MMSL 2021, 90(4):198-207 | DOI: 10.31482/mmsl.2021.020

CAN BAICALEIN BECOME A NEW DRUG FOR COVID-19?Review article

Jiří Patočka ORCID...1,2*, Zdeňka Navrátilová ORCID...3, Kamil Kuča ORCID...2,4, Patrik Olekąák ORCID...4, Uday Kumar Killi ORCID...5
1 Institute of Radiology, Toxicology and Civil Protection, Faculty of Health and Social Studies, University of South Bohemia in Ceske Budejovice, Ceske Budejovice, Czech Republic
2 Biomedical Research Centre, University Hospital, Hradec Kralove, Czech Republic
3 Department of Botany, Faculty of Science, Charles University in Prague, Czech Republic
4 Department of Chemistry, Faculty of Science, University of Hradec Králové, Hradec Králové, Czech Republic
5 Institute of Plant Molecular Biology, Biology Centre of the Academy of Sciences, Ceské Budejovice, Czech Republic

The ongoing coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has become a global health crisis. Flavon baicalein, a major bioactive molecule of Scutellaria baicalensis, inhibits the replication of SARS-CoV-2 which causes severe acute respiratory syndrome in humans. Animal experiments show that baicalein has the character of a broad-spectrum coronavirus drug. It is non-toxic and can inhibit SARS-CoV-2-induced damage. Baicalein may therefore be a promising therapeutic drug for the treatment of COVID-19.

Keywords: Baicalein and baicalin; Scutellaria baicalensis; antiviral activity; SARS-CoV-2; COVID-19

Received: February 26, 2021; Revised: May 18, 2021; Accepted: May 18, 2021; Prepublished online: May 27, 2021; Published: December 3, 2021  Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
Patočka, J., Navrátilová, Z., Kuča, K., Olekąák, P., & Kumar Killi, U. (2021). CAN BAICALEIN BECOME A NEW DRUG FOR COVID-19? MMSL90(4), 198-207. doi: 10.31482/mmsl.2021.020
Download citation

References

  1. Wu F, Zhao S, Yu B, et al. A New Coronavirus Associated with Human Respiratory Disease in China. Nature 2020;579:265-269 doi:10.1038/s41586-020-2008-3. Go to original source... Go to PubMed...
  2. Siddique F, Abbas RZ, Mansoor MK, et al. An Insight Into COVID-19: A 21st Century Disaster and Its Relation to Immunocompetence and Food Antioxidants. Front Vet Sci. 2020;7:586637 doi:10.3389/fvets.2020.586637. Go to original source... Go to PubMed...
  3. Shang W, Yang Y, Rao Y, et al. The Outbreak of SARS-CoV-2 Pneumonia Calls for Viral Vaccines. npj Vaccines 2020;5:1-3 doi:10.1038/s41541-020-0170-0. Go to original source... Go to PubMed...
  4. Zhao J, Zhao S, et al. COVID-19: Coronavirus Vaccine Development Updates. Front Immunol. 2020;11:602256, doi:10.3389/fimmu.2020.602256. Go to original source... Go to PubMed...
  5. Goswami RP, Ganguli B, Chatterjee M. Endemic Infections, Vaccinations, and Variability of SARS-COV2 Worldwide Epidemiology: A Cross-Sectional Study. J Med Virol. 2021;93:3105-3112 doi:10.1002/jmv.26875. Go to original source... Go to PubMed...
  6. Cai L, Guo X, Cao Y, et al. Determining Available Strategies for Prevention and Therapy: Exploring COVID‑19 from the Perspective of ACE2 (Review). Int J Mol Med. 2021;47:1, doi:10.3892/ijmm.2021.4876. Go to original source... Go to PubMed...
  7. Peng Y, Tao H, Satyanarayanan SK, et al. A Comprehensive Summary of the Knowledge on COVID-19 Treatment. Aging Dis. 2021;12:155-191, doi:10.14336/AD.2020.1124. Go to original source... Go to PubMed...
  8. Prasansuklab A, Theerasri A, Rangsinth P, et al. Anti-COVID-19 Drug Candidates: A Review on Potential Biological Activities of Natural Products in the Management of New Coronavirus Infection. Journal of Traditional and Complementary Medicine. 2021;11:144-157, doi:10.1016/j.jtcme.2020.12.001. Go to original source... Go to PubMed...
  9. Mo F, Ma J, Zhang P, et al. Solubility and Thermodynamic Properties of Baicalein in Water and Ethanol Mixtures from 283.15 to 328.15 K. Chemical Engineering Communications. 2021;208:183-196, doi:10.1080/00986445.2019.1700116. Go to original source...
  10. Cheung VWN, Xue B, Hernandez-Valladares M, et al. Identification of Polyketide Inhibitors Targeting 3-Dehydroquinate Dehydratase in the Shikimate Pathway of Enterococcus Faecalis. PLOS ONE. 2014;9:e103598, doi:10.1371/journal.pone.0103598. Go to original source... Go to PubMed...
  11. Jelić D, Lower-Nedza AD, Brantner AH, et al. Baicalin and Baicalein Inhibit Src Tyrosine Kinase and Production of IL-6. Journal of Chemistry. 2016, 2016, e2510621, doi:10.1155/2016/2510621. Go to original source...
  12. Shen J, Li P, Liu S, et al. Traditional Uses, Ten-Years Research Progress on Phytochemistry and Pharmacology, and Clinical Studies of the Genus Scutellaria. Journal of Ethnopharmacology. 2021;265:113198, doi:10.1016/j.jep.2020.113198. Go to original source... Go to PubMed...
  13. Navratilova Z, Patocka J. [Baikal Skullcap (Scutellaria Baicalensis Georgi) and Its Effects on the Nervous System] ©iąák Bajkalský (Scutellaria Baicalensis Georgi) a Jeho Účinky Na Nervový Systém. Psychiatrie. 2016;20:127-131.
  14. Chen ME, Su CH, Yang JS, et al. Baicalin, Baicalein, and Lactobacillus Rhamnosus JB3 Alleviated Helicobacter Pylori Infections in Vitro and in Vivo. J Food Sci. 2018;83:3118-3125, doi:10.1111/1750-3841.14372. Go to original source... Go to PubMed...
  15. Fang P, Yu M, Shi M, et al. Baicalin and Its Aglycone: A Novel Approach for Treatment of Metabolic Disorders. Pharmacol Rep. 2020;72:13-23, doi:10.1007/s43440-019-00024-x. Go to original source... Go to PubMed...
  16. Liao H, Ye J, Gao L, et al. The Main Bioactive Compounds of Scutellaria Baicalensis Georgi. for Alleviation of Inflammatory Cytokines: A Comprehensive Review. Biomed Pharmacother. 2021;133:110917, doi:10.1016/j.biopha.2020.110917. Go to original source... Go to PubMed...
  17. Song JW, Long JY, Xie L, et al. Applications, Phytochemistry, Pharmacological Effects, Pharmacokinetics, Toxicity of Scutellaria Baicalensis Georgi. and Its Probably Potential Therapeutic Effects on COVID-19: A Review. Chinese Medicine. 2020;15:102, doi:10.1186/s13020-020-00384-0. Go to original source... Go to PubMed...
  18. Zhao T, Tang H, Xie L, et al. Scutellaria Baicalensis Georgi. (Lamiaceae): A Review of Its Traditional Uses, Botany, Phytochemistry, Pharmacology and Toxicology. Journal of Pharmacy and Pharmacology. 2019;71:1353-1369, doi:https://doi.org/10.1111/jphp.13129. Go to original source... Go to PubMed...
  19. Gao Y, Fei Q, Qi R, et al. Shuang-Huang-Lian Attenuates Airway Hyperresponsiveness and Inflammation in a Shrimp Protein-Induced Murine Asthma Model. Evidence-Based Complementary and Alternative Medicine. 2019, 2019, e4827342, doi:10.1155/2019/4827342. Go to original source... Go to PubMed...
  20. Zhang H, Chen Q, Zhou W, et al. Chinese Medicine Injection Shuanghuanglian for Treatment of Acute Upper Respiratory Tract Infection: A Systematic Review of Randomized Controlled Trials. Evid Based Complement Alternat Med 2013, 2013, 987326, doi:10.1155/2013/987326. Go to original source... Go to PubMed...
  21. Shimizu I. Sho-Saiko-to: Japanese Herbal Medicine for Protection against Hepatic Fibrosis and Carcinoma. J Gastroenterol Hepatol, 2000;15(Suppl):D84-90, doi:10.1046/j.1440-1746.2000.02138.x. Go to original source... Go to PubMed...
  22. Lee JK, Kim JH, Shin HK. Therapeutic Effects of the Oriental Herbal Medicine Sho-Saiko-to on Liver Cirrhosis and Carcinoma. Hepatology Research. 2011;41:825-837, doi:https://doi.org/10.1111/j.1872-034X.2011.00829.x. Go to original source... Go to PubMed...
  23. Sakamoto S, Mori T, Sawaki K, et al. Effects of Kampo (Japanese Herbal) Medicine "Sho-Saiko-To" on DNA-Synthesizing Enzyme Activity in 1,2-Dimethylhydrazine-Induced Colonic Carcinomas in Rats. Planta Med. 1993;59:152-154, doi:10.1055/s-2006-959632. Go to original source... Go to PubMed...
  24. Xu HR, Li YL, Wang CX, et al. [Effect of Scutellariae Radix on expression of inflammatory cytokine protein and gene in lung of mice with viral pneumonia caused by influenza virus FM1 infection]. Zhongguo Zhong Yao Za Zhi. 2019;44:5166-5173, doi:10.19540/j.cnki.cjcmm.201910.09.401. Go to original source... Go to PubMed...
  25. Song J, Zhang L, Xu Y, et al. The Comprehensive Study on the Therapeutic Effects of Baicalein for the Treatment of COVID-19 in Vivo and in Vitro. Biochemical Pharmacology. 2021;183:114302, doi:10.1016/j.bcp.2020.114302. Go to original source... Go to PubMed...
  26. de Carvalho RSM, Duarte FS, de Lima TCM. Involvement of GABAergic Non-Benzodiazepine Sites in the Anxiolytic-like and Sedative Effects of the Flavonoid Baicalein in Mice. Behavioural Brain Research. 2011;221:75-82, doi:10.1016/j.bbr.2011.02.038. Go to original source... Go to PubMed...
  27. Liu H, Dong Y, Gao Y, et al. The Fascinating Effects of Baicalein on Cancer: A Review. International Journal of Molecular Sciences. 2016;17:1681, doi:10.3390/ijms17101681. Go to original source... Go to PubMed...
  28. Srinivas NR. Baicalin, an Emerging Multi-Therapeutic Agent: Pharmacodynamics, Pharmacokinetics, and Considerations from Drug Development Perspectives. Xenobiotica. 2010;40:357-367, doi:10.3109/00498251003663724. Go to original source... Go to PubMed...
  29. Taiming L, Xuehua J. Investigation of the Absorption Mechanisms of Baicalin and Baicalein in Rats. J Pharm Sci. 2006;95:1326-1333, doi:10.1002/jps.20593. Go to original source... Go to PubMed...
  30. Fu Z, Di Y, Gao L, et al. The Drug Metabolism and Pharmacokinetics Investigation about Baicalin Effect and Baicalein on Mice U14 Cervical Cancer. Journal of Spectroscopy. 2015, 2015, e632062, doi:10.1155/2015/632062. Go to original source...
  31. Lai MY, Hsiu SL, Chen CC, et al. Urinary Pharmacokinetics of Baicalein, Wogonin and Their Glycosides after Oral Administration of Scutellariae Radix in Humans. Biol Pharm Bull. 2003;26:79-83, doi:10.1248/bpb.26.79. Go to original source... Go to PubMed...
  32. Liu L, Deng YX, Liang Y, et al. Increased Oral AUC of Baicalin in Streptozotocin-Induced Diabetic Rats Due to the Increased Activity of Intestinal Beta-Glucuronidase. Planta Med. 2010;76:70-75, doi:10.1055/s-0029-1185946. Go to original source... Go to PubMed...
  33. Akao T, Sakashita Y, Hanada M, et al. Enteric Excretion of Baicalein, a Flavone of Scutellariae Radix, via Glucuronidation in Rat: Involvement of Multidrug Resistance-Associated Protein 2. Pharm Res. 2004;21:2120-2126, doi:10.1023/b:pham.0000048205.02478.b5. Go to original source... Go to PubMed...
  34. Li Y, Zhao J, Hölscher C. Therapeutic Potential of Baicalein in Alzheimer's Disease and Parkinson's Disease. CNS Drugs. 2017;31:639-652, doi:10.1007/s40263-017-0451-y. Go to original source... Go to PubMed...
  35. Li M, Shi A, Pang H, et al. Safety, Tolerability, and Pharmacokinetics of a Single Ascending Dose of Baicalein Chewable Tablets in Healthy Subjects. J Ethnopharmacol. 2014;156:210-215, doi:10.1016/j.jep.2014.08.031. Go to original source... Go to PubMed...
  36. Astuti I, Ysrafil Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2): An Overview of Viral Structure and Host Response. Diabetes Metab Syndr. 2020;14:407-412, doi:10.1016/j.dsx.2020.04.020. Go to original source... Go to PubMed...
  37. Song P, Li W, Xie J, et al. Cytokine Storm Induced by SARS-CoV-2. Clin Chim Acta. 2020;509:280-287, doi:10.1016/j.cca.2020.06.017. Go to original source... Go to PubMed...
  38. Upadhyay J, Tiwari N, Ansari MN. Role of Inflammatory Markers in Corona Virus Disease (COVID-19) Patients: A Review. Exp Biol Med (Maywood). 2020;245:1368-1375, doi:10.1177/1535370220939477. Go to original source... Go to PubMed...
  39. Ji P, Zhu J, Zhong Z, et al. Association of Elevated Inflammatory Markers and Severe COVID-19. Medicine (Baltimore). 2020;99, doi:10.1097/MD.0000000000023315. Go to original source... Go to PubMed...
  40. Sowndhararajan K, Deepa P, Kim M, et al. Baicalein as a Potent Neuroprotective Agent: A Review. Biomedicine & Pharmacotherapy. 2017;95:1021-1032, doi:10.1016/j.biopha.2017.08.135. Go to original source... Go to PubMed...
  41. Qu C, Zhang S, Wang W, et al. Mitochondrial Electron Transport Chain Complex III Sustains Hepatitis E Virus Replication and Represents an Antiviral Target. FASEB J 2019;33:1008-1019, doi:10.1096/fj.201800620R. Go to original source... Go to PubMed...
  42. Singh KK, Chaubey G, Chen JY, et al. Decoding SARS-CoV-2 Hijacking of Host Mitochondria in COVID-19 Pathogenesis. Am J Physiol Cell Physiol. 2020;319:C258-C267, doi:10.1152/ajpcell.00224.2020. Go to original source... Go to PubMed...
  43. Huang S, Liu Y, Zhang Y, et al. Baicalein Inhibits SARS-CoV-2/VSV Replication with Interfering Mitochondrial Oxidative Phosphorylation in a MPTP Dependent Manner. Signal Transduction and Targeted Therapy. 200;5:1-3, doi:10.1038/s41392-020-00353-x. Go to original source... Go to PubMed...
  44. Boopathi S, Poma AB, Kolandaivel P. Novel 2019 Coronavirus Structure, Mechanism of Action, Antiviral Drug Promises and Rule out against Its Treatment. J Biomol Struct Dyn. 2020;1-10, doi:10.1080/07391102.2020.1758788. Go to original source... Go to PubMed...
  45. Islam R, Parves R, Paul AS, et al. A Molecular Modeling Approach to Identify Effective Antiviral Phytochemicals against the Main Protease of SARS-CoV-2. J Biomol Struct Dyn 2020;1-12, doi:10.1080/07391102.2020.1761883. Go to original source... Go to PubMed...
  46. Liu X, Wang XJ. Potential Inhibitors against 2019-NCoV Coronavirus M Protease from Clinically Approved Medicines. J Genet Genomics. 2020;47:119-121, doi:10.1016/j.jgg.2020.02.001. Go to original source... Go to PubMed...
  47. Mirza MU, Froeyen M. Structural Elucidation of SARS-CoV-2 Vital Proteins: Computational Methods Reveal Potential Drug Candidates against Main Protease, Nsp12 Polymerase and Nsp13 Helicase. J Pharm Anal. 2020;10:320-328, doi:10.1016/j.jpha.2020.04.008. Go to original source... Go to PubMed...
  48. Bacha U, Barrila J, Velazquez-Campoy A, et al. Identification of Novel Inhibitors of the SARS Coronavirus Main Protease 3CLpro. Biochemistry. 2004;43:4906-4912, doi:10.1021/bi0361766. Go to original source... Go to PubMed...
  49. Chen F, Chan KH, Jiang Y, et al. In Vitro Susceptibility of 10 Clinical Isolates of SARS Coronavirus to Selected Antiviral Compounds. J Clin Virol. 2004;31:69-75, doi:10.1016/j.jcv.2004.03.003. Go to original source... Go to PubMed...
  50. Xu G, Dou J, Zhang L, et al. Inhibitory Effects of Baicalein on the Influenza Virus in Vivo Is Determined by Baicalin in the Serum. Biol Pharm Bull. 2010;33:238-243, doi:10.1248/bpb.33.238. Go to original source... Go to PubMed...
  51. Chen L, Dou J, Su Z, et al. Synergistic Activity of Baicalein with Ribavirin against Influenza A (H1N1) Virus Infections in Cell Culture and in Mice. Antiviral Res. 2011;91:314-320, doi:10.1016/j.antiviral.2011.07.008. Go to original source... Go to PubMed...
  52. Hour MJ, Huang SH, Chang CY, et al. Baicalein, Ethyl Acetate, and Chloroform Extracts of Scutellaria Baicalensis Inhibit the Neuraminidase Activity of Pandemic 2009 H1N1 and Seasonal Influenza A Viruses. Evid Based Complement Alternat Med. 2013;2013:750803, doi:10.1155/2013/750803. Go to original source... Go to PubMed...
  53. Su ZZ, Dou J, Xu ZP, et al. A Novel Inhibitory Mechanism of Baicalein on Influenza A/FM1/1/47 (H1N1) Virus: Interference with Mid-Late MRNA Synthesis in Cell Culture. Chinese Journal of Natural Medicines. 2012;10:415-420, doi:10.1016/S1875-5364(12)60081-8. Go to original source...
  54. Nayak MK, Agrawal AS, Bose S, et al. Antiviral Activity of Baicalin against Influenza Virus H1N1-Pdm09 Is Due to Modulation of NS1-Mediated Cellular Innate Immune Responses. J Antimicrob Chemother. 2014;69:1298-1310, doi:10.1093/jac/dkt534. Go to original source... Go to PubMed...
  55. Sithisarn P, Michaelis M, Schubert-Zsilavecz M, et al. Differential Antiviral and Anti-Inflammatory Mechanisms of the Flavonoids Biochanin A and Baicalein in H5N1 Influenza A Virus-Infected Cells. Antiviral Res. 2013;97:41-48, doi:10.1016/j.antiviral.2012.10.004. Go to original source... Go to PubMed...
  56. Oo A, Rausalu K, Merits A, et al. Deciphering the Potential of Baicalin as an Antiviral Agent for Chikungunya Virus Infection. Antiviral Res. 2018;150:101-111, doi:10.1016/j.antiviral.2017.12.012. Go to original source... Go to PubMed...
  57. Fesen MR, Pommier Y, Leteurtre F, et al. Inhibition of HIV-1 Integrase by Flavones, Caffeic Acid Phenethyl Ester (CAPE) and Related Compounds. Biochem Pharmacol. 1994;48:595-608, doi:10.1016/0006-2952(94)90291-7. Go to original source... Go to PubMed...
  58. Hu JZ, Bai L, Chen DG, et al. Computational Investigation of the Anti-HIV Activity of Chinese Medicinal Formula Three-Huang Powder. Interdiscip Sci. 2010;2:151-156, doi:10.1007/s12539-010-0074-1. Go to original source... Go to PubMed...
  59. Zandi K, Teoh BT, Sam SS, et al. Novel Antiviral Activity of Baicalein against Dengue Virus. BMC Complement Altern Med. 2012;12:214, doi:10.1186/1472-6882-12-214. Go to original source... Go to PubMed...
  60. Moghaddam E, Teoh BT, Sam SS, et al. Baicalin, a Metabolite of Baicalein with Antiviral Activity against Dengue Virus. Scientific Reports, 2014;4:5452, doi:10.1038/srep05452. Go to original source... Go to PubMed...
  61. Dou J, Chen L, Xu G, et al. Effects of Baicalein on Sendai Virus in Vivo Are Linked to Serum Baicalin and Its Inhibition of Hemagglutinin-Neuraminidase. Arch Virol. 2011;156:793-801, doi:10.1007/s00705-011-0917-z. Go to original source... Go to PubMed...
  62. Oo A, Teoh BT, Sam SS, et al. Baicalein and Baicalin as Zika Virus Inhibitors. Arch Virol. 2019;164:585-593, doi:10.1007/s00705-018-4083-4. Go to original source... Go to PubMed...
  63. Johari J, Kianmehr A, Mustafa MR, et al. Antiviral Activity of Baicalein and Quercetin against the Japanese Encephalitis Virus. Int J Mol Sci. 2012;13:16785-16795, doi:10.3390/ijms131216785. Go to original source... Go to PubMed...
  64. Zhi H, Jin X, Zhu H, et al. Exploring the Effective Materials of Flavonoids-Enriched Extract from Scutellaria Baicalensis Roots Based on the Metabolic Activation in Influenza A Virus Induced Acute Lung Injury. Journal of Pharmaceutical and Biomedical Analysis. 2020;177:112876, doi:10.1016/j.jpba.2019.112876. Go to original source... Go to PubMed...
  65. Keum YS, Lee JM, Yu MS, et al. Inhibition of SARS Coronavirus Helicase by Baicalein. Bulletin of the Korean Chemical Society. 2013;34:3187-3188, doi:10.5012/bkcs.2013.34.11.3187. Go to original source...
  66. Shi H, Ren K, Lv B, et al. Baicalin from Scutellaria Baicalensis Blocks Respiratory Syncytial Virus (RSV) Infection and Reduces Inflammatory Cell Infiltration and Lung Injury in Mice. Sci Rep. 2016;6:35851, doi:10.1038/srep35851. Go to original source... Go to PubMed...
  67. Jo S, Kim S, Kim DY, et al. Flavonoids with Inhibitory Activity against SARS-CoV-2 3CLpro. J Enzyme Inhib Med Chem. 2020;35(1):1539-1544, doi:10.1080/14756366.2020.1801672. Go to original source... Go to PubMed...
  68. Su H, Yao S, Zhao W, et al. Discovery of Baicalin and Baicalein as Novel, Natural Product Inhibitors of SARS-CoV-2 3CL Protease in Vitro. bioRxiv. 2020, 2020.04.13.038687, doi:10.1101/2020.04.13.038687. Go to original source...
  69. Huang YF, Bai C, He F, et al. Review on the Potential Action Mechanisms of Chinese Medicines in Treating Coronavirus Disease 2019 (COVID-19). Pharmacological Research. 2020;158:104939, doi:10.1016/j.phrs.2020.104939. Go to original source... Go to PubMed...
  70. Yan JJ, Du GH, Qin XM, et al. Baicalein Attenuates the Neuroinflammation in LPS-Activated BV-2 Microglial Cells through Suppression of pro-Inflammatory Cytokines, COX2/NF-ΚB Expressions and Regulation of Metabolic Abnormality. Int Immunopharmacol. 2020;79:106092, doi:10.1016/j.intimp.2019.106092. Go to original source... Go to PubMed...
  71. M P, Reddy GJ, Hema K, et al. Unravelling High-Affinity Binding Compounds towards Transmembrane Protease Serine 2 Enzyme in Treating SARS-CoV-2 Infection Using Molecular Modelling and Docking Studies. European Journal of Pharmacology. 2021;890:173688, doi:10.1016/j.ejphar.2020.173688. Go to original source... Go to PubMed...
  72. COVID-19 National Incident Room Surveillance Team COVID-19 Australia: Epidemiology Report 34: Reporting Period Ending 31 January 2021. Commun Dis Intell (2018) 2021, 45, doi:10.33321/cdi.2021.45.8. Go to original source... Go to PubMed...
  73. Gorges RJ, Konetzka RT. Factors Associated With Racial Differences in Deaths Among Nursing Home Residents With COVID-19 Infection in the US. JAMA Netw Open. 2021;4:e2037431, doi:10.1001/jamanetworkopen.2020.37431. Go to original source... Go to PubMed...
  74. Ravenhall S, Levy NA, Simpson K, et al. New York State Local Health Department Preparedness for and Response to the COVID-19 Pandemic: An In-Progress Review. J Public Health Manag Pract. 2021;27:240-245, doi:10.1097/PHH.0000000000001340. Go to original source... Go to PubMed...
  75. Trevisan C, Del Signore S, Fumagalli S, et al. Assessing the Impact of COVID-19 on the Health of Geriatric Patients: The European GeroCovid Observational Study. Eur J Intern Med. 2021;87:29-35, doi:10.1016/j.ejim.2021.01.017. Go to original source... Go to PubMed...
  76. Yu H, Yang J, Marziano V, et al. Can a COVID-19 Vaccination Program Guarantee the Return to a Pre-Pandemic Lifestyle? Res Sq 2021, doi:10.21203/rs.3.rs-200069/v1. Go to original source... Go to PubMed...
  77. Feldman AG, O'Leary ST, Isakov LD. The Risk of Resurgence in Vaccine Preventable Infections Due to COVID-Related Gaps in Immunization. Clin Infect Dis 2021, doi:10.1093/cid/ciab127. Go to original source... Go to PubMed...
  78. Klimek L, Eckrich J, Hagemann J, et al. Allergische Reaktionen auf COVID-19-Impfstoffe - Evidenz und praxisorientiertes Vorgehen. Internist. 2021;62:326-332, doi:10.1007/s00108-021-00959-5. Go to original source... Go to PubMed...
  79. Martin S, Arawi T. Ensure Palestinians Have Access to COVID-19 Vaccines. Lancet. 2021;397:791-792, doi:10.1016/S0140-6736(21)00190-2. Go to original source... Go to PubMed...
  80. Xu X, Chen P, Wang J, et al. Evolution of the Novel Coronavirus from the Ongoing Wuhan Outbreak and Modeling of Its Spike Protein for Risk of Human Transmission. Sci China Life Sci. 2020;63:457-460, doi:10.1007/s11427-020-1637-5. Go to original source... Go to PubMed...
  81. Song W, Gui M, Wang X, et al. Cryo-EM Structure of the SARS Coronavirus Spike Glycoprotein in Complex with Its Host Cell Receptor ACE2. PLoS Pathog. 2018;14:e1007236, doi:10.1371/journal.ppat.1007236. Go to original source... Go to PubMed...
  82. Liu H, Ye F, Sun Q, et al. Scutellaria Baicalensis Extract and Baicalein Inhibit Replication of SARS-CoV-2 and Its 3C-like Protease in Vitro. J Enzyme Inhib Med Chem. 2021;36:497-503, doi:10.1080/14756366.2021.1873977. Go to original source... Go to PubMed...