Generic placeholder image

Anti-Infective Agents

Editor-in-Chief

ISSN (Print): 2211-3525
ISSN (Online): 2211-3533

Review Article

A Recent Update on the Clinical Trials and Effectiveness of Drugs Used in COVID-19, MERS and SARS Coronaviruses

Author(s): Seyed Sajad Hosseini Balef, Zohreh Karimi, Aala Azari, Seyed Sadeq Sadraei, Parisa Hasanjani, Yasaman Sadeghi, Samin Ahmadi, Fateme Qorbannejad, Ali Farmoudeh and Hamid Irannejad*

Volume 20, Issue 2, 2022

Published on: 17 February, 2021

Article ID: e130621191493 Pages: 27

DOI: 10.2174/2211352519666210217100423

Price: $65

Abstract

Background: Coronaviruses including COVID-19, MERS and SARS have affected millions of people around the world since their emergence. Still, there is not a certain drug treatment strategy for coronaviruses.

Objective: This review aims at a compilation of a comprehensive study on literature reporting the treatment strategies and regimens used for COVID-19, MERS and SARS with an emphasis on the clinical trials and experimentations.

Results: According to the literature, the most effective drugs reported so far for treatment strategies include: lopinavir/ritonavir, favipiravir, ribavirin, oseltamivir, remdesivir, hydroxychloroquine, herbal extracts, monoclonal antibodies and anticytokine agents. Some combinations of drugs have been very effective to reduce the death rate, hospitalization stay and to prevent the progress of the disease to the later critical and severe stages.

Conclusions: However, a combination of drugs and regimens have been useful and saved millions of patient’s lives but the clinical data reviewed in this essay indicate that the current drugs do not make an impervious barrier against coronavirus infections and cannot protect or treat patients completely. Therefore, there is a much demand for the discovery and introduction of new antiviral drugs.

Keywords: COVID-19, MERS, SARS, Coronavirus, Antiviral drugs, Cytokine storm release.

Graphical Abstract
[1]
Totura, A.L.; Bavari, S. Broad-spectrum coronavirus antiviral drug discovery. Expert Opin. Drug Discov., 2019, 14(4), 397-412.https://www.tandfonline.com/doi/full/10.1080/17460441.2019.1581171 [Internet].
[http://dx.doi.org/10.1080/17460441.2019.1581171] [PMID: 30849247]
[2]
Yao, T.T.; Qian, J.D.; Zhu, W.Y.; Wang, Y.; Wang, G.Q. A systematic review of lopinavir therapy for SARS coronavirus and MERS coronavirus-A possible reference for coronavirus disease-19 treatment option. J. Med. Virol., 2020, 92(6), 556-563.https://onlinelibrary.wiley.com/doi/abs/10.1002/jmv.25729 [Internet].
[http://dx.doi.org/10.1002/jmv.25729] [PMID: 32104907]
[3]
Wang, Z.; Chen, X.; Lu, Y.; Chen, F.; Zhang, W. Clinical characteristics and therapeutic procedure for four cases with 2019 novel coronavirus pneumonia receiving combined Chinese and Western medicine treatment. Biosci. Trends, 2020, 14(1), 64-68.https://www.jstage.jst.go.jp/article/bst/14/1/14_2020.01030/_article [Internet].
[http://dx.doi.org/10.5582/bst.2020.01030] [PMID: 32037389]
[4]
Chan-Yeung, M.; Xu, R-H. SARS: epidemiology. Respirology, 2003, 8(Suppl.), S9-S14.
[http://dx.doi.org/10.1046/j.1440-1843.2003.00518.x] [PMID: 15018127]
[5]
Zaki, A.M.; van Boheemen, S.; Bestebroer, T.M.; Osterhaus, A.D.M.E.; Fouchier, R.A.M. Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia. N. Engl. J. Med., 2012, 367(19), 1814-1820.http://www.nejm.org/doi/abs/10.1056/NEJMoa1211721 [Internet].
[http://dx.doi.org/10.1056/NEJMoa1211721] [PMID: 23075143]
[6]
WHO | Middle East respiratory syndrome coronavirus (MERS-CoV) World Health Organization. World Health Organization, 2020. Available from: https://www.who.int/emergencies/diseases/novel-coronavirus-2019
[7]
Coronavirus disease (COVID-19) World Health Organization., 2020. Available from: https://www.who.int/emergencies/diseases/novel-coronavirus-2019
[8]
Decaro, N.; Lorusso, A. Novel human coronavirus (SARS-CoV-2): A lesson from animal coronaviruses. Vet. Microbiol., 2020, 244108693https://linkinghub.elsevier.com/retrieve/pii/S0378113520302935 [Internet].
[http://dx.doi.org/10.1016/j.vetmic.2020.108693] [PMID: 32402329]
[9]
Lea, A.P.; Faulds, D. Ritonavir. Drugs, 1996 Oct ;52(4), 541-546. Available from: http://link.springer.com/10.2165/00003495-199652040-00007
[10]
Talha, B.; Dhamoon, A.S. Ritonavir.StatPearls [Internet]; StatPearls Publishing: Treasure Island, 2019.
[11]
Zhong, H.; Wang, Y.; Zhang, Z-L.; Liu, Y-X.; Le, K-J.; Cui, M.; Yu, Y.T.; Gu, Z.C.; Gao, Y.; Lin, H.W. Efficacy and safety of current therapeutic options for COVID-19 - lessons to be learnt from SARS and MERS epidemic: A systematic review and meta-analysis. Pharmacol. Res., 2020, 157104872https://linkinghub.elsevier.com/retrieve/pii/S1043661820311804 [Internet].
[http://dx.doi.org/10.1016/j.phrs.2020.104872] [PMID: 32360583]
[12]
Loelius, S.G.; Lannan, K.L.; Blumberg, N.; Phipps, R.P.; Spinelli, S.L. The HIV protease inhibitor, ritonavir, dysregulates human platelet function in vitro. Thromb. Res., 2018, 169, 96-104.
[http://dx.doi.org/10.1016/j.thromres.2018.07.003] [PMID: 30031293]
[13]
Cvetkovic, R.S.; Goa, K.L. Lopinavir/ritonavir: a review of its use in the management of HIV infection. Drugs, 2003, 63(8), 769-802.
[http://dx.doi.org/10.2165/00003495-200363080-00004] [PMID: 12662125]
[14]
Valentin, F. Lopinavir/Ritonavir and COVID-19 [Internet]; ResearchGate, 2020. [cited 2020 Jul 28] Available from:
[http://dx.doi.org/10.13140/RG.2.2.14844.69767]
[15]
Hurst, M.; Faulds, D. Lopinavir. Drugs, 2000, 60(6), 1371-1379.
[http://dx.doi.org/10.2165/00003495-200060060-00009] [PMID: 11152017]
[16]
Arabi, Y.M.; Alothman, A.; Balkhy, H.H.; Al-Dawood, A.; AlJohani, S.; Al Harbi, S.; Kojan, S.; Al Jeraisy, M.; Deeb, A.M.; Assiri, A.M.; Al-Hameed, F.; AlSaedi, A.; Mandourah, Y.; Almekhlafi, G.A.; Sherbeeni, N.M.; Elzein, F.E.; Memon, J.; Taha, Y.; Almotairi, A.; Maghrabi, K.A.; Qushmaq, I.; Al Bshabshe, A.; Kharaba, A.; Shalhoub, S.; Jose, J.; Fowler, R.A.; Hayden, F.G.; Hussein, M.A. And the MIRACLE trial group. Treatment of Middle East Respiratory Syndrome with a combination of lopinavir-ritonavir and interferon-β1b (MIRACLE trial): study protocol for a randomized controlled trial. Trials, 2018, 19(1), 81.https://trialsjournal.biomedcentral.com/articles/10.1186/s13063-017-2427-0 [Internet].
[http://dx.doi.org/10.1186/s13063-017-2427-0] [PMID: 29382391]
[17]
Chu, C.M.; Cheng, V.C.; Hung, I.F.; Wong, M.M.; Chan, K.H.; Chan, K.S.; Kao, R.Y.; Poon, L.L.; Wong, C.L.; Guan, Y.; Peiris, J.S.; Yuen, K.Y. HKU/UCH SARS Study Group. Role of lopinavir/ritonavir in the treatment of SARS: initial virological and clinical findings. Thorax, 2004, 59(3), 252-256.http://thorax.bmj.com/cgi/doi/10.1136/thorax.2003.012658 [Internet].
[http://dx.doi.org/10.1136/thorax.2003.012658] [PMID: 14985565]
[18]
Sheahan, T.P.; Sims, A.C.; Leist, S.R.; Schäfer, A.; Won, J.; Brown, A.J.; Montgomery, S.A.; Hogg, A.; Babusis, D.; Clarke, M.O.; Spahn, J.E.; Bauer, L.; Sellers, S.; Porter, D.; Feng, J.Y.; Cihlar, T.; Jordan, R.; Denison, M.R.; Baric, R.S. Comparative therapeutic efficacy of remdesivir and combination lopinavir, ritonavir, and interferon beta against MERS-CoV. Nat. Commun., 2020, 11(1), 222.http://www.nature.com/articles/s41467-019-13940-6 [Internet].
[http://dx.doi.org/10.1038/s41467-019-13940-6] [PMID: 31924756]
[19]
de Wilde, A.H.; Jochmans, D.; Posthuma, C.C.; Zevenhoven-Dobbe, J.C.; van Nieuwkoop, S.; Bestebroer, T.M.; van den Hoogen, B.G.; Neyts, J.; Snijder, E.J. Screening of an FDA-approved compound library identifies four small-molecule inhibitors of Middle East respiratory syndrome coronavirus replication in cell culture. Antimicrob. Agents Chemother., 2014, 58(8), 4875-4884.https://aac.asm.org/content/58/8/4875 [Internet].
[http://dx.doi.org/10.1128/AAC.03011-14] [PMID: 24841269]
[20]
Nukoolkarn, V.; Lee, V.S.; Malaisree, M.; Aruksakulwong, O.; Hannongbua, S. Molecular dynamic simulations analysis of ritonavir and lopinavir as SARS-CoV 3CL(pro) inhibitors. J. Theor. Biol., 2008, 254(4), 861-867.https://linkinghub.elsevier.com/retrieve/pii/S0022519308003718 [Internet].
[http://dx.doi.org/10.1016/j.jtbi.2008.07.030] [PMID: 18706430]
[21]
Chen, F.; Chan, K.H.; Jiang, Y.; Kao, R.Y.T.; Lu, H.T.; Fan, K.W.; Cheng, V.C.; Tsui, W.H.; Hung, I.F.; Lee, T.S.; Guan, Y.; Peiris, J.S.; Yuen, K.Y. In vitro susceptibility of 10 clinical isolates of SARS coronavirus to selected antiviral compounds. J. Clin. Virol., 2004, 31(1), 69-75.https://linkinghub.elsevier.com/retrieve/pii/S1386653204000551 [Internet].
[http://dx.doi.org/10.1016/j.jcv.2004.03.003] [PMID: 15288617]
[22]
Chan, K.S.; Lai, S.T.; Chu, C.M.; Tsui, E.; Tam, C.Y.; Wong, M.M.L. Treatment of severe acute respiratory syndrome with lopinavir/ritonavir: a multicentre retrospective matched cohort study. Hong Kong Med J = Xianggang yi xue za zhi, 2003 Dec ;9(6), 399-406. Available from: http://www.ncbi.nlm.nih.gov/pubmed/14660806
[23]
Chan, J.F-W.; Yao, Y.; Yeung, M-L.; Deng, W.; Bao, L.; Jia, L.; Li, F.; Xiao, C.; Gao, H.; Yu, P.; Cai, J.P.; Chu, H.; Zhou, J.; Chen, H.; Qin, C.; Yuen, K.Y. Treatment With Lopinavir/Ritonavir or Interferon-β1b Improves Outcome of MERS-CoV Infection in a Nonhuman Primate Model of Common Marmoset. J. Infect. Dis., 2015, 212(12), 1904-1913.https://academic.oup.com/jid/article-lookup/doi/10.1093/infdis/jiv392 [Internet].
[http://dx.doi.org/10.1093/infdis/jiv392] [PMID: 26198719]
[24]
Spanakis, N.; Tsiodras, S.; Haagmans, B.L.; Raj, V.S.; Pontikis, K.; Koutsoukou, A.; Koulouris, N.G.; Osterhaus, A.D.; Koopmans, M.P.; Tsakris, A. Virological and serological analysis of a recent Middle East respiratory syndrome coronavirus infection case on a triple combination antiviral regimen. Int. J. Antimicrob. Agents, 2014, 44(6), 528-532.https://linkinghub.elsevier.com/retrieve/pii/S0924857914002787 [Internet].
[http://dx.doi.org/10.1016/j.ijantimicag.2014.07.026] [PMID: 25288266]
[25]
Kim, U.J.; Won, E-J.; Kee, S-J.; Jung, S-I.; Jang, H-C. Combination therapy with lopinavir/ritonavir, ribavirin and interferon-α for Middle East respiratory syndrome. Antivir. Ther., 2016, 21(5), 455-459.http://www.intmedpress.com/journals/avt/abstract.cfm?id=3002&pid=48 [Internet].
[http://dx.doi.org/10.3851/IMP3002] [PMID: 26492219]
[26]
Bin, S.Y.; Heo, J.Y.; Song, M-S.; Lee, J.; Kim, E-H.; Park, S-J.; Kwon, H.I.; Kim, S.M.; Kim, Y.I.; Si, Y.J.; Lee, I.W.; Baek, Y.H.; Choi, W.S.; Min, J.; Jeong, H.W.; Choi, Y.K. Environmental contamination and viral shedding in MERS patients during MERS-CoV outbreak in South Korea. Clin. Infect. Dis., 2016, 62(6), 755-760.
[http://dx.doi.org/10.1093/cid/civ1020] [PMID: 26679623]
[27]
Park, S.Y.; Lee, J.S.; Son, J.S.; Ko, J.H.; Peck, K.R.; Jung, Y.; Woo, H.J.; Joo, Y.S.; Eom, J.S.; Shi, H. Post-exposure prophylaxis for Middle East respiratory syndrome in healthcare workers. J. Hosp. Infect., 2019, 101(1), 42-46.https://linkinghub.elsevier.com/retrieve/pii/S0195670118304845 [Internet].
[http://dx.doi.org/10.1016/j.jhin.2018.09.005] [PMID: 30240813]
[28]
Arabi, Y.M.; Asiri, A.Y.; Assiri, A.M.; Aziz Jokhdar, H.A.; Alothman, A.; Balkhy, H.H.; AlJohani, S.; Al Harbi, S.; Kojan, S.; Al Jeraisy, M.; Deeb, A.M.; Memish, Z.A.; Ghazal, S.; Al Faraj, S.; Al-Hameed, F.; AlSaedi, A.; Mandourah, Y.; Al Mekhlafi, G.A.; Sherbeeni, N.M.; Elzein, F.E.; Almotairi, A.; Al Bshabshe, A.; Kharaba, A.; Jose, J.; Al Harthy, A.; Al Sulaiman, M.; Mady, A.; Fowler, R.A.; Hayden, F.G.; Al-Dawood, A.; Abdelzaher, M.; Bajhmom, W.; Hussein, M.A. and the Saudi Critical Care Trials group. Treatment of Middle East respiratory syndrome with a combination of lopinavir/ritonavir and interferon-β1b (MIRACLE trial): statistical analysis plan for a recursive two-stage group sequential randomized controlled trial. Trials, 2020, 21(1), 8.https://trialsjournal.biomedcentral.com/articles/10.1186/s13063-019-3846-x [Internet].
[http://dx.doi.org/10.1186/s13063-019-3846-x] [PMID: 31900204]
[29]
Choy, K-T.; Wong, A.Y-L.; Kaewpreedee, P.; Sia, S.F.; Chen, D.; Hui, K.P.Y.; Chu, D.K.W.; Chan, M.C.W.; Cheung, P.P.; Huang, X.; Peiris, M.; Yen, H.L. Remdesivir, lopinavir, emetine, and homoharringtonine inhibit SARS-CoV-2 replication in vitro. Antiviral Res., 2020, 178104786https://linkinghub.elsevier.com/retrieve/pii/S016635422030200X [Internet].
[http://dx.doi.org/10.1016/j.antiviral.2020.104786] [PMID: 32251767]
[30]
Kang, C.K.; Seong, M-W.; Choi, S-J.; Kim, T.S.; Choe, P.G.; Song, S.H.; Kim, N.J.; Park, W.B.; Oh, M.D. In vitro activity of lopinavir/ritonavir and hydroxychloroquine against severe acute respiratory syndrome coronavirus 2 at concentrations achievable by usual doses. Korean J. Intern. Med. (Korean. Assoc. Intern. Med.), 2020, 35(4), 782-787.http://kjim.org/journal/view.php?doi=10.3904/kjim.2020.157 [Internet].
[http://dx.doi.org/10.3904/kjim.2020.157] [PMID: 32460458]
[31]
Dong, L.; Hu, S.; Gao, J. Discovering drugs to treat coronavirus disease 2019 (COVID-19). Drug Discov. Ther., 2020, 14(1), 58-60.https://www.jstage.jst.go.jp/article/ddt/14/1/14_2020.01012/_article [Internet].
[http://dx.doi.org/10.5582/ddt.2020.01012] [PMID: 32147628]
[32]
Shanghai Institute of Materia Medica website C, Sciences A of. A joint research team of the Shanghai Institute of Materia Medica and Shanghai Tech University discover a group of old and traditional Chinese medicines that may be efficacious in treating the novel form of pneumonia, 2020. Available from: http://www.simm.ac.cn/xwzx/kydt/202001/t20200125_5494417.html
[33]
Lim, J.; Jeon, S.; Shin, H-Y.; Kim, M.J.; Seong, Y.M.; Lee, W.J.; Choe, K.W.; Kang, Y.M.; Lee, B.; Park, S.J. Case of the index patient who caused tertiary transmission of COVID-19 infection in Korea: the application of lopinavir/ritonavir for the treatment of COVID-19 infected pneumonia monitored by quantitative RT-PCR. J. Korean Med. Sci., 2020, 35(6)e79
[http://dx.doi.org/10.3346/jkms.2020.35.e79] [PMID: 32056407]
[34]
Zhu, Z.; Lu, Z.; Xu, T.; Chen, C.; Yang, G.; Zha, T.; Lu, J.; Xue, Y. Arbidol monotherapy is superior to lopinavir/ritonavir in treating COVID-19. J. Infect., 2020, 81(1), e21-e23.https://linkinghub.elsevier.com/retrieve/pii/S0163445320301882 [Internet].
[http://dx.doi.org/10.1016/j.jinf.2020.03.060] [PMID: 32283143]
[35]
Muralidharan, N.; Sakthivel, R.; Velmurugan, D.; Gromiha, M.M. Computational studies of drug repurposing and synergism of lopinavir, oseltamivir and ritonavir binding with SARS-CoV-2 protease against COVID-19. J. Biomol. Struct. Dyn., 2020, 1-6.https://www.tandfonline.com/doi/full/10.1080/07391102.2020.1752802 [Internet].
[http://dx.doi.org/10.1080/07391102.2020.1752802] [PMID: 32248766]
[36]
Klement-Frutos, E.; Burrel, S.; Peytavin, G.; Marot, S.; Lê, M.P.; Godefroy, N. Early administration of ritonavir-boosted lopinavir could prevent severe COVID-19. J Infect, 2020. May Available from: https://linkinghub.elsevier.com/retrieve/pii/S0163445320303182
[37]
Hung, I.F-N.; Lung, K-C.; Tso, E.Y-K.; Liu, R.; Chung, T.W-H.; Chu, M-Y. Triple combination of interferon beta-1b, lopinavir–ritonavir, and ribavirin in the treatment of patients admitted to hospital with COVID-19: an open-label, randomised, phase 2 trial. Lancet, 2020 May ;395(10238), 1695-1704. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0140673620310424 [cited 2020 Jul 31]
[38]
Cao, B.; Wang, Y.; Wen, D.; Liu, W.; Wang, J.; Fan, G.; Ruan, L.; Song, B.; Cai, Y.; Wei, M.; Li, X.; Xia, J.; Chen, N.; Xiang, J.; Yu, T.; Bai, T.; Xie, X.; Zhang, L.; Li, C.; Yuan, Y.; Chen, H.; Li, H.; Huang, H.; Tu, S.; Gong, F.; Liu, Y.; Wei, Y.; Dong, C.; Zhou, F.; Gu, X.; Xu, J.; Liu, Z.; Zhang, Y.; Li, H.; Shang, L.; Wang, K.; Li, K.; Zhou, X.; Dong, X.; Qu, Z.; Lu, S.; Hu, X.; Ruan, S.; Luo, S.; Wu, J.; Peng, L.; Cheng, F.; Pan, L.; Zou, J.; Jia, C.; Wang, J.; Liu, X.; Wang, S.; Wu, X.; Ge, Q.; He, J.; Zhan, H.; Qiu, F.; Guo, L.; Huang, C.; Jaki, T.; Hayden, F.G.; Horby, P.W.; Zhang, D.; Wang, C. A Trial of Lopinavir-Ritonavir in Adults Hospitalized with Severe Covid-19. N. Engl. J. Med., 2020, 382(19), 1787-1799.http://www.nejm.org/doi/10.1056/NEJMoa2001282 [Internet].
[http://dx.doi.org/10.1056/NEJMoa2001282] [PMID: 32187464]
[39]
Owa, A.B.; Owa, O.T. Lopinavir/ritonavir use in Covid-19 infection: is it completely non-beneficial? J Microbiol Immunol Infect, 2020. May Available from: https://linkinghub.elsevier.com/retrieve/pii/S1684118220301286
[40]
Zhu, F.; Cao, Y.; Xu, S.; Zhou, M. Reply to Comments on ‘Co‐infection of SARS‐CoV‐2 and HIV in a patient in Wuhan city, China.’ J Med Virol, 2020 9 Jun ; jmv.25838. Available from: https://onlinelibrary.wiley.com/doi/abs/10.1002/jmv.25838
[41]
Li, Y.; Xie, Z.; Lin, W.; Cai, W.; Wen, C.; Guan, Y. Efficacy and safety of lopinavir/ritonavir or arbidol in adult patients with mild/moderate COVID-19: an exploratory randomized controlled trial. Med, 2020. May Available from: https://linkinghub.elsevier.com/retrieve/pii/S2666634020300015
[42]
CHEN, J; LING, Y; XI, X Efficacies of lopinavir/ritonavir and abidol in the treatment of novel coronavirus pneumonia.Chinese J Infect Dis., 2020, 38(0 PG-8–8), E008-E008. Available from: NS -
[43]
Cheng, C-Y.; Lee, Y-L.; Chen, C-P.; Lin, Y-C.; Liu, C-E.; Liao, C-H.; Cheng, S.H. Lopinavir/ritonavir did not shorten the duration of SARS CoV-2 shedding in patients with mild pneumonia in Taiwan. J. Microbiol. Immunol. Infect., 2020, 53(3), 488-492.https://linkinghub.elsevier.com/retrieve/pii/S168411822030092X [Internet].
[http://dx.doi.org/10.1016/j.jmii.2020.03.032] [PMID: 32331982]
[44]
Furuta, Y.; Gowen, B.B.; Takahashi, K.; Shiraki, K.; Smee, D.F.; Barnard, D.L. Favipiravir (T-705), a novel viral RNA polymerase inhibitor. Antiviral Res., 2013, 100(2), 446-454.https://linkinghub.elsevier.com/retrieve/pii/S0166354213002635 [Internet].
[http://dx.doi.org/10.1016/j.antiviral.2013.09.015] [PMID: 24084488]
[45]
Oestereich, L.; Lüdtke, A.; Wurr, S.; Rieger, T.; Muñoz-Fontela, C.; Günther, S. Successful treatment of advanced Ebola virus infection with T-705 (favipiravir) in a small animal model. Antiviral Res., 2014, 105(1), 17-21.https://linkinghub.elsevier.com/retrieve/pii/S0166354214000576 [Internet].
[http://dx.doi.org/10.1016/j.antiviral.2014.02.014] [PMID: 24583123]
[46]
ŞİMŞEK YAVUZ, S; ÜNAL, S. Antiviral treatment of COVID-19. TURKISH J Med Sci, 2020 21 Apr;50(SI-1), 611-619. Available from: http://journals.tubitak.gov.tr/medical/issues/sag-20-50-si-1/sag-50-si-1-18-2004-145.pdf
[47]
Du, Y.X.; Chen, X.P. Favipiravir: Pharmacokinetics and Concerns About Clinical Trials for 2019-nCoV Infection. Clin. Pharmacol. Ther., 2020, 108(2), 242-247.https://onlinelibrary.wiley.com/doi/abs/10.1002/cpt.1844 [Internet].
[http://dx.doi.org/10.1002/cpt.1844] [PMID: 32246834]
[48]
Li, G.; De Clercq, E. Therapeutic options for the 2019 novel coronavirus (2019-nCoV). Nat. Rev. Drug Discov., 2020, 19(3), 149-150.http://www.nature.com/articles/d41573-020-00016-0 [Internet].
[http://dx.doi.org/10.1038/d41573-020-00016-0] [PMID: 32127666]
[49]
Vafaei, S.; Razmi, M.; Mansoori, M.; Asadi-Lari, M.; Madjd, Z. Spotlight of Remdesivir in Comparison with Ribavirin, Favipiravir, Oseltamivir and Umifenovir in Coronavirus Disease 2019 (COVID-19) Pandemic. SSRN Electron J, 2020. Available from: https://www.ssrn.com/abstract=3569866
[50]
Wang, M.; Cao, R.; Zhang, L.; Yang, X.; Liu, J.; Xu, M.; Shi, Z.; Hu, Z.; Zhong, W.; Xiao, G. Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell Res., 2020, 30(3), 269-271.http://www.nature.com/articles/s41422-020-0282-0 [Internet].
[http://dx.doi.org/10.1038/s41422-020-0282-0] [PMID: 32020029]
[51]
Cai, Q.; Yang, M.; Liu, D.; Chen, J.; Shu, D.; Xia, J.; Liao, X.; Gu, Y.; Cai, Q.; Yang, Y.; Shen, C.; Li, X.; Peng, L.; Huang, D.; Zhang, J.; Zhang, S.; Wang, F.; Liu, J.; Chen, L.; Chen, S.; Wang, Z.; Zhang, Z.; Cao, R.; Zhong, W.; Liu, Y.; Liu, L. Experimental Treatment with Favipiravir for COVID-19: An Open-Label Control Study. Engineering (Beijing), 2020, 6(10), 1192-1198.https://linkinghub.elsevier.com/retrieve/pii/S2095809920300631 [Internet].
[http://dx.doi.org/10.1016/j.eng.2020.03.007] [PMID: 32346491]
[52]
Chen, C; Huang, J; Cheng, Z; Wu, J; Chen, S; Zhang, Y Favipiravir versus Arbidol for COVID-19: A Randomized Clinical Trial. medRxiv., 2020 17 March;, 20037432.
[53]
Chan, J.F.W.; Chan, K-H.; Kao, R.Y.T.; To, K.K.W.; Zheng, B-J.; Li, C.P.Y.; Li, P.T.; Dai, J.; Mok, F.K.; Chen, H.; Hayden, F.G.; Yuen, K.Y. Broad-spectrum antivirals for the emerging Middle East respiratory syndrome coronavirus. J. Infect., 2013, 67(6), 606-616.https://linkinghub.elsevier.com/retrieve/pii/S0163445313002983 [Internet].
[http://dx.doi.org/10.1016/j.jinf.2013.09.029] [PMID: 24096239]
[54]
Barnard, D.L.; Day, C.W.; Bailey, K. Inhibitory effect of mizoribine and ribavirin on the replication of severe acute respiratory syndrome (SARS)-associated coronavirus. Antiviral Res, 2005 Jun ;66(2-3), 159-163. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0166354205000276
[55]
Barnard, D.L.; Day, C.W.; Bailey, K.; Heiner, M.; Montgomery, R.; Lauridsen, L.; Winslow, S.; Hoopes, J.; Li, J.K.; Lee, J.; Carson, D.A.; Cottam, H.B.; Sidwell, R.W. Enhancement of the infectivity of SARS-CoV in BALB/c mice by IMP dehydrogenase inhibitors, including ribavirin. Antiviral Res., 2006, 71(1), 53-63.https://linkinghub.elsevier.com/retrieve/pii/S0166354206000660 [Internet].
[http://dx.doi.org/10.1016/j.antiviral.2006.03.001] [PMID: 16621037]
[56]
Falzarano, D.; de Wit, E.; Martellaro, C.; Callison, J.; Munster, V.J.; Feldmann, H. Inhibition of novel β coronavirus replication by a combination of interferon-α2b and ribavirin. Sci. Rep., 2013, 3(1), 1686.http://www.nature.com/articles/srep01686 [Internet].
[http://dx.doi.org/10.1038/srep01686] [PMID: 23594967]
[57]
Falzarano, D.; de Wit, E.; Rasmussen, A.L.; Feldmann, F.; Okumura, A.; Scott, D.P.; Brining, D.; Bushmaker, T.; Martellaro, C.; Baseler, L.; Benecke, A.G.; Katze, M.G.; Munster, V.J.; Feldmann, H. Treatment with interferon-α2b and ribavirin improves outcome in MERS-CoV-infected rhesus macaques. Nat. Med., 2013, 19(10), 1313-1317.http://www.nature.com/articles/nm.3362 [Internet].
[http://dx.doi.org/10.1038/nm.3362] [PMID: 24013700]
[58]
Al-Tawfiq, J.A.; Momattin, H.; Dib, J.; Memish, Z.A. Ribavirin and interferon therapy in patients infected with the Middle East respiratory syndrome coronavirus: an observational study. Int. J. Infect. Dis., 2014, 20(1), 42-46.https://linkinghub.elsevier.com/retrieve/pii/S1201971213003767 [Internet].
[http://dx.doi.org/10.1016/j.ijid.2013.12.003] [PMID: 24406736]
[59]
Omrani, A.S.; Saad, M.M.; Baig, K.; Bahloul, A.; Abdul-Matin, M.; Alaidaroos, A.Y.; Almakhlafi, G.A.; Albarrak, M.M.; Memish, Z.A.; Albarrak, A.M. Ribavirin and interferon alfa-2a for severe Middle East respiratory syndrome coronavirus infection: a retrospective cohort study. Lancet Infect. Dis., 2014, 14(11), 1090-1095.https://linkinghub.elsevier.com/retrieve/pii/S147330991470920X [Internet].
[http://dx.doi.org/10.1016/S1473-3099(14)70920-X] [PMID: 25278221]
[60]
Shalhoub, S.; Farahat, F.; Al-Jiffri, A.; Simhairi, R.; Shamma, O.; Siddiqi, N.; Mushtaq, A. IFN-α2a or IFN-β1a in combination with ribavirin to treat Middle East respiratory syndrome coronavirus pneumonia: a retrospective study. J. Antimicrob. Chemother., 2015, 70(7), 2129-2132.https://academic.oup.com/jac/article/70/7/2129/778441 [Internet].
[http://dx.doi.org/10.1093/jac/dkv085] [PMID: 25900158]
[61]
Pruijssers, A.J.; Denison, M.R. Nucleoside analogues for the treatment of coronavirus infections. Curr. Opin. Virol., 2019, 35, 57-62.https://linkinghub.elsevier.com/retrieve/pii/S187962571930001X [Internet].
[http://dx.doi.org/10.1016/j.coviro.2019.04.002] [PMID: 31125806]
[62]
Hon, K.L.; Leung, K.K.Y.; Leung, A.K.; Qian, S.Y.; Chan, V.P.; Ip, P.; Wong, I.C. Coronavirus disease 2019 (COVID-19): latest developments in potential treatments. Drugs Context, 2020, 9, •••.http://www.ncbi.nlm.nih.gov/pubmed/32655654%0Ahttp://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC7328712 [Internet].
[http://dx.doi.org/10.7573/dic.2020-4-15] [PMID: 32655654]
[63]
Cheng, V.C.; Tang, B.S.; Wu, A.K.; Chu, C.M.; Yuen, K.Y. Medical treatment of viral pneumonia including SARS in immunocompetent adult. J. Infect., 2004, 49(4), 262-273.https://linkinghub.elsevier.com/retrieve/pii/S0163445304001653 [Internet].
[http://dx.doi.org/10.1016/j.jinf.2004.07.010] [PMID: 15474623]
[64]
Khalili, J.S.; Zhu, H.; Mak, N.S.A.; Yan, Y.; Zhu, Y. Novel coronavirus treatment with ribavirin: Groundwork for an evaluation concerning COVID-19. J. Med. Virol., 2020, 92(7), 740-746.https://onlinelibrary.wiley.com/doi/abs/10.1002/jmv.25798 [Internet].
[http://dx.doi.org/10.1002/jmv.25798] [PMID: 32227493]
[65]
Coenen, S.; van der Velden, A.W.; Cianci, D.; Goossens, H.; Bongard, E.; Saville, B.R.; Gobat, N.; de Paor, M.; Ieven, M.; Verheij, T.J.; Butler, C.C. Oseltamivir for coronavirus illness: post-hoc exploratory analysis of an open-label, pragmatic, randomised controlled trial in European primary care from 2016 to 2018. Br. J. Gen. Pract., 2020, 70(696), e444-e449.https://bjgp.org/content/bjgp/70/696/e444.full.pdf [Internet].
[http://dx.doi.org/10.3399/bjgp20X711941] [PMID: 32571773]
[66]
Wang, D.; Hu, B.; Hu, C.; Zhu, F.; Liu, X.; Zhang, J.; Wang, B.; Xiang, H.; Cheng, Z.; Xiong, Y.; Zhao, Y.; Li, Y.; Wang, X.; Peng, Z. Clinical Characteristics of 138 Hospitalized Patients With 2019 Novel Coronavirus-Infected Pneumonia in Wuhan, China. JAMA, 2020, 323(11), 1061-1069. [Internet].
[http://dx.doi.org/10.1001/jama.2020.1585] [PMID: 32031570]
[67]
Sanders, J.M.; Monogue, M.L.; Jodlowski, T.Z.; Cutrell, J.B. Pharmacologic Treatments for Coronavirus Disease 2019 (COVID-19): A Review. JAMA, 2020, 323(18), 1824-1836. [Internet].
[http://dx.doi.org/10.1001/jama.2020.6019] [PMID: 32282022]
[68]
Lo, M.K.; Feldmann, F.; Gary, J.M.; Jordan, R.; Bannister, R.; Cronin, J.; Patel, N.R.; Klena, J.D.; Nichol, S.T.; Cihlar, T.; Zaki, S.R.; Feldmann, H.; Spiropoulou, C.F.; de Wit, E. Remdesivir (GS-5734) protects African green monkeys from Nipah virus challenge. Sci. Transl. Med., 2019, 11(494)eaau9242https://stm.sciencemag.org/lookup/doi/10.1126/scitranslmed.aau9242 [Internet].
[http://dx.doi.org/10.1126/scitranslmed.aau9242] [PMID: 31142680]
[69]
Gordon, C.J.; Tchesnokov, E.P.; Feng, J.Y.; Porter, D.P.; Götte, M. The antiviral compound remdesivir potently inhibits RNA-dependent RNA polymerase from Middle East respiratory syndrome coronavirus. J. Biol. Chem., 2020, 295(15), 4773-4779.http://www.jbc.org/lookup/doi/10.1074/jbc.AC120.013056 [Internet].
[http://dx.doi.org/10.1074/jbc.AC120.013056] [PMID: 32094225]
[70]
Al-Tawfiq, J.A.; Al-Homoud, A.H.; Memish, Z.A. Remdesivir as a possible therapeutic option for the COVID-19. Travel Med. Infect. Dis., 2020, 34101615https://linkinghub.elsevier.com/retrieve/pii/S1477893920300831 [Internet].
[http://dx.doi.org/10.1016/j.tmaid.2020.101615] [PMID: 32145386]
[71]
Humeniuk, R.; Mathias, A.; Cao, H.; Osinusi, A.; Shen, G.; Chng, E. Tolerability, and Pharmacokinetics of Remdesivir, An Antiviral for Treatment of COVID‐19, in Healthy Subjects. Clin Transl Sci, 2020. 5 Aug cts.12840. Available from: https://onlinelibrary.wiley.com/doi/abs/10.1111/cts.12840
[72]
de Wit, E.; Feldmann, F.; Cronin, J.; Jordan, R.; Okumura, A.; Thomas, T.; Scott, D.; Cihlar, T.; Feldmann, H. Prophylactic and therapeutic remdesivir (GS-5734) treatment in the rhesus macaque model of MERS-CoV infection. Proc. Natl. Acad. Sci. USA, 2020, 117(12), 6771-6776.http://www.pnas.org/lookup/doi/10.1073/pnas.1922083117 [Internet].
[http://dx.doi.org/10.1073/pnas.1922083117] [PMID: 32054787]
[73]
Ren, C.; Chen, H.; Chen, H.Z. First Case of Covid-19 in the United States. N. Engl. J. Med., 2020, 382(21)e53http://www.nejm.org/doi/10.1056/NEJMc2004794 [Internet].
[PMID: 32320564]
[74]
Beigel, J.H.; Tomashek, K.M.; Dodd, L.E.; Mehta, A.K.; Zingman, B.S.; Kalil, A.C. Remdesivir for the Treatment of Covid-19 — Preliminary Report. N Engl J Med, 2020. 22 May NEJMoa2007764. Available from: http://www.nejm.org/doi/10.1056/NEJMoa2007764
[75]
Dutta, G.; Lillehoj, P.B. An ultrasensitive enzyme-free electrochemical immunosensor based on redox cycling amplification using methylene blue. Analyst (Lond.), 2017, 142(18), 3492-3499.http://xlink.rsc.org/?DOI=C7AN00789B [Internet].
[http://dx.doi.org/10.1039/C7AN00789B] [PMID: 28831485]
[76]
Farmoudeh, A.; Akbari, J.; Saeedi, M.; Ghasemi, M.; Asemi, N.; Nokhodchi, A. Methylene blue-loaded niosome: preparation, physicochemical characterization, and in vivo wound healing assessment. Drug Deliv. Transl. Res., 2020, 10(5), 1428-1441.http://link.springer.com/10.1007/s13346-020-00715-6 [Internet].
[http://dx.doi.org/10.1007/s13346-020-00715-6] [PMID: 32100265]
[77]
Galloway, I.A. The “Fixed” Virus of Rabies: The Antigenic Value of the Virus Inactivated by the Photodynamic Action of Methylene-Blue and Proflavine. Br. J. Exp. Pathol., 1934, 15(2), 97.
[78]
Swartz, M.R.; Schnipper, L.E.; Lewin, A.A.; Crumpacker, C.S. Inactivation of herpes simplex virus with methylene blue, light, and electricity. Proc. Soc. Exp. Biol. Med., 1979, 161(2), 204-209.http://ebm.sagepub.com/lookup/doi/10.3181/00379727-161-40521 [Internet].
[http://dx.doi.org/10.3181/00379727-161-40521] [PMID: 221933]
[79]
Zenda, K.; Saneyoshi, M.; Chihara, G. Biological photochemistry. I. The correlation between the photodynamical behaviors and the chemical structures of nucleic acid-bases, nucleosides, and related compounds in the presence of methylene-blue. Chem. Pharm. Bull. (Tokyo), 1965, 13(9), 1108-1113.http://joi.jlc.jst.go.jp/JST.Journalarchive/cpb1958/13.1108?from=CrossRef [Internet].
[http://dx.doi.org/10.1248/cpb.13.1108] [PMID: 5865183]
[80]
Floyd, R.A.; Schneider, J.E., Jr; Dittmer, D.P. Methylene blue photoinactivation of RNA viruses. Antiviral Res., 2004, 61(3), 141-151.https://linkinghub.elsevier.com/retrieve/pii/S0166354203002596 [Internet].
[http://dx.doi.org/10.1016/j.antiviral.2003.11.004] [PMID: 15168794]
[81]
Schirmer, R.H.; Coulibaly, B.; Stich, A.; Scheiwein, M.; Merkle, H.; Eubel, J.; Becker, K.; Becher, H.; Müller, O.; Zich, T.; Schiek, W.; Kouyaté, B. Methylene blue as an antimalarial agent. Redox Rep., 2003, 8(5), 272-275.http://www.tandfonline.com/doi/full/10.1179/135100003225002899 [Internet].
[http://dx.doi.org/10.1179/135100003225002899] [PMID: 14962363]
[82]
Krafts, K.; Hempelmann, E.; Skórska-Stania, A. From methylene blue to chloroquine: a brief review of the development of an antimalarial therapy. Parasitol. Res., 2012, 111(1), 1-6.http://link.springer.com/10.1007/s00436-012-2952-4 [Internet].
[http://dx.doi.org/10.1007/s00436-012-2886-x] [PMID: 22411634]
[83]
Henry, M.; Summa, M.; Patrick, L. A Cohort of Cancer Patients with No Reported Cases of SARS-CoV-2 Infection : the Possible Preventive Role of Methylene Blue. Substantia., 2020, 4, 1-11.
[84]
Devaux, C.A.; Rolain, J-M.; Colson, P.; Raoult, D. New insights on the antiviral effects of chloroquine against coronavirus: what to expect for COVID-19? Int. J. Antimicrob. Agents, 2020, 55(5)105938https://linkinghub.elsevier.com/retrieve/pii/S0924857920300881 [Internet].
[http://dx.doi.org/10.1016/j.ijantimicag.2020.105938] [PMID: 32171740]
[85]
Zhang, H.; Penninger, J.M.; Li, Y.; Zhong, N.; Slutsky, A.S. Angiotensin-converting enzyme 2 (ACE2) as a SARS-CoV-2 receptor: molecular mechanisms and potential therapeutic target. Intensive Care Med., 2020, 46(4), 586-590.http://link.springer.com/10.1007/s00134-020-05985-9 [Internet].
[http://dx.doi.org/10.1007/s00134-020-05985-9] [PMID: 32125455]
[86]
Liu, J.; Cao, R.; Xu, M.; Wang, X.; Zhang, H.; Hu, H.; Li, Y.; Hu, Z.; Zhong, W.; Wang, M. Hydroxychloroquine, a less toxic derivative of chloroquine, is effective in inhibiting SARS-CoV-2 infection in vitro. Cell Discov., 2020, 6(1), 16.http://www.nature.com/articles/s41421-020-0156-0 [Internet].
[http://dx.doi.org/10.1038/s41421-020-0156-0] [PMID: 32194981]
[87]
Thoma, A. Pathophysiology and management of angiotensin-converting enzyme inhibitor-associated refractory hypotension during the perioperative period. AANA J., 2013, 81(2), 133-140.http://www.ncbi.nlm.nih.gov/pubmed/23971233 [Internet].
[PMID: 23971233]
[88]
Fredi, M.; Cavazzana, I.; Moschetti, L.; Andreoli, L.; Franceschini, F.; Airò, P. COVID-19 in patients with rheumatic diseases in northern Italy: a single-centre observational and case–control study. Lancet Rheumatol, 2020. Jun Available from: https://linkinghub.elsevier.com/retrieve/pii/S2665991320301697
[89]
Chen, X.; Geiger, J.D. Janus sword actions of chloroquine and hydroxychloroquine against COVID-19. Cell. Signal., 2020, 73109706https://linkinghub.elsevier.com/retrieve/pii/S0898656820301832 [Internet].
[http://dx.doi.org/10.1016/j.cellsig.2020.109706] [PMID: 32629149]
[90]
Hraiech, S.; Bourenne, J.; Kuteifan, K.; Helms, J.; Carvelli, J.; Gainnier, M.; Meziani, F.; Papazian, L. Lack of viral clearance by the combination of hydroxychloroquine and azithromycin or lopinavir and ritonavir in SARS-CoV-2-related acute respiratory distress syndrome. Ann. Intensive Care, 2020, 10(1), 63.https://annalsofintensivecare.springeropen.com/articles/10.1186/s13613-020-00678-4 [Internet].
[http://dx.doi.org/10.1186/s13613-020-00678-4] [PMID: 32449091]
[91]
Mitjà, O.; Corbacho-Monné, M.; Ubals, M.; Tebe, C.; Peñafiel, J.; Tobias, A. Hydroxychloroquine for Early Treatment of Adults with Mild Covid-19: A Randomized-Controlled Trial. Clin Infect Dis, 2020. Available from: http://www.ncbi.nlm.nih.gov/pubmed/32674126
[http://dx.doi.org/10.1093/cid/ciaa1009]
[92]
Maisonnasse, P.; Guedj, J.; Contreras, V.; Behillil, S.; Solas, C.; Marlin, R.; Naninck, T.; Pizzorno, A.; Lemaitre, J.; Gonçalves, A.; Kahlaoui, N.; Terrier, O.; Fang, R.H.T.; Enouf, V.; Dereuddre-Bosquet, N.; Brisebarre, A.; Touret, F.; Chapon, C.; Hoen, B.; Lina, B.; Calatrava, M.R.; van der Werf, S.; de Lamballerie, X.; Le Grand, R. Hydroxychloroquine use against SARS-CoV-2 infection in non-human primates. Nature, 2020, 585(7826), 584-587.http://www.nature.com/articles/s41586-020-2558-4 [Internet].
[http://dx.doi.org/10.1038/s41586-020-2558-4] [PMID: 32698191]
[93]
Yu, B.; Li, C.; Chen, P.; Zhou, N.; Wang, L.; Li, J. Low dose of hydroxychloroquine reduces fatality of critically ill patients with COVID-19. Sci. China Life Sci., 2020, (May), 1-7.
[http://dx.doi.org/10.1007/s11427-020-1732-2]
[94]
Skipper, C.P.; Pastick, K.A.; Engen, N.W.; Bangdiwala, A.S.; Abassi, M.; Lofgren, S.M.; Williams, D.A.; Okafor, E.C.; Pullen, M.F.; Nicol, M.R.; Nascene, A.A.; Hullsiek, K.H.; Cheng, M.P.; Luke, D.; Lother, S.A.; MacKenzie, L.J.; Drobot, G.; Kelly, L.E.; Schwartz, I.S.; Zarychanski, R.; McDonald, E.G.; Lee, T.C.; Rajasingham, R.; Boulware, D.R. Hydroxychloroquine in Nonhospitalized Adults With Early COVID-19 : A Randomized Trial. Ann. Intern. Med., 2020, 173(8), 623-631.https://www.acpjournals.org/doi/10.7326/M20-4207 [Internet].
[http://dx.doi.org/10.7326/M20-4207] [PMID: 32673060]
[95]
Mukherjee, P.K. Antiviral Evaluation of Herbal Drugs.Quality Control and Evaluation of Herbal Drugs; Elsevier, 2019, pp. 599-628.https://linkinghub.elsevier.com/retrieve/pii/B9780128133743000168
[http://dx.doi.org/10.1016/B978-0-12-813374-3.00016-8]
[96]
Zumla, A.; Niederman, M.S. Editorial: The explosive epidemic outbreak of novel coronavirus disease 2019 (COVID-19) and the persistent threat of respiratory tract infectious diseases to global health security. Curr. Opin. Pulm. Med., 2020, 26(3), 193-196.http://journals.lww.com/10.1097/MCP.0000000000000676 [Internet].
[http://dx.doi.org/10.1097/MCP.0000000000000676] [PMID: 32132379]
[97]
Garber, B.; Glauser, J. Recent Developments in Infectious Disease Chemotherapy: Review for Emergency Department Practitioners 2020. Curr. Emerg. Hosp. Med. Rep., 2020, 8(3), 1-6.http://link.springer.com/10.1007/s40138-020-00218-1 [Internet].
[http://dx.doi.org/10.1007/s40138-020-00218-1] [PMID: 32837804]
[98]
Ali, H.; Alvi, A.; Nawab, A.; Salman, S.; Zafar, F.; Naveed, S. Novel Drug Delivery Approaches in Formulation Development; Stability Considerations and Quality Features of Herbal Products. RADS J Pharm Pharm Sci., 2019, 7(3), 155-164.
[99]
Huang, C.; Wang, Y.; Li, X.; Ren, L.; Zhao, J.; Hu, Y.; Zhang, L.; Fan, G.; Xu, J.; Gu, X.; Cheng, Z.; Yu, T.; Xia, J.; Wei, Y.; Wu, W.; Xie, X.; Yin, W.; Li, H.; Liu, M.; Xiao, Y.; Gao, H.; Guo, L.; Xie, J.; Wang, G.; Jiang, R.; Gao, Z.; Jin, Q.; Wang, J.; Cao, B. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet, 2020, 395(10223), 497-506.https://linkinghub.elsevier.com/retrieve/pii/S0140673620301835 [Internet].
[http://dx.doi.org/10.1016/S0140-6736(20)30183-5] [PMID: 31986264]
[100]
Sheahan, T.P.; Sims, A.C.; Graham, R.L.; Menachery, V.D.; Gralinski, L.E.; Case, J.B.; Leist, S.R.; Pyrc, K.; Feng, J.Y.; Trantcheva, I.; Bannister, R.; Park, Y.; Babusis, D.; Clarke, M.O.; Mackman, R.L.; Spahn, J.E.; Palmiotti, C.A.; Siegel, D.; Ray, A.S.; Cihlar, T.; Jordan, R.; Denison, M.R.; Baric, R.S. Broad-spectrum antiviral GS-5734 inhibits both epidemic and zoonotic coronaviruses. Sci. Transl. Med., 2017, 9(396)eaal3653https://stm.sciencemag.org/lookup/doi/10.1126/scitranslmed.aal3653 [Internet].
[http://dx.doi.org/10.1126/scitranslmed.aal3653] [PMID: 28659436]
[101]
Müller, C.; Schulte, F.W.; Lange-Grünweller, K.; Obermann, W.; Madhugiri, R.; Pleschka, S.; Ziebuhr, J.; Hartmann, R.K.; Grünweller, A. Broad-spectrum antiviral activity of the eIF4A inhibitor silvestrol against corona- and picornaviruses. Antiviral Res., 2018, 150, 123-129.https://linkinghub.elsevier.com/retrieve/pii/S0166354217306381 [Internet].
[http://dx.doi.org/10.1016/j.antiviral.2017.12.010] [PMID: 29258862]
[102]
Hensel, A.; Bauer, R.; Heinrich, M.; Spiegler, V.; Kayser, O.; Hempel, G.; Kraft, K. Challenges at the Time of COVID-19: Opportunities and Innovations in Antivirals from Nature. Planta Med., 2020, 86(10), 659-664.http://www.thieme-connect.de/DOI/DOI?10.1055/a-1177-4396 [Internet].
[http://dx.doi.org/10.1055/a-1177-4396] [PMID: 32434254]
[103]
Biswas, A.; Bhattacharjee, U.; Chakrabarti, A.K.; Tewari, D.N.; Banu, H.; Dutta, S. Emergence of Novel Coronavirus and COVID-19: whether to stay or die out? Crit. Rev. Microbiol., 2020, 46(2), 182-193.https://www.tandfonline.com/doi/full/10.1080/1040841X.2020.1739001 [Internet].
[http://dx.doi.org/10.1080/1040841X.2020.1739001] [PMID: 32282268]
[104]
Park, S.; Lee, M-S.; Jung, S.; Lee, S.; Kwon, O.; Kreuter, M.H.; Perrinjaquet-Moccetti, T.; Min, B.; Yun, S.H.; Kim, Y. Echinacea purpurea Protects Against Restraint Stress-Induced Immunosuppression in BALB/c Mice. J. Med. Food, 2018, 21(3), 261-268.http://www.liebertpub.com/doi/10.1089/jmf.2017.4073 [Internet].
[http://dx.doi.org/10.1089/jmf.2017.4073] [PMID: 29215298]
[105]
Derksen, A.; Kühn, J.; Hafezi, W.; Sendker, J.; Ehrhardt, C.; Ludwig, S.; Hensel, A. Antiviral activity of hydroalcoholic extract from Eupatorium perfoliatum L. against the attachment of influenza A virus. J. Ethnopharmacol., 2016, 188, 144-152.https://linkinghub.elsevier.com/retrieve/pii/S0378874116302793 [Internet].
[http://dx.doi.org/10.1016/j.jep.2016.05.016] [PMID: 27178637]
[106]
Kim, S.J.; Lee, J.W.; Eun, Y.G.; Lee, K.H.; Yeo, S.G.; Kim, S.W. Pretreatment with a grape seed proanthocyanidin extract downregulates proinflammatory cytokine expression in airway epithelial cells infected with respiratory syncytial virus. Mol. Med. Rep., 2019, 19(4), 3330-3336.http://www.spandidos-publications.com/10.3892/mmr.2019.9967 [Internet].
[http://dx.doi.org/10.3892/mmr.2019.9967] [PMID: 30816467]
[107]
Zálešák, F.; Bon, D.J.D.; Pospíšil, J. Lignans and Neolignans: Plant secondary metabolites as a reservoir of biologically active substances. Pharmacol. Res., 2019, 146104284https://linkinghub.elsevier.com/retrieve/pii/S1043661818304961 [Internet].
[http://dx.doi.org/10.1016/j.phrs.2019.104284] [PMID: 31136813]
[108]
Boukhatem, M.N.; Setzer, W.N. Aromatic Herbs, Medicinal Plant-Derived Essential Oils, and Phytochemical Extracts as Potential Therapies for Coronaviruses: Future Perspectives. Plants (Basel), 2020, 9(6), 800.https://www.mdpi.com/2223-7747/9/6/800 [Internet].
[http://dx.doi.org/10.3390/plants9060800] [PMID: 32604842]
[109]
Dyall, J.; Coleman, C.M.; Hart, B.J.; Venkataraman, T.; Holbrook, M.R.; Kindrachuk, J.; Johnson, R.F.; Olinger, G.G., Jr; Jahrling, P.B.; Laidlaw, M.; Johansen, L.M.; Lear-Rooney, C.M.; Glass, P.J.; Hensley, L.E.; Frieman, M.B. Repurposing of clinically developed drugs for treatment of Middle East respiratory syndrome coronavirus infection. Antimicrob. Agents Chemother., 2014, 58(8), 4885-4893.https://aac.asm.org/content/58/8/4885 [Internet].
[http://dx.doi.org/10.1128/AAC.03036-14] [PMID: 24841273]
[110]
Shen, L.; Niu, J.; Wang, C.; Huang, B.; Wang, W.; Zhu, N. High-Throughput Screening and Identification of Novel Ultra-Potent Broad-Spectrum Inhibitors of Coronaviruses. SSRN Electron J, 2018, 93(12) Available from: https://www.ssrn.com/abstract=3205562
[http://dx.doi.org/10.2139/ssrn.3205562]
[111]
Niu, J.; Shen, L.; Huang, B.; Ye, F.; Zhao, L.; Wang, H.; Deng, Y.; Tan, W. Non-invasive bioluminescence imaging of HCoV-OC43 infection and therapy in the central nervous system of live mice. Antiviral Res., 2020, 173104646https://linkinghub.elsevier.com/retrieve/pii/S016635421930498X [Internet].
[http://dx.doi.org/10.1016/j.antiviral.2019.104646] [PMID: 31705922]
[112]
Shahani, L.; Ariza-Heredia, E.J.; Chemaly, R.F. Antiviral therapy for respiratory viral infections in immunocompromised patients. Expert Rev. Anti Infect. Ther., 2017, 15(4), 401-415.https://www.tandfonline.com/doi/full/10.1080/14787210.2017.1279970 [Internet].
[http://dx.doi.org/10.1080/14787210.2017.1279970] [PMID: 28067078]
[113]
Shin, J.S.; Jung, E.; Kim, M.; Baric, R.S.; Go, Y.Y. Saracatinib Inhibits Middle East Respiratory Syndrome-Coronavirus Replication In Vitro. Viruses, 2018, 10(6), 283.http://www.mdpi.com/1999-4915/10/6/283 [Internet].
[http://dx.doi.org/10.3390/v10060283] [PMID: 29795047]
[114]
Guo, Y.; Wang, Y.; Cao, L.; Wang, P.; Qing, J.; Zheng, Q.; Shang, L.; Yin, Z.; Sun, Y. A Conserved Inhibitory Mechanism of a Lycorine Derivative against Enterovirus and Hepatitis C Virus. Antimicrob. Agents Chemother., 2015, 60(2), 913-924.https://aac.asm.org/content/60/2/913 [Internet].
[http://dx.doi.org/10.1128/AAC.02274-15] [PMID: 26596952]
[115]
Yang, L.; Zhang, J.H.; Zhang, X.L.; Lao, G.J.; Su, G.M.; Wang, L.; Li, Y.L.; Ye, W.C.; He, J. Tandem mass tag-based quantitative proteomic analysis of lycorine treatment in highly pathogenic avian influenza H5N1 virus infection. PeerJ, 2019, 7(10)e7697https://peerj.com/articles/7697 [Internet].
[http://dx.doi.org/10.7717/peerj.7697] [PMID: 31592345]
[116]
Liu, X.; Zhang, M.; He, L.; Li, Y. Chinese herbs combined with Western medicine for severe acute respiratory syndrome (SARS). Cochrane Database Syst Rev, 2012 17 Oct;10 Available from: http://doi.wiley.com/10.1002/14651858.CD004882.pub3
[117]
Luo, H.; Tang, Q.L.; Shang, Y.X.; Liang, S.B.; Yang, M.; Robinson, N.; Liu, J.P. Can Chinese Medicine Be Used for Prevention of Corona Virus Disease 2019 (COVID-19)? A Review of Historical Classics, Research Evidence and Current Prevention Programs. Chin. J. Integr. Med., 2020, 26(4), 243-250.http://link.springer.com/10.1007/s11655-020-3192-6 [Internet].
[http://dx.doi.org/10.1007/s11655-020-3192-6] [PMID: 32065348]
[118]
Shanmugaraj, B.; Siriwattananon, K.; Wangkanont, K.; Phoolcharoen, W. Perspectives on monoclonal antibody therapy as potential therapeutic intervention for Coronavirus disease-19 (COVID-19). Asian Pac. J. Allergy Immunol., 2020, 38(1), 10-18.
[PMID: 32134278]
[119]
Tian, X.; Li, C.; Huang, A.; Xia, S.; Lu, S.; Shi, Z.; Lu, L.; Jiang, S.; Yang, Z.; Wu, Y.; Ying, T. Potent binding of 2019 novel coronavirus spike protein by a SARS coronavirus-specific human monoclonal antibody. Emerg. Microbes Infect., 2020, 9(1), 382-385.https://www.tandfonline.com/doi/full/10.1080/22221751.2020.1729069 [Internet].
[http://dx.doi.org/10.1080/22221751.2020.1729069] [PMID: 32065055]
[120]
Guaraldi, G.; Meschiari, M.; Cozzi-Lepri, A.; Milic, J.; Tonelli, R.; Menozzi, M. Tocilizumab in patients with severe COVID-19: a retrospective cohort study. Lancet Rheumatol, 2020 Aug ;2(8), e474-e484. Available from: https://linkinghub.elsevier.com/retrieve/pii/S2665991320301739
[121]
Xu, X.; Han, M.; Li, T.; Sun, W.; Wang, D.; Fu, B.; Zhou, Y.; Zheng, X.; Yang, Y.; Li, X.; Zhang, X.; Pan, A.; Wei, H. Effective treatment of severe COVID-19 patients with tocilizumab. Proc. Natl. Acad. Sci. USA, 2020, 117(20), 10970-10975.
[http://dx.doi.org/10.1073/pnas.2005615117] [PMID: 32350134]
[122]
Saghazadeh, A.; Rezaei, N. Towards treatment planning of COVID-19: Rationale and hypothesis for the use of multiple immunosuppressive agents: Anti-antibodies, immunoglobulins, and corticosteroids. Int. Immunopharmacol., 2020, 84106560https://linkinghub.elsevier.com/retrieve/pii/S1567576920310298 [Internet].
[http://dx.doi.org/10.1016/j.intimp.2020.106560] [PMID: 32413736]
[123]
Bergin, C.; Browne, P.; Murray, P.; O’Dwyer, M.; Conlon, N.; Kane, D. Interim Guidance for the use of Tocilizumab in the Management of Patients who have Severe COVID-19 with Suspected Hyperinflammation. Update, 2020. Available from: http://hdl.handle.net/10147/627491
[124]
Benucci, M.; Giannasi, G.; Cecchini, P.; Gobbi, F.L.; Damiani, A.; Grossi, V.; Infantino, M.; Manfredi, M. COVID-19 pneumonia treated with Sarilumab: A clinical series of eight patients. J. Med. Virol., 2020, 92(11), 2368-2370.
[http://dx.doi.org/10.1002/jmv.26062] [PMID: 32472703]
[125]
Vaidya, G.; Czer, L.S.C.; Kobashigawa, J.; Kittleson, M.; Patel, J.; Chang, D. Successful Treatment of Severe COVID-19 Pneumonia With Clazakizumab in a Heart Transplant Recipient: A Case Report. Transplant Proc, 2020. Jun Available from: https://linkinghub.elsevier.com/retrieve/pii/S0041134520325756
[126]
Liu, B; Li, M; Zhou, Z; Guan, X; Xiang, Y Can we use interleukin-6 (IL-6) blockade for coronavirus disease 2019 (COVID-19)-induced cytokine release syndrome (CRS)? J Autoimmun [Internet]., 2019 Jul ;111102452. Available from: https://doi.org/10.1016/j.jaut.2020.102452 [cited 2020 Aug 14]
[127]
Nile, S.H.; Nile, A.; Qiu, J.; Li, L.; Jia, X.; Kai, G. COVID-19: Pathogenesis, cytokine storm and therapeutic potential of interferons. Cytokine Growth Factor Rev., 2020, 53, 66-70.https://linkinghub.elsevier.com/retrieve/pii/S1359610120300708 [Internet].
[http://dx.doi.org/10.1016/j.cytogfr.2020.05.002] [PMID: 32418715]
[128]
Grupp, S.A.; Kalos, M.; Barrett, D.; Aplenc, R.; Porter, D.L.; Rheingold, S.R.; Teachey, D.T.; Chew, A.; Hauck, B.; Wright, J.F.; Milone, M.C.; Levine, B.L.; June, C.H. Chimeric antigen receptor-modified T cells for acute lymphoid leukemia. N. Engl. J. Med., 2013, 368(16), 1509-1518.http://www.nejm.org/doi/10.1056/NEJMoa1215134 [Internet].
[http://dx.doi.org/10.1056/NEJMoa1215134] [PMID: 23527958]
[129]
Vaninov, N. In the eye of the COVID-19 cytokine storm. Nat. Rev. Immunol., 2020, 20(5), 277-277.http://www.nature.com/articles/s41577-020-0305-6 [Internet].
[http://dx.doi.org/10.1038/s41577-020-0305-6] [PMID: 32249847]
[130]
Shimabukuro-Vornhagen, A.; Gödel, P.; Subklewe, M.; Stemmler, H.J.; Schlößer, H.A.; Schlaak, M.; Kochanek, M.; Böll, B.; von Bergwelt-Baildon, M.S. Cytokine release syndrome. J. Immunother. Cancer, 2018, 6(1), 56.http://jitc.bmj.com/lookup/doi/10.1186/s40425-018-0343-9 [Internet].
[http://dx.doi.org/10.1186/s40425-018-0343-9] [PMID: 29907163]
[131]
Sun, X.; Wang, T.; Cai, D.; Hu, Z.; Chen, J.; Liao, H.; Zhi, L.; Wei, H.; Zhang, Z.; Qiu, Y.; Wang, J.; Wang, A. Cytokine storm intervention in the early stages of COVID-19 pneumonia. Cytokine Growth Factor Rev., 2020, 53, 38-42.https://linkinghub.elsevier.com/retrieve/pii/S1359610120300484 [Internet].
[http://dx.doi.org/10.1016/j.cytogfr.2020.04.002] [PMID: 32360420]
[132]
Rothan, H.A.; Byrareddy, S.N. The epidemiology and pathogenesis of coronavirus disease (COVID-19) outbreak. J. Autoimmun., 2020, 109102433https://linkinghub.elsevier.com/retrieve/pii/S0896841120300469 [Internet].
[http://dx.doi.org/10.1016/j.jaut.2020.102433] [PMID: 32113704]
[133]
Mehta, P.; McAuley, D.F.; Brown, M.; Sanchez, E.; Tattersall, R.S.; Manson, J.J. HLH Across Speciality Collaboration, UK. COVID-19: consider cytokine storm syndromes and immunosuppression. Lancet, 2020, 395(10229), 1033-1034.https://linkinghub.elsevier.com/retrieve/pii/S0140673620306280 [Internet].
[http://dx.doi.org/10.1016/S0140-6736(20)30628-0] [PMID: 32192578]
[134]
Moore, J.B.; June, C.H. Cytokine release syndrome in severe COVID-19. Science (80- ), 2020 1 May;368(6049), 473-474. Available from: https://www.sciencemag.org/lookup/doi/10.1126/science.abb8925
[135]
Ruan, Q.; Yang, K.; Wang, W.; Jiang, L.; Song, J. Clinical predictors of mortality due to COVID-19 based on an analysis of data of 150 patients from Wuhan, China. Intensive Care Med., 2020, 46(5), 846-848.http://link.springer.com/10.1007/s00134-020-05991-x [Internet].
[http://dx.doi.org/10.1007/s00134-020-05991-x] [PMID: 32125452]
[136]
Hunter, C.A.; Jones, S.A. IL-6 as a keystone cytokine in health and disease. Nat. Immunol., 2015, 16(5), 448-457.http://www.nature.com/articles/ni.3153 [Internet].
[http://dx.doi.org/10.1038/ni.3153] [PMID: 25898198]
[137]
Tanaka, T.; Narazaki, M.; Kishimoto, T. Immunotherapeutic implications of IL-6 blockade for cytokine storm. Immunotherapy, 2016, 8(8), 959-970.https://www.futuremedicine.com/doi/10.2217/imt-2016-0020 [Internet].
[http://dx.doi.org/10.2217/imt-2016-0020] [PMID: 27381687]
[138]
Zhang, C.; Wu, Z.; Li, J-W.; Zhao, H.; Wang, G-Q. Cytokine release syndrome in severe COVID-19: interleukin-6 receptor antagonist tocilizumab may be the key to reduce mortality. Int. J. Antimicrob. Agents, 2020, 55(5)105954https://linkinghub.elsevier.com/retrieve/pii/S0924857920301047 [Internet].
[http://dx.doi.org/10.1016/j.ijantimicag.2020.105954] [PMID: 32234467]
[139]
Hay, K.A.; Hanafi, L-A.; Li, D.; Gust, J.; Liles, W.C.; Wurfel, M.M.; López, J.A.; Chen, J.; Chung, D.; Harju-Baker, S.; Cherian, S.; Chen, X.; Riddell, S.R.; Maloney, D.G.; Turtle, C.J. Kinetics and biomarkers of severe cytokine release syndrome after CD19 chimeric antigen receptor-modified T-cell therapy. Blood, 2017, 130(21), 2295-2306.https://ashpublications.org/blood/article/130/21/2295/36661/Kinetics-and-biomarkers-of-severe-cytokine-release [Internet].
[http://dx.doi.org/10.1182/blood-2017-06-793141] [PMID: 28924019]
[140]
Li, H.; Chen, C.; Hu, F.; Wang, J.; Zhao, Q.; Gale, R.P.; Liang, Y. Impact of corticosteroid therapy on outcomes of persons with SARS-CoV-2, SARS-CoV, or MERS-CoV infection: a systematic review and meta-analysis. Leukemia, 2020, 34(6), 1503-1511.http://www.nature.com/articles/s41375-020-0848-3 [Internet].
[http://dx.doi.org/10.1038/s41375-020-0848-3] [PMID: 32372026]
[141]
Russell, C.D.; Millar, J.E.; Baillie, J.K. Clinical evidence does not support corticosteroid treatment for 2019-nCoV lung injury. Lancet, 2020, 395(10223), 473-475.https://linkinghub.elsevier.com/retrieve/pii/S0140673620303172 [Internet].
[http://dx.doi.org/10.1016/S0140-6736(20)30317-2] [PMID: 32043983]
[142]
José, R.J.; Williams, A.E.; Mercer, P.F.; Sulikowski, M.G.; Brown, J.S.; Chambers, R.C. Regulation of neutrophilic inflammation by proteinase-activated receptor 1 during bacterial pulmonary infection. J. Immunol., 2015, 194(12), 6024-6034.http://www.jimmunol.org/lookup/doi/10.4049/jimmunol.1500124 [Internet].
[http://dx.doi.org/10.4049/jimmunol.1500124] [PMID: 25948816]
[143]
Jose, R.J.; Manuel, A. COVID-19 cytokine storm: the interplay between inflammation and coagulation. Lancet Respir. Med., 2020, 8(6), e46-e47.https://linkinghub.elsevier.com/retrieve/pii/S2213260020302162 [Internet].
[http://dx.doi.org/10.1016/S2213-2600(20)30216-2] [PMID: 32353251]
[144]
Ahn, H-S.; Foster, C.; Boykow, G.; Stamford, A.; Manna, M.; Graziano, M. Inhibition of cellular action of thrombin by N3-cyclopropyl-7-{[4-(1-methylethyl)phenyl]methyl}-7H-pyrrolo[3,2-f]quinazoline-1,3-diamine (SCH 79797), a nonpeptide thrombin receptor antagonist. Biochem. Pharmacol., 2000, 60(10), 1425-1434.http://www.sciencedirect.com/science/article/pii/S0006295200004603 [Internet].
[http://dx.doi.org/10.1016/S0006-2952(00)00460-3] [PMID: 11020444]
[145]
Guan, Y.; Nakano, D.; Zhang, Y.; Li, L.; Liu, W.; Nishida, M.; Kuwabara, T.; Morishita, A.; Hitomi, H.; Mori, K.; Mukoyama, M.; Masaki, T.; Hirano, K.; Nishiyama, A. A protease-activated receptor-1 antagonist protects against podocyte injury in a mouse model of nephropathy. J. Pharmacol. Sci., 2017, 135(2), 81-88.https://linkinghub.elsevier.com/retrieve/pii/S1347861317301287 [Internet].
[http://dx.doi.org/10.1016/j.jphs.2017.09.002] [PMID: 29110957]
[146]
Pan, H.; Boucher, M.; Kaunelis, D. PAR-1 Antagonists: An Emerging Antiplatelet Drug Class [Internet]. CADTH Issues in Emerging Health Technologies. Canadian Agency for Drugs and Technologies in Health, 2016. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27809429
[147]
Dastan, F.; Abedini, A.; Shahabi, S.; Kiani, A.; Saffaei, A.; Zare, A. Sitagliptin Repositioning in SARS-CoV-2: Effects on ACE-2, CD-26, and Inflammatory Cytokine Storms in the Lung. Iran. J. Allergy Asthma Immunol., 2020, 19(S1), 10-12.https://publish.kne-publishing.com/index.php/IJAAI/article/view/2849 [Internet].
[PMID: 32534505]
[148]
Beraldo, J.I.; Benetti, A.; Borges-Júnior, F.A.; Arruda-Junior, D.F.; Martins, F.L.; Jensen, L.; Dariolli, R.; Shimizu, M.H.; Seguro, A.C.; Luchi, W.M.; Girardi, A.C.C. Cardioprotection Conferred by Sitagliptin Is Associated with Reduced Cardiac Angiotensin II/Angiotensin-(1-7) Balance in Experimental Chronic Kidney Disease. Int. J. Mol. Sci., 2019, 20(8), 1940.https://www.mdpi.com/1422-0067/20/8/1940 [Internet].
[http://dx.doi.org/10.3390/ijms20081940] [PMID: 31010001]
[149]
Curtin, N.; Bányai, K.; Thaventhiran, J.; Le Quesne, J.; Helyes, Z.; Bai, P. Repositioning PARP inhibitors for SARS-CoV-2 infection(COVID-19); a new multi-pronged therapy for acute respiratory distress syndrome? Br. J. Pharmacol., 2020, 177(16), 3635-3645.https://onlinelibrary.wiley.com/doi/abs/10.1111/bph.15137 [Internet].
[http://dx.doi.org/10.1111/bph.15137] [PMID: 32441764]
[150]
Dziadkowiec, K.N.; Gąsiorowska, E.; Nowak-Markwitz, E.; Jankowska, A. PARP inhibitors: review of mechanisms of action and BRCA1/2 mutation targeting. Menopausal Rev, 2017 0208., 2016 Dec ;4(4), 215-219. Available from: https://pubmed.ncbi.nlm.nih.gov/28250726
[151]
Geenen, J.J.J.; Linn, S.C.; Beijnen, J.H.; Schellens, J.H.M. PARP Inhibitors in the Treatment of Triple-Negative Breast Cancer. Clin. Pharmacokinet., 2018, 57(4), 427-437.http://link.springer.com/10.1007/s40262-017-0587-4 [Internet].
[http://dx.doi.org/10.1007/s40262-017-0587-4] [PMID: 29063517]
[152]
Mittica, G.; Ghisoni, E.; Giannone, G.; Genta, S.; Aglietta, M.; Sapino, A. PARP Inhibitors in Ovarian Cancer. Recent Pat Anticancer Drug Discov, 2018 3 Oct;13(4), 392-410. Available from: http://www.eurekaselect.com/160235/article
[http://dx.doi.org/10.2174/1574892813666180305165256]
[153]
Virtanen, V.; Paunu, K.; Ahlskog, J.K.; Varnai, R.; Sipeky, C.; Sundvall, M. PARP Inhibitors in Prostate Cancer—The Preclinical Rationale and Current Clinical Development. Genes (Basel), 2019, 10(8), 565.https://www.mdpi.com/2073-4425/10/8/565 [Internet].
[http://dx.doi.org/10.3390/genes10080565] [PMID: 31357527]
[154]
McGonagle, D.; Sharif, K.; O’Regan, A.; Bridgewood, C. The Role of Cytokines including Interleukin-6 in COVID-19 induced Pneumonia and Macrophage Activation Syndrome-Like Disease. Autoimmun. Rev., 2020, 19(6)102537https://linkinghub.elsevier.com/retrieve/pii/S1568997220300926 [Internet].
[http://dx.doi.org/10.1016/j.autrev.2020.102537] [PMID: 32251717]
[155]
Cinatl, J.; Morgenstern, B.; Bauer, G.; Chandra, P.; Rabenau, H.; Doerr, H.W. Treatment of SARS with human interferons. Lancet, 2003, 362(9380), 293-294.https://linkinghub.elsevier.com/retrieve/pii/S0140673603139736 [Internet].
[http://dx.doi.org/10.1016/S0140-6736(03)13973-6] [PMID: 12892961]
[156]
Blazek, K.; Eames, H.L.; Weiss, M.; Byrne, A.J.; Perocheau, D.; Pease, J.E. IFN-λ resolves inflammation via suppression of neutrophil infiltration and IL-1β production. J Exp Med, 2015 1 Jun;212(6), 845-853. Available from: https://rupress.org/jem/article/212/6/845/41810/IFN
[157]
Dumoutier, L.; Tounsi, A.; Michiels, T.; Sommereyns, C.; Kotenko, S.V.; Renauld, J-C. Role of the interleukin (IL)-28 receptor tyrosine residues for antiviral and antiproliferative activity of IL-29/interferon-λ 1: similarities with type I interferon signaling. J. Biol. Chem., 2004, 279(31), 32269-32274.http://www.jbc.org/lookup/doi/10.1074/jbc.M404789200 [Internet].
[http://dx.doi.org/10.1074/jbc.M404789200] [PMID: 15166220]
[158]
Weber, A.; Wasiliew, P.; Kracht, M. Interleukin-1 (IL-1) pathway. Sci. Signal., 2010, 3(105), cm1-cm1.https://stke.sciencemag.org/lookup/doi/10.1126/scisignal.3105cm1 [Internet].
[PMID: 20086235]
[159]
Jesus, A.A.; Goldbach-Mansky, R. IL-1 blockade in autoinflammatory syndromes. Annu. Rev. Med., 2014, 65(1), 223-244.http://www.annualreviews.org/doi/10.1146/annurev-med-061512-150641 [Internet].
[http://dx.doi.org/10.1146/annurev-med-061512-150641] [PMID: 24422572]
[160]
Shakoory, B.; Carcillo, J.A.; Chatham, W.W.; Amdur, R.L.; Zhao, H.; Dinarello, C.A.; Cron, R.Q.; Opal, S.M. Interleukin-1 Receptor Blockade Is Associated With Reduced Mortality in Sepsis Patients With Features of Macrophage Activation Syndrome: Reanalysis of a Prior Phase III Trial. Crit. Care Med., 2016, 44(2), 275-281.http://journals.lww.com/00003246-201602000-00005 [Internet].
[http://dx.doi.org/10.1097/CCM.0000000000001402] [PMID: 26584195]
[161]
Højen, J.F.; Kristensen, M.L.V.; McKee, A.S.; Wade, M.T.; Azam, T.; Lunding, L.P.; de Graaf, D.M.; Swartzwelter, B.J.; Wegmann, M.; Tolstrup, M.; Beckman, K.; Fujita, M.; Fischer, S.; Dinarello, C.A. IL-1R3 blockade broadly attenuates the functions of six members of the IL-1 family, revealing their contribution to models of disease. Nat. Immunol., 2019, 20(9), 1138-1149.http://www.nature.com/articles/s41590-019-0467-1 [Internet].
[http://dx.doi.org/10.1038/s41590-019-0467-1] [PMID: 31427775]
[162]
Ye, Q.; Wang, B.; Mao, J. The pathogenesis and treatment of the ‘Cytokine Storm’ in COVID-19. J. Infect., 2020, 80(6), 607-613.https://linkinghub.elsevier.com/retrieve/pii/S0163445320301651 [Internet].
[http://dx.doi.org/10.1016/j.jinf.2020.03.037] [PMID: 32283152]
[163]
Elessa, D.; Thietart, S.; Corpechot, C.; Fain, O.; Mekinian, A. TNF-α antagonist infliximab for aseptic abscess syndrome. Presse Med., 2019, 48(12), 1579-1580.https://linkinghub.elsevier.com/retrieve/pii/S0755498219304658 [Internet].
[http://dx.doi.org/10.1016/j.lpm.2019.09.056] [PMID: 31757730]
[164]
Gallagher, J.; Fisher, C.; Sherman, B.; Munger, M.; Meyers, B.; Ellison, T.; Fischkoff, S.; Barchuk, W.T.; Teoh, L.; Velagapudi, R. A multicenter, open-label, prospective, randomized, dose-ranging pharmacokinetic study of the anti-TNF-α antibody afelimomab in patients with sepsis syndrome. Intensive Care Med., 2001, 27(7), 1169-1178.http://link.springer.com/10.1007/s001340100973 [Internet].
[http://dx.doi.org/10.1007/s001340100973] [PMID: 11534565]
[165]
van Schie, K.A.; Hart, M.H.; de Groot, E.R.; Kruithof, S.; Aarden, L.A.; Wolbink, G.J.; Rispens, T. The antibody response against human and chimeric anti-TNF therapeutic antibodies primarily targets the TNF binding region. Ann. Rheum. Dis., 2015, 74(1), 311-314.http://ard.bmj.com/lookup/doi/10.1136/annrheumdis-2014-206237 [Internet].
[http://dx.doi.org/10.1136/annrheumdis-2014-206237] [PMID: 25342759]
[166]
&NA; CDP 571. Drugs R D [Internet]., 2003, 4(3), 174-178. Available from: https://doi.org/10.2165/00126839-200304030-00006
[167]
Kratz, F.; Elsadek, B. Clinical impact of serum proteins on drug delivery. J. Control. Release, 2012, 161(2), 429-445.https://linkinghub.elsevier.com/retrieve/pii/S0168365911010820 [Internet].
[http://dx.doi.org/10.1016/j.jconrel.2011.11.028] [PMID: 22155554]
[168]
Duret, P-M.; Sebbag, E.; Mallick, A.; Gravier, S.; Spielmann, L.; Messer, L. Recovery from COVID-19 in a patient with spondyloarthritis treated with TNF-alpha inhibitor etanercept. Ann Rheum Dis, 2020 30 Apr; annrheumdis-2020-217362. Available from: http://ard.bmj.com/lookup/doi/10.1136/annrheumdis-2020-217362
[169]
Govindaraj, C.; Madondo, M.; Kong, Y.Y.; Tan, P.; Wei, A.; Plebanski, M. Lenalidomide-based maintenance therapy reduces TNF receptor 2 on CD4 T cells and enhances immune effector function in acute myeloid leukemia patients. Am. J. Hematol., 2014, 89(8), 795-802.http://doi.wiley.com/10.1002/ajh.23746 [Internet].
[http://dx.doi.org/10.1002/ajh.23746] [PMID: 24757092]
[170]
The Lenercept Multiple Sclerosis Study Group and The University of British Columbia MS/MRI Analysis Group. TNF neutralization in MS: results of a randomized, placebo-controlled multicenter study. Neurology, 1999, 53(3), 457-465.http://www.ncbi.nlm.nih.gov/pubmed/10449104 [Internet].
[http://dx.doi.org/10.1212/WNL.53.3.457] [PMID: 10449104]
[171]
Papp, K. Clinical development of onercept, a tumor necrosis factor binding protein, in psoriasis. Curr. Med. Res. Opin., 2010, 26(10), 2287-2300.http://www.tandfonline.com/doi/full/10.1185/03007995.2010.507492 [Internet].
[http://dx.doi.org/10.1185/03007995.2010.507492] [PMID: 20718590]
[172]
Lim, J.C.; Ko, K.I.; Mattos, M.; Fang, M.; Zhang, C.; Feinberg, D.; Sindi, H.; Li, S.; Alblowi, J.; Kayal, R.A.; Einhorn, T.A.; Gerstenfeld, L.C.; Graves, D.T. TNFα contributes to diabetes impaired angiogenesis in fracture healing. Bone, 2017, 99, 26-38.https://linkinghub.elsevier.com/retrieve/pii/S8756328217300686 [Internet].
[http://dx.doi.org/10.1016/j.bone.2017.02.014] [PMID: 28285015]
[173]
Siltuximab. React Wkly, 1791 15 Feb;1791(1), 239-239. Available from: https://www.ncbi.nlm.nih.gov/books/NBK548932/?report=classic
[174]
Mesa, R.A. Ruxolitinib, a selective JAK1 and JAK2 inhibitor for the treatment of myeloproliferative neoplasms and psoriasis. IDrugs, 2010, 13(6), 394-403.
[PMID: 20506062]
[175]
Richardson, P.; Griffin, I.; Tucker, C.; Smith, D.; Oechsle, O.; Phelan, A.; Rawling, M.; Savory, E.; Stebbing, J. Baricitinib as potential treatment for 2019-nCoV acute respiratory disease. Lancet, 2020, 395(10223), e30-e31.https://linkinghub.elsevier.com/retrieve/pii/S0140673620303044 [Internet].
[http://dx.doi.org/10.1016/S0140-6736(20)30304-4] [PMID: 32032529]
[176]
Seif, F.; Aazami, H.; Khoshmirsafa, M.; Kamali, M.; Mohsenzadegan, M.; Pornour, M.; Mansouri, D. JAK Inhibition as a New Treatment Strategy for Patients with COVID-19. Int. Arch. Allergy Immunol., 2020, 181(6), 467-475.https://www.karger.com/Article/FullText/508247 [Internet].
[http://dx.doi.org/10.1159/000508247] [PMID: 32392562]
[177]
Liu, Q.; Zhou, Y.H.; Yang, Z.Q. The cytokine storm of severe influenza and development of immunomodulatory therapy. Cell. Mol. Immunol., 2016, 13(1), 3-10.http://www.nature.com/articles/cmi201574 [Internet].
[http://dx.doi.org/10.1038/cmi.2015.74] [PMID: 26189369]
[178]
Soy, M.; Keser, G.; Atagündüz, P.; Tabak, F.; Atagündüz, I.; Kayhan, S. Cytokine storm in COVID-19: pathogenesis and overview of anti-inflammatory agents used in treatment. Clin. Rheumatol., 2020, 39(7), 2085-2094.http://link.springer.com/10.1007/s10067-020-05190-5 [Internet].
[http://dx.doi.org/10.1007/s10067-020-05190-5] [PMID: 32474885]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy