoliy D. Fesyun, 2
Andrey P. Rachin, 2
Olga D. Lebedeva, 2
Maxim Yu. Yakovlev
1 Perm State Medical University named after Academician E.A. Wagner, Perm, Russian Federation
2 National Medical Research Center of Rehabilitation and Balneology, Moscow, Russian Federation
ABSTRACT
The review analyzes the data of scientific publications on the effects of molecular mechanisms initiated by physical exertion on thefunction of the cardiovascular system and the course of cardiac diseases. As practice and a number of evidence-based studies haveshown, the beneficial effects of physical activity on the outcomes of diseases in a number of cardiac nosologies are comparable todrug treatment. Numerous mechanisms mediate the benefits of regular exercise for optimal cardiovascular function. Exercises causewidespread changes in numerous cells, tissues, and organs in response to increased metabolic demand, including adaptation of thecardiovascular system. Physical exercises, which include various types of aerobic exercises of varying intensity and duration, is animportant component of the therapeutic treatment of patients with cardiovascular diseases. Knowledge of the molecular basis ofthe physical activity impact on the cardiovascular system makes it possible to use biochemical markers to assess the effectiveness ofrehabilitation programs.
KEYWORDS: cardiac rehabilitation, cardiovascular diseases, physical activity, molecular mechanisms
FUNDING: The study had no sponsorship
CONFLICT OF INTEREST: The authors declare no apparent or potential conflicts of interest related to the publication of this article
FOR CITATION: Vladimirsky V.E., Vladimirsky E.V., Lunina A.N., Fesyun A.D., Rachin A.P., Lebedeva O.D., Yakovlev M.Yu. The Importance of Physical Activity in the Rehabilitation of Patients with Cardiovascular Diseases. Bulletin of Rehabilitation Medicine. 2021; 20 (3):16-25. https://doi.org/10.38025/2078-1962-2021-20-3-16-25
FOR CORRESPONDENCE:
Lebedeva O.D., e-mail: Lebedeva-OD@yandex.ru
References:
- Thomas R.J., King M., Lui K. et al. AACVPR/ACC/AHA 2007 Cardiac Rehabilitation performance indicators for referral and delivery of cardiac rehabilitation/secondary prevention services. Journal of Cardiopulmonary Rehabilitation and Prevention. 2007; (27): 260-90.
- Piepoli M.F., Corra U., Benzer W. etal. Secondary prevention through cardiac rehabilitation: from knowledge toimplementation. Position paper ofthe Cardiological Rehabilitation Section of the European Association for the Prevention of Cardiovascular Diseases and Rehabilitation. European Journal of Cardiovascular Prevention and Rehabilitation. 2010; (17): 1-17.
- Ismaylov I.S., Mamedyarova I.A., Baranov A.V., Mustafaev R.D., Lebedeva O.D., Achilov A.A. Sochetannoe primenenie kinezo- i lazeroterapii v korrekcii narushenij regionarnoj gemodinamiki pri dilatacionnoj kardiomiopatii [Combined use of kineso-and laser therapy in the correction of regional hemodynamic disorders in dilated cardiomyopathy]. Problems of Balneology, Physiotherapy and Exercise Therapy. 2020; V.97(5): 13-21. https://doi.org/10.17116/kurort20209705113 (In Russ.).
- Corbalan R., Bassand J.P., Illingworth L., Kayani G., Pieper K.S., Ambrosio G., Camm A.J., Fitzmaurice D.A., Fox K.A.A., Goldhaber S.Z., Goto S., Haas S., Mantovani L.G., Misselwitz F., Turpie A.G.G., Verheugt F.W.A., Kakkar A.K., Hacke W., Gersh B.J., Luciardi H.L. et al. Analysis of outcomes in ischemic vs nonischemic cardiomyopathy in patients with atrial fibrillation: a report from the garfield-af registry. JAMA Cardiology. 2019; V.4(6): 526-548. https://doi.org/10.1001/jamacardio.2018.4729
- Haas S., Cate H.T., Accetta G., Bassand J.P., Kayani G., Kakkar A.K., Angchaisuksiri P., John Camm A., Corbalan R., Darius H., Fitzmaurice D.A., Goldhaber S.Z., Goto S., Jacobson B., Mantovani L.G., Misselwitz F., Eickels M.V., Pieper K., Schellong S.M., Stepinska J. et al. Quality of vitamin k antagonist control and 1-year outcomes in patients with atrial fibrillation: a global perspective from the garfield-af registry. PLoS ONE. 2016; V.11(10): e0164076 p. https://doi.org/10.1371/journal.pone.0164076
- Sawhney J.P., Kothiwale V.A., Bisne V., Durgaprasad R., Vanajakshamma V., Jadhav P., Chopda M., Meena R., Vijayaraghavan G., Chawla K., Allu J., Pieper K.S., Kakkar A.K., John Camm A., Bassand J.P., Fitzmaurice D.A., Goldhaber S.Z., Goto S., Haas S., Hacke W. et al. Risk profiles and one-year outcomes of patients with newly diagnosed atrial fibrillation in india: insights from the garfield-af registry. Indian Heart Journal. 2018; V.70(6): 828-835. https://doi.org/10.1016/j.ihj.2018.09.001
- Nikiforova T.I., Lebedeva O.D., Rykov S.V., Belov A.S. Sovremennye kompleksnye tekhnologii reabilitacii i profilaktiki u bol’nyh arterial’noj gipertenziej [Modern complex technologies of rehabilitation and prevention in patients with arterial hypertension]. Problems of Balneology, Physiotherapy and Exercise Therapy. 2013; V.90(6): 52-58 (In Russ.).
- 8. Ehrman J.K., Gordon P.M., Visich P.S., Keteyian S.J. Clinical exercise phisiology. 1st ed. Champaign. IL: Human Kinetics Publishers. 2003: 103-128.
- Jardins T. Cardiopulmonary anatomy & physiology essentials for respiratory care. 4th ed. Clifton Park. NY: Thomson Delmar Learning. 2002: 156-160.
- Stanford K.I., Goodyear L.J. Exercise and type 2 diabetes: molecular mechanisms regulating glucose uptake in skeletal muscle. Advances in Physiology Education. 2014; (38): 308-14. https://doi.org/10.1152/advan.00080.2014
- Nystoriak M.A., Bhatnagar A. Cardiovascular Effects and Benefits of Exercise. Frontiers in Cardiovascular Medicine. 2018; (5): 135 p. https://doi.org/10.3389/fcvm.2018.00135
- Egan B., Zierath J.R. Exercise metabolism and the molecular regulation of skeletal muscle adaptation. Cell Metabolism. 2013; (17): 162-84. https://doi.org/10.1016/j.cmet.2012.12.012
- Slentz C.A., Bateman L.A., Willis L.H., Granville E.O., Piner L.W., Samsa G.P. et al. Effects of exercise training alone vs. a combined exercise and nutritional lifestyle intervention on glucose homeostasis in prediabetic individuals: a randomised controlled trial. Diabetologia. 2016; (59): 2088-98. https://doi.org/10.1007/s00125-016-4051-z
- Conn V.S., Koopman R.J., Ruppar T.M., Phillips L.J., Mehr D.R., Hafdahl A.R. Insulin sensitivity following exercise interventions: systematic review and meta-analysis of outcomes among healthy adults. Journal of Primary Care & Community Health. 2014; (5): 211-22. https://doi.org/10.1177/2150131913520328
- Lin X., Zhang X., Guo J., Roberts C.K., McKenzie S., Wu W.C. et al. Effects of exercise training on cardiorespiratory fitness and biomarkers of cardiometabolic health: a systematic review and meta-analysis of randomized controlled trials. Journal of the American Heart Association. 2015; (4): e002014 p. https://doi.org/10.1161/JAHA.115.002014
- Petridou A., Nikolaidis M.G., Matsakas A., Schulz T., Michna H., Mougios V. Effect of exercise training on the fatty acid composition of lipid classes in rat liver, skeletal muscle, and adipose tissue. Journal of Applied Physiology. 2005; (94): 84-92. https://doi.org/10.1007/s00421-004-1294-z
- Fiuza-Luces C., Garatachea N., Berger N.A., Lucia A. Exercise is the real polypill. Physiology. 2013; (28): 330-58. https://doi.org/10.1152/physiol.00019.2013
- Che L., Li D. The effects of exercise on cardiovascular biomarkers: new Insights, recent data, and applications. Advances in Experimental Medicine and Biology. 2017; (999): 43-53. https://doi.org/10.1007/978-981-10-4307-9
- Fontana L. Interventions to promote cardiometabolic health and slow cardiovascular ageing. Nature Reviews Cardiology. 2018; (15): 566-77. https://doi.org/10.1038/s41569-018-0026-8
- Swift D.L., Johannsen N.M., Lavie C.J., Earnest C.P., Church T.S. The role of exercise and physical activity in weight loss and maintenance. Progress in Cardiovascular Diseases. 2014; (56): 441-7. https://doi.org/10.1016/j.pcad.2013.09.012
- Fontana L., Villareal D.T., Weiss E.P., Racette S.B., Steger-May K., Klein S. et al. Washington University School of Medicine, Calorie restriction or exercise: effects on coronary heart disease risk factors. A randomized, controlled trial. American Journal of Physiology-Endocrinology and Metabolism. 2007; (293): E197-202. https://doi.org/10.1152/ajpendo.00102.2007
- Duscha B.D., Slentz C.A., Johnson J.L., Houmard J.A., Bensimhon D.R., Knetzger K.J. et al. Effects of exercise training amount and intensity on peak oxygen consumption in middle-age men and women at risk for cardiovascular disease. Chest. 2005; (128): 2788-93. https://doi.org/10.1378/chest.128.4.2788
- Vega R.B., Konhilas J.P., Kelly D.P., Leinwand L.A. Molecular mechanisms underlying cardiac adaptation to exercise. Cell Metabolism. 2017; (25): 1012-26. https://doi.org/10.1016/j.cmet.2017.04.025
- Stanford K.I., Goodyear L.J. Exercise regulation of adipose tissue. Adipocyte. 2016; (5): 153-62. https://doi.org/10.1080/21623945.2016.1191307
- Vettor R., Valerio A., Ragni M., Trevellin E., Granzotto M., Olivieri M. et al. Exercise training boosts eNOS-dependent mitochondrial biogenesis in mouse heart: role in adaptation of glucose metabolism. American Journal of Physiology-Endocrinology and Metabolism. 2014; (306): E519-28. https://doi.org/10.1152/ajpen-do.00617.2013
- Borges J.P., da Silva Verdoorn K. Cardiac ischemia/reperfusion injury: the beneficial effects of exercise. Advances in Experimental Medicine and Biology. 2017; (999): 155-179.
- Kasapis C., Thompson P.D. The effects of physical activity on serum C-reactive protein and inflammatory markers - A systematic review. Journal of the American College of Cardiology. 2005; (45): 1563-9. https://doi.org/10.1016/j.jacc.2004.12.077
- Joki Y., Ohashi K., Yuasa D., Shibata R., Kataoka Y., Kambara T. et al. Neuron-derived neurotrophic factor ameliorates adverse cardiac remodeling after experimental myocardial infarction. Circulation: Heart Failure. 2015; (8): 342-51. https://doi.org/10.1161/CIRCHEARTFAILURE.114.001647
- Irving B.A., Lanza I.R., Henderson G.C., Rao R.R., Spiegelman B.M., Nair K.S. Combined training enhances skeletal muscle mitochondrial oxidative capacity independent of age. Journal of Clinical Endocrinology and Metabolism. 2015; (100): 1654-63. https://doi.org/10.1210/jc.2014-3081
- Konopka A.R., Suer M.K., Wolff C.A., Harber M.P. Markers of human skeletal muscle mitochondrial biogenesis and quality control: effects of age and aerobic exercise training. The Journals of Gerontology. Series A, Biological Sciences and Medical Sciences. 2014; (69): 371-8. https://doi.org/10.1093/gerona/glt107
- Vella C.A., Ontiveros D., Zubia R.Y. Cardiac function and arteriovenous oxygen difference during exercise in obese adults. European Journal of Applied Physiology. 2011; (111): 915-23. https://doi.org/10.1007/s00421-010-1554-z
- Tao L., Bei Y., Lin S., Zhang H., Zhou Y., Jiang J. et al. Exercise training protects against acute myocardial infarction via improving myocardial energy metabolism and mitochondrial biogenesis. Cellular Physiology & Biochemistry. 2015; (37): 162-75. https://doi.org/10.1159/000430342
- Doenst T., Nguyen T.D., Abel E.D. Cardiac metabolism in heart failure: implications beyond ATP production. Circulation Research. 2013; (113): 709-24. https://doi.org/10.1161/CIRCRESAHA.113.300376
- Velez M., Kohli S., Sabbah H.N. Animal models of insulin resistance and heart failure. Heart Failure Reviews. 2014; (19): 1-13. https://doi.org/10.1007/s10741-013-9387-6
- Bird S.R., Hawley J.A. Update on the effects of physical activity on insulin sensitivity in humans. BMJ Open Sport & Exercise Medicine. 2016; (2): e000143. https://doi.org/10.1136/bmjsem-2016-000143
- Riehle C., Abel E.D. Insulin signaling and heart failure. Circulation Research. 2016; (118): 1151-69. https://doi.org/10.1161/CIRCRESAHA.116.306206
- Incalza M.A., D’Oria R., Natalicchio A., Perrini S., Laviola L., Giorgino F. Oxidative stress and reactive oxygen species in endothelial dysfunction associated with cardio- vascular and metabolic diseases. Journal of Cardiovascular Pharmacology. 2018; (100): 1-19. https://doi.org/10.1016/j.vph.2017.05.005
- Bloomer R.J., Goldfarb A.H., Wideman L., McKenzie M.J., Consitt L.A. Effects of acute aerobic and anaerobic exercise on blood markers of oxidative stress. The Journal of Strength and Conditioning Research. 2005; (19): 276-85. https://doi.org/10.1519/00124278-200505000-00007
- Kalogeris T., Baines C.P., Krenz M., Korthuis R.J. Cell biology of ischemia/reperfusion injury. International Review of Cell and Molecular Biology. 2012; (298): 229-317. https://doi.org/10.1016/B978-0-12-394309-5.00006-7
- Olver T.D., Ferguson B.S., Laughlin M.H. Molecular mechanisms for exercise training-induced changes in vascular structure and function: skeletal muscle, cardiac muscle, and the brain. Progress in Molecular Biology and Translational Science. 2015; (135): 227-57. https://doi.org/10.1016/bs.pmbts.2015.07.017
- Calvert J.W., Condit M.E., Aragon J.P., Nicholson C.K., Moody B.F., Hood R.L. et al. Exercise protects against myocardial ischemia-reperfusion injury via stimulation of beta(3)-adrenergic receptors and increased nitric oxide signaling: role of nitrite and nitrosothiols. Circulation Research. 2011; (108): 1448-58. https://doi.org/10.1161/CIRCRESAHA.111.241117
- Verhaar M.C., Westerweel P.E., van Zonneveld A.J., Rabelink T.J. Free radical production by dysfunctional eNOS. Heart. 2004; (90): 494-5. https://doi.org/10.1136/hrt.2003.029405
- Prior B.M., Yang H.T., Terjung R.L. What makes vessels grow with exercise training? Journal of Applied Physiology. 2004; (97): 1119-28. https://doi.org/10.1152/jap-plphysiol.00035.2004
- Hoier B., Hellsten Y. Exercise-induced capillary growth in human skeletal muscle and the dynamics of VEGF. Microcirculation. 2014; (21): 301-14. https://doi.org/10.1111/micc.12117
- Cai D., Yuan M., Frantz D.F., Melendez P.A., Hansen L., Lee J. et al. Local and systemic insulin resistance resulting from hepatic activation of IKK-beta and NF-kappaB. Nature Medicine. 2005; (11): 183-90. https://doi.org/10.1038/nm1166
- Rogero M.M., Calder P.C. Obesity, inflammation, toll-like receptor 4 and fatty acids. Nutrients. 2018; (10): e432 p. https://doi.org/10.3390/nu10040432
- Liu H.W., Chang S.J. Moderate exercise suppresses NF-kappaB signaling and activates the SIRT1-AMPK-PGC1alpha axis to attenuate muscle loss in diabetic db/db Mice. Frontiers in Physiology. 2018; (9): 636 p. https://doi.org/10.3389/fphys.2018.00636
- Lancaster G.I., Febbraio M.A. The immunomodulating role of exercise in metabolic disease. Trends in Immunology. 2014; (35): 262-9. https://doi.org/10.1016/j.it.2014.02.008
- Creber R.M.M., Lee C.S., Margulies K., Ellis S., Riegel B. Exercise in heart failure and patterns of inflammation and myocardial stress over time. Circulation. 2014; (130): A11902 p.
- Hoffmann C., Weigert C. Skeletal muscle as an endocrine organ: the role of myokines in exercise adaptathions. Cold Spring Harbor Perspectives in Medicine. 2017; (7): a029793. https://doi.org/10.1101/cshperspect.a029793
- Schnyder S., Handschin C. Skeletal muscle as an endocrine organ: PGC-1alpha, myokines and exercise. Bone. 2015; (80): 115-25. https://doi.org/10.1016/j.bone.2015.02.008
- Mathur N., Pedersen B.K. Exercise as a mean to control low-grade systemic inflammation. Mediators of Inflammation. 2008; (2008): 109502 p. https://doi.org/10.1155/2008/1
- Ellingsgaard H., Hauselmann I., Schuler B., Habib A.M., Baggio L.L., Meier D.T. et al. Interleukin-6 enhances insulin secretion by increasing glucagon-like peptide-1 secretion from L cells and alpha cells. Nature Medicine. 2011; (17): 1481-9. https://doi.org/10.1038/nm.2513
- Keller C., Hellsten Y., Steensberg A., Pedersen B.K. Differential regulation of IL-6 and TNF-alpha via calcineurin in human skeletal muscle cells. Cytokine. 2006; (36): 141-7. https://doi.org/10.1016/j.cyto.2006.10.014
- Seldin M.M., Peterson J.M., Byerly M.S., Wei Z., Wong G.W. Myonectin (CTRP15), a novel myokine that links skeletal muscle to systemic lipid homeostasis. The Journal of Biological Chemistry. 2012; (287): 11968-80. https://doi.org/10.1016/j.cyto.2006.10.01410.1074/jbc.M111.336834
- Oshima Y., Ouchi N., Sato K., Izumiya Y., Pimentel D.R., Walsh K. Follistatin-like 1 is an Akt-regulated cardioprotective factor that is secreted by the heart. Circulation. 2008; (117): 3099-108. https://doi.org/10.1161/CIRCULATIONAHA.108.767673
- Xi Y., Gong D.W., Tian Z.J. FSTL1 as a Potential mediator of exercise-induced cardioprotection in post-myocardial infarction rats. Scientific Reports. 2016; (6): 32424 p. https://doi.org/10.1038/srep32424
- Kuang X.L., Zhao X.M., Xu H.F., Shi Y.Y., Deng J.B., Sun G.T. Spatio-temporal expression of a novel neuron-derived neurotrophic factor (NDNF) in mouse brains during development. BMC Neuroscience. 2010; (11): 137 p. https://doi.org/10.1186/1471-2202-11-137
- Matthews V.B., Astrom M.B., Chan M.H.S., Bruce C.R., Krabbe K.S., Prelovsek O. et al. Brain-derived neurotrophic factor is produced by skeletal muscle cells in response to contraction and enhances fat oxidation via activation of AMP-activated protein kinase. Diabetologia. 2009; (52): 1409-18. https://doi.org/10.1007/s00125-009-1364-1
- Anderson L., Thompson D.R., Oldridge N., Zwisler A.D., Rees K., Martin N. et al. Exercise-based cardiac rehabilitation for coronary heart disease. Cochrane Database of Systematic Reviews. 2016; (1): CD001800. https://doi.org/10.1002/14651858.CD001800.pub3

The content is available under the Creative Commons Attribution 4.0 License.
©2025 Vladimir E. Vladimirsky, Evgeniy V. Vladimirsky, Anatoliy D. Fesyun, Andrey P. Rachin, Olga D. Lebedeva, Maxim Yu. Yakovlev
This is an open article under the CC BY 4.0 license. Published by the National Medical Research Center for Rehabilitation and Balneology.