Generic placeholder image

Mini-Reviews in Organic Chemistry

Editor-in-Chief

ISSN (Print): 1570-193X
ISSN (Online): 1875-6298

Mini-Review Article

Synthesis of Four Heterocyclic Drug Molecules Repurposed for COVID-19

Author(s): Geetanjali, Richa Srivastava and Ram Singh*

Volume 19, Issue 2, 2022

Published on: 25 March, 2021

Page: [180 - 187] Pages: 8

DOI: 10.2174/1570193X18666210325121225

Price: $65

Abstract

The research on the disease COVID-19 is an ongoing process since its outbreak as a pandemic. The repurposing of existing approved drugs has received priority attention due to some promising results obtained regarding COVID-19. In this article, some of the important chemical methodologies adopted for the synthesis of umifenovir, (s)-cidofovir, ribavirin, and ruxolitinib have been discussed. The repurposing of these approved drugs has received priority attention due to some promising results obtained regarding COVID-19 and some drugs are under more therapeutic trials. This manuscript has highlighted the synthetic strategies of four heterocyclic-based approved drugs, umifenovir, (s)-cidofovir, ribavirin, and ruxolitinib, repurposed for the treatment of COVID-19.

Keywords: COVID-19, repurposed drugs, synthesis, umifenovir, (s)-cidofovir, ribavirin, ruxolitinib.

Graphical Abstract
[1]
Savi, C.D.; Hughes, D.L.; Kvaerno, L. Quest for a COVID-19 cure by repurposing small-molecule drugs: Mechanism of action, clinical development, synthesis at scale, and outlook for supply. Org. Process Res. Dev., 2020, 24, 940-976.
[http://dx.doi.org/10.1021/acs.oprd.0c00233]
[2]
WHO coronavirus (COVID-19) dahboard. Available from: https://covid19.who.int/
[3]
Zhou, Y.; Hou, Y.; Shen, J.; Huang, Y.; Martin, W.; Cheng, F. Network-based drug repurposing for novel coronavirus 2019-nCoV/SARS-CoV-2. Cell Discov., 2020, 6, 14.
[http://dx.doi.org/10.1038/s41421-020-0153-3] [PMID: 32194980]
[4]
Bujuq, N.A. Methods of synthesis of remdesivir, favipiravir, hydroxychloroquine, and chloroquine: Four small molecules repurposed for clinical trials during the COVID-19 pandemic. Synthesis, 2020.
[5]
Xu, J.; Shi, P-Y.; Li, H.; Zhou, J. Broad spectrum antiviral agent niclosamide and its therapeutic potential. ACS Infect. Dis., 2020, 6(5), 909-915.
[http://dx.doi.org/10.1021/acsinfecdis.0c00052] [PMID: 32125140]
[6]
Pushpakom, S.; Iorio, F.; Eyers, P.A.; Escott, K.J.; Hopper, S.; Wells, A.; Doig, A.; Guilliams, T.; Latimer, J.; McNamee, C.; Norris, A.; Sanseau, P.; Cavalla, D.; Pirmohamed, M. Drug repurposing: Progress, challenges and recommendations. Nat. Rev. Drug Discov., 2019, 18(1), 41-58.
[http://dx.doi.org/10.1038/nrd.2018.168] [PMID: 30310233]
[7]
Li, G.; De Clercq, E. Therapeutic options for the 2019 novel coronavirus (2019-nCoV). Nat. Rev. Drug Discov., 2020, 19(3), 149-150.
[http://dx.doi.org/10.1038/d41573-020-00016-0] [PMID: 32127666]
[8]
Hill, A.; Wang, J.; Levi, J.; Heath, K.; Fortunak, J. Minimum costs to manufacture new treatments for COVID-19. J. Virus Erad., 2020, 6(2), 61-69.
[http://dx.doi.org/10.1016/S2055-6640(20)30018-2] [PMID: 32405423]
[9]
Khan, Z.; Karataş, Y.; Ceylan, A.F.; Rahman, H. COVID-19 and therapeutic drugs repurposing in hand: The need for collaborative efforts. Pharm. Hosp. Clin., 2021, 56, 3-11.
[http://dx.doi.org/10.1016/j.phclin.2020.06.003]
[10]
Pécheur, E-I.; Borisevich, V.; Halfmann, P.; Morrey, J.D.; Smee, D.F.; Prichard, M.; Mire, C.E.; Kawaoka, Y.; Geisbert, T.W.; Polyak, S.J. The synthetic antiviral drug arbidol inhibits globally prevalent pathogenic viruses. J. Virol., 2016, 90(6), 3086-3092.
[http://dx.doi.org/10.1128/JVI.02077-15] [PMID: 26739045]
[11]
Blaising, J.; Polyak, S.J.; Pécheur, E-I. Arbidol as a broad-spectrum antiviral: An update. Antiviral Res., 2014, 107, 84-94.
[http://dx.doi.org/10.1016/j.antiviral.2014.04.006] [PMID: 24769245]
[12]
Boriskin, Y.S.; Leneva, I.A.; Pécheur, E.I.; Polyak, S.J. Arbidol: A broad-spectrum antiviral compound that blocks viral fusion. Curr. Med. Chem., 2008, 15(10), 997-1005.
[http://dx.doi.org/10.2174/092986708784049658] [PMID: 18393857]
[13]
Vankadari, N. Arbidol: A potential antiviral drug for the treatment of SARS-CoV-2 by blocking trimerization of the spike glycoprotein. Int. J. Antimicrob. Agents, 2020, 56(2)105998
[http://dx.doi.org/10.1016/j.ijantimicag.2020.105998] [PMID: 32360231]
[15]
Zhang, J.; Zhou, L.; Yang, Y.; Peng, W.; Wang, W.; Chen, X. Therapeutic and triage strategies for 2019 novel coronavirus disease in fever clinics. Lancet Respir. Med., 2020, 8(3), e11-e12.
[http://dx.doi.org/10.1016/S2213-2600(20)30071-0] [PMID: 32061335]
[16]
Wang, X.; Cao, R.; Zhang, H.; Liu, J.; Xu, M.; Hu, H.; Li, Y.; Zhao, L.; Li, W.; Sun, X.; Yang, X.; Shi, Z.; Deng, F.; Hu, Z.; Zhong, W.; Wang, M. The anti-influenza virus drug, arbidol is an efficient inhibitor of SARS-CoV-2 in vitro. Cell Discov., 2020, 6, 28.
[http://dx.doi.org/10.1038/s41421-020-0169-8] [PMID: 32373347]
[17]
Wright, Z.V.F.; Wu, N.C.; Kadam, R.U.; Wilson, I.A.; Wolan, D.W. Structure-based optimization and synthesis of antiviral drug Arbidol analogues with significantly improved affinity to influenza hemagglutinin. Bioorg. Med. Chem. Lett., 2017, 27(16), 3744-3748.
[http://dx.doi.org/10.1016/j.bmcl.2017.06.074] [PMID: 28689973]
[18]
Ágoston, K.; Streicher, H.; Fügedi, P. Orthogonal protecting group strategies in carbohydrate chemistry. Tetrahedron Asymmetry, 2016, 27, 707-728.
[http://dx.doi.org/10.1016/j.tetasy.2016.06.010]
[19]
CDRI gets approval for phase III trial of umifenovir to treat COVID-19. Available from: https://patents.google.com/patent/WO2018112128A1/en
[20]
[21]
Preparation method of arbidol hydrochloride. Available from: https://patents.google.com/patent/CN102351778A/en
[22]
Hodgson, H.H.; Moore, F.H. XCV—The nitration of m-iodophenol. J. Chem. Soc., 1927, 630-635.
[http://dx.doi.org/10.1039/JR9270000630]
[23]
Cundy, K.C. Clinical pharmacokinetics of the antiviral nucleotide analogues cidofovir and adefovir. Clin. Pharmacokinet., 1999, 36(2), 127-143.
[http://dx.doi.org/10.2165/00003088-199936020-00004] [PMID: 10092959]
[24]
Lea, A.P.; Bryson, H.M. Cidofovir. Drugs, 1996, 52(2), 225-230.
[http://dx.doi.org/10.2165/00003495-199652020-00006] [PMID: 8841740]
[25]
Jockusch, S.; Tao, C.; Li, X.; Anderson, T.K.; Chien, M.; Kumar, S.; Russo, J.J.; Kirchdoerfer, R.N.; Ju, J. A library of nucleotide analogues terminate RNA synthesis catalyzed by polymerases of coronaviruses that cause SARS and COVID-19. Antiviral Res., 2020.180104857
[http://dx.doi.org/10.1016/j.antiviral.2020.104857] [PMID: 32562705]
[26]
Bronson, J.J.; Ferrara, L.M.; Howell, H.G.; Brodfuehrer, P.R.; Martin, J.C. A new synthesis of the potent and selective anti-herpesvirus agent (S)-1-[3-hydroxy-2-(phosphonylmethoxy)-propyl]cytosine. Nucleosides Nucleotides, 1990, 9, 745-769.
[http://dx.doi.org/10.1080/15257779008043142]
[27]
Xie, M-S.; Niu, H-Y.; Qu, G-R.; Guo, H-M. The development for the synthesis of chiral acyclic nucleosides and their phosphonates. Tetrahedron Lett., 2014, 55, 7156-7166.
[http://dx.doi.org/10.1016/j.tetlet.2014.11.060]
[28]
Brodfuehrer, P.R.; Howell, H.G.; Sapino, C.; Vemishetti, P. A practical synthesis of (S)-HPMPCl. Tetrahedron Lett., 1994, 35, 3243-3246.
[http://dx.doi.org/10.1016/S0040-4039(00)76875-4]
[29]
Baumgartner, H.; Marschner, C.; Pucher, R.; Griengl, H. General synthesis of carbanucleosides via regiospecific epoxide opening by the aglycone. Tetrahedron Lett., 1991, 32, 611-614.
[http://dx.doi.org/10.1016/S0040-4039(00)74840-4]
[30]
Webb, R.R., II; Wos, J.A.; Bronson, J.J.; Martin, J.C. Synthesis of (S)-N1-(3-hydroxy-2-phosphonylmethoxy)propylcytosine, (S)-HPMPC. Tetrahedron Lett., 1988, 29, 5475-5478.
[http://dx.doi.org/10.1016/S0040-4039(00)80790-X]
[31]
McGee, D.P.C.; Martin, J.C.; Verheyden, J.P.H. Synthesis of the 7‐deaza and 5‐aza‐7‐deaza purine analogs of the antiherpes agent 9‐[(1,3‐dihydroxy‐2‐propoxy)methyl]guanine (DHPG). J. Het. Chem., 1985, 22, 1137-1140.
[http://dx.doi.org/10.1002/jhet.5570220444]
[32]
Qin, T.; Li, J-P.; Xie, M-S.; Qu, G-R.; Guo, H-M. Synthesis of chiral acyclic nucleosides by sharpless asymmetric dihydroxylation: access to cidofovir and buciclovir. J. Org. Chem., 2018, 83(24), 15512-15523.
[http://dx.doi.org/10.1021/acs.joc.8b02442] [PMID: 30468383]
[33]
Hentges, S.G.; Sharpless, K.B. Asymmetric induction in the reaction of osmium tetroxide with olefins. J. Am. Chem. Soc., 1980, 102, 4263-4265.
[http://dx.doi.org/10.1021/ja00532a050]
[34]
Kolb, H.C.; VanNieuwenhze, M.S.; Sharpless, K.B. Catalytic asymmetric dihydroxylation. Chem. Rev., 1994, 94, 2483-2547.
[http://dx.doi.org/10.1021/cr00032a009]
[35]
Nakada, M.; Urano, Y.; Kobayashi, S.; Ohno, M. High diastereofacial selectivity in nucleophilic additions to chiral acylsilanes. J. Am. Chem. Soc., 1988, 110, 4826-4827.
[http://dx.doi.org/10.1021/ja00222a050]
[36]
Honda, M.; Nakamura, T.; Sumigawa, T.; Kunimoto, K-K.; Segi, M. Stereoselective snthesis of 1,2,3-triol derivatives from α,β-unsaturated acylsilanes. Heteroatom Chem., 2014, 25, 565-577.
[http://dx.doi.org/10.1002/hc.21176]
[37]
Konstantinova, I.D.; Leonteva, N.A.; Galegov, G.A.; Ryzhova, O.I.; Chuvikovskii, D.V.; Antonov, K.V.; Esipov, R.S.; Taran, S.A.; Verevkina, K.N.; Feofanov, S.A.; Miroshnikov, A.I. Ribavirin: Biotechnological synthesis and effect on the reproduction of vaccinia virus. Russ. J. Bioorganic Chem., 2004, 30, 553-560.
[http://dx.doi.org/10.1023/B:RUBI.0000049772.18675.34] [PMID: 15586813]
[38]
Thomas, E.; Ghany, M.G.; Liang, T.J. The application and mechanism of action of ribavirin in therapy of hepatitis C. Antivir. Chem. Chemother., 2012, 23(1), 1-12.
[http://dx.doi.org/10.3851/IMP2125] [PMID: 22592135]
[39]
Chen, N.; Zhou, M.; Dong, X.; Qu, J.; Gong, F.; Han, Y.; Qiu, Y.; Wang, J.; Liu, Y.; Wei, Y.; Xia, J.; Yu, T.; Zhang, X.; Zhang, L. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. Lancet, 2020, 395(10223), 507-513.
[http://dx.doi.org/10.1016/S0140-6736(20)30211-7] [PMID: 32007143]
[40]
Maag, D.; Castro, C.; Hong, Z.; Cameron, C.E. Hepatitis C virus RNA-dependent RNA polymerase (NS5B) as a mediator of the antiviral activity of ribavirin. J. Biol. Chem., 2001, 276(49), 46094-46098.
[http://dx.doi.org/10.1074/jbc.C100349200] [PMID: 11602568]
[41]
Dong, L.; Hu, S.; Gao, J. Discovering drugs to treat coronavirus disease 2019 (COVID-19). Drug Discov. Ther., 2020, 14(1), 58-60.
[http://dx.doi.org/10.5582/ddt.2020.01012] [PMID: 32147628]
[42]
Elfiky, A.A. Ribavirin, Remdesivir, Sofosbuvir, Galidesivir, and Tenofovir against SARS-CoV-2 RNA dependent RNA polymerase (RdRp): A molecular docking study. Life Sci., 2020.253117592
[http://dx.doi.org/10.1016/j.lfs.2020.117592] [PMID: 32222463]
[43]
Wang, Y.; Li, W.; Jiang, Z.; Xi, X.; Zhu, Y. Assessment of the efficacy and safety of ribavirin in treatment of coronavirus-related pneumonia (SARS, MERS and COVID-19): A protocol for systematic review and meta-analysis. Medicine , 2020, 99(38)e22379
[44]
Schmidt, R.R.; Heermann, D. 1H-l,2,4-Triazol-nucleoside - synthese von virazol’. Chem. Ber., 1981, 114, 2825-2833.
[http://dx.doi.org/10.1002/cber.19811140814]
[45]
Sakharov, V.; Baykov, S.; Konstantinova, I.; Esipov, R.; Dorogov, M. An efficient chemoenzymatic process for preparation of ribavirin. Int. J. Chem. Eng., 2015.734851
[http://dx.doi.org/10.1155/2015/734851]
[46]
Chipen, G.I.; Grinshtein, V.Y. A new method of preparing 1,2,4-triazole carboxylic-3 acids. Chem. Heterocycl. Compd., 1966, 1, 420-421.
[http://dx.doi.org/10.1007/BF00473826]
[47]
Mesa, R.A.; Yasothan, U.; Kirkpatrick, P. Ruxolitinib. Nat. Rev. Drug Discov., 2012, 11(2), 103-104.
[http://dx.doi.org/10.1038/nrd3652] [PMID: 22293561]
[48]
Harrison, C.; Mesa, R.; Ross, D.; Mead, A.; Keohane, C.; Gotlib, J.; Verstovsek, S. Practical management of patients with myelofibrosis receiving ruxolitinib. Expert Rev. Hematol., 2013, 6(5), 511-523.
[http://dx.doi.org/10.1586/17474086.2013.827413] [PMID: 24083419]
[49]
Vannucchi, A.M.; Kiladjian, J.J.; Griesshammer, M.; Masszi, T.; Durrant, S.; Passamonti, F.; Harrison, C.N.; Pane, F.; Zachee, P.; Mesa, R.; He, S.; Jones, M.M.; Garrett, W.; Li, J.; Pirron, U.; Habr, D.; Verstovsek, S. Ruxolitinib versus standard therapy for the treatment of polycythemia vera. N. Engl. J. Med., 2015, 372(5), 426-435.
[http://dx.doi.org/10.1056/NEJMoa1409002] [PMID: 25629741]
[50]
Harrison, C.; Vannucchi, A.M. Ruxolitinib: a potent and selective Janus kinase 1 and 2 inhibitor in patients with myelofibrosis. An update for clinicians. Ther. Adv. Hematol., 2012, 3(6), 341-354.
[http://dx.doi.org/10.1177/2040620712459746] [PMID: 23606937]
[51]
Goker Bagca, B.; Biray Avci, C. The potential of JAK/STAT pathway inhibition by ruxolitinib in the treatment of COVID-19. Cytokine Growth Factor Rev., 2020, 54, 51-62.
[http://dx.doi.org/10.1016/j.cytogfr.2020.06.013] [PMID: 32636055]
[52]
Gozzetti, A.; Capochiani, E.; Bocchia, M. The Janus kinase 1/2 inhibitor ruxolitinib in COVID-19. Leukemia, 2020, 34(10), 2815-2816.
[http://dx.doi.org/10.1038/s41375-020-01038-8] [PMID: 32879427]
[53]
Lin, Q.; Meloni, D.; Pan, Y.; Xia, M.; Rodgers, J.; Shepard, S.; Li, M.; Galya, L.; Metcalf, B.; Yue, T-Y.; Liu, P.; Zhou, J. Enantioselective synthesis of Janus kinase inhibitor INCB018424 via an organocatalytic aza-Michael reaction. Org. Lett., 2009, 11(9), 1999-2002.
[http://dx.doi.org/10.1021/ol900350k] [PMID: 19385672]
[54]
Haydl, A.M.; Xu, K.; Breit, B. Regio- and enantioselective synthesis of N-substituted pyrazoles by rhodium-catalyzed asymmetric addition to allenes. Angew. Chem. Int. Ed. Engl., 2015, 54(24), 7149-7153.
[http://dx.doi.org/10.1002/anie.201501758] [PMID: 25926026]
[55]
Roussi, F.; Chauveau, A.; Bonin, M.; Micouin, L.; Husson, H-P. Diastereoselective cycloadditions of chiral non-racemic azomethine imines. Synthesis, 2000, 1170-1179.
[http://dx.doi.org/10.1055/s-2000-6311]
[56]
Comas-Barceló, J.; Foster, R.S.; Fiser, B.; Gomez-Bengoa, E.; Harrity, J.P.A. Cu-promoted sydnone cycloadditions of alkynes: scope and mechanism studies. Chemistry, 2015, 21(8), 3257-3263.
[http://dx.doi.org/10.1002/chem.201406118] [PMID: 25557473]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy