COVID-19/tuberculosis interaction: how the persistence of a millennial disease impacts the severity of an emerging pandemic

Authors

DOI:

https://doi.org/10.33448/rsd-v10i11.19754

Keywords:

Tuberculosis; COVID-19; Impact; Coinfection; History; Epidemiology; Risk factors; Diagnosis; Vaccine; Clinical/laboratory changes.

Abstract

COVID-19 is a communicable disease caused by the SARS-CoV-2 virus, which emerged in December 2019, in China. Such a pathogen has spread across the globe in an uncontrolled manner, culminating in a pandemic that has been causing disastrous impacts. In most deaths from COVID-19, hypertension, obesity, diabetes mellitus, heart disease, and respiratory conditions, such as tuberculosis, were present. Tuberculosis is a disease caused by the bacteria Mycobacterium tuberculosis, and is a major public health problem worldwide due to its wide geographic dispersion, cases of multidrug resistance, and because it is a relevant factor for morbidity and mortality. In addition, its main characteristic is pulmonary involvement, which is of great concern when associated with cases of COVID-19. The objective of this work is to systematize information, critically contextualizing the central issue about the COVID-19/tuberculosis interaction, seeking to analyze evidence described on the subject with emphasis on its direct and indirect impacts. To this end, an integrative literature review was conducted, outlined by searching for bibliographies and scientific articles in the main electronic repositories. The descriptors used were: tuberculosis, COVID-19, impact, coinfection, history, epidemiology, risk factors, diagnosis, vaccine, and clinical/laboratory changes. Finally, we note that the COVID-19/tuberculosis interaction is associated with unfavorable and lethal outcomes for patients, as well as indirect impacts. Therefore, new strategies for the control/management of both diseases are of great urgency. However, knowledge on the subject is still limited, with the need for further studies on the possible variables and effects still unknown.

References

Alfaraj, S. H., Al-Tawfiq, J. A., Altuwaijri, T. A., & Memish, Z. A. (2018). Middle East respiratory syndrome coronavirus and pulmonary tuberculosis coinfection: Implications for infection control. American Journal of Infection Control, 46(2), 165-168. Doi: 10.1016/j.ajic.2017.08.010.

Athikarisamy, S. E. (2020). Does BCG bolster one's immunity against COVID-19? Retrieved aug 19, 2021, from https://www.bmj.com/content/368/bmj.m1252/rr-4.

Awasthi, S., & Moin S. (1999). Effectiveness of BCG vaccination against tuberculous meningitis. Indian Pediatr, 36, 455–460.

Andrade Júnior, F. P. de, Silva Neta, M. das N., Silva, K. S. da, Moraes, G. F. Q., Teixeira, A. P. de C., Lima, I. O., & Lima, E. de O. (2020). Antituberculosis in pregnancy: a review. Research, Society and Development, 9(6), e118963714. https://doi.org/10.33448/rsd-v9i6.3714.

Brasil. (2017). Departamento Penitenciário Nacional. Levantamento Nacional de Informações Penitenciárias: INFOPEN. Disponível em: <https://www.gov.br/depen/pt-br/sisdepen/mais-informacoes/relatorios-infopen/relatorios-sinteticos/infopen-jun-2017.pdf>.

Churchyard, G., et al. (2017). What We Know About Tuberculosis Transmission: An Overview. The Journal of Infectous Diseases. 216(6), 629-635. Doi: https://doi.org/10.1093/infdis/jix362.

Craig, G. M., Joly L. M., & Zumla, A. (2014). Complexbutcoping: experience of symptoms of tuberculosis and health care seeking behaviours - a qualitative interview study of urban risk groups. London. UK. BMC Public Health, 14(618), 1-9.

Daniel, T. M. (2006). Captain of Death: The story of tuberculosis. New York. University of Rochester Press.

Denis, M., et al. (2020). Convipendium: Overview of information available to support the development of medical counter measures and interventions against COVID-19. Transdiscipl Insights - Living Paper, 4(1), 1-296. Doi: 10.11116/TDI2020.4.10.SI.Covipendium.

Desouky, E. (2020). BCG versus COVID 19: impact on urology. World Journal of Urology, 39, 823–827. Doi: https://doi.org/10.1007/s00345-020-03251-7.

Dheda, K., Third, C., Third, B., & Maartens, G. (2016). Tuberculosis. The Lancet, 387(10024), 1211-1226. Doi: https://doi.org/10.1016/s0140-6736(15)00151-8.

Diao, B., Wang, C., TAN, Y., et al. (2020). Reduction and functional exhaustion of T cells in patients with coronavirus disease 2019 (COVID-19). Front Immunol, 11(827). Doi: https://doi.org/10.3389/fimmu.2020.00827.

Echeverría, G., Espinoza, W., & de Waard, J. H. (2020). How TB and COVID-19 compare: an opportunity to integrate both control programmes. Int J Tuberc Lung Dis, 24(9), 971-974. Doi: https://doi.org/10.5588/ ijtld.20.0417.

Falasca, L., Nardacci, R., Colombo, D., Lalle, E., Di Caro, A., Nicastri, E., et al. (2020). Post mortem Findings in Italian Patients With COVID-19: A Descriptive Full Autopsy Study of Cases With and Without Comorbidities. J InfectDis, 222(11), 1807-1815. Doi: http://dx.doi.org/10.1093/infdis/jiaa578.

Ferri, A. O., Aguiar, B., Wilhelm, C. M., et al. (2014). Diagnóstico da Tuberculose: uma revisão. Novo Hamburgo. Revista Liberato, 15(4), 105-212.

Garrido, R. G., & Garrido, F. S. R. G. (2020). COVID-19: Um Panorama com Ênfase em Medidas Restritivas de Contato Interpessoal. Interfaces Científicas-Saúde e Ambiente, 8(2), 127-141. Doi: https://doi.org/10.17564/2316-3798.2020v8n2p127-141.

Gheblawi, M., Wang, K., Viveiros, A., Nguyen, Q., Zhong, J. C., Turner, A. J., Raizada, M. K., Grant, M. B., & Oudit, G. Y. (2020). Angiotensin-converting enzyme 2: SARS-CoV-2 receptor and regulator of the renin-angiotensin system. Circ Res, 126, 1456–1474. Doi:10.1161/CIRCRESAHA.120.317015.

Glaziou, P. (2020). Predicted Impact of the COVID-19 Pandemic on Global Tuberculosis Deaths. medRxiv. Doi: https://doi.org/10.1101/2020.04.28.20079582.

Gomes, R. R., Antunes, D. E., Dos Santos, D. F., Sabino, E. F. P., Oliveira, D. B., & Goulart, I. M. B. (2019). BCG vaccine and leprosy household contacts: protective effect and probability to becoming sick during follow-up. Vaccine, 37, 6510–6517. Doi:10.1016/j.vaccine.2019.08.067.

Guan, W. J., et al. (2020). China Medical Treatment Expert Group for Covid-19. ClinicalCharacteristics of CoronavirusDisease 2019 in China. N Engl J Med, 382, 1708-1720. Doi: https://doi.org/10.1056/ NEJMoa2002032.

Guinn, K. M., & Rubin, E. J. (2017). Tuberculosis: Just theFAQs. mBio, 8(6), e01910-17. Doi: 10.1128/mBio.01910-17.

Gupta, A., Madhavan, M. V., Sehgal, K., Nair, N., et al. (2020). Extrapulmonary manifestations of COVID-19. Nat Med, 26, 1017–1032. Doi: 10.1038/s41591-020-0968-3.

Higgins, J, P., Soares-Weiser, K., López-López, J. A., Kakourou, A. et al. (2016). Association of BCG, DTP, and measles containing vaccines with childhood mortality: systematic review. BMJ, 355, i5170. Doi:10.1136/bmj.i5170.

Hikmet, F., Mear, L., Edvinsson, Å., Micke, P., Uhlen M., & Lindskog, C. (2020). The protein expression profile of ACE2 in human tissues. Mol Syst Biol, 16, e9610. Doi: https://doi.org/10.15252/msb.20209610.

Imai, Y., Kuba, K., Rao, S., Huan, Y., Guo, F., et al. (2005). Angiotensin-converting enzyme 2 protects from severe acute lung failure. Nature, 436, 112– 116. Doi: 10.1038/nature03712.

Jia, H. (2016). Pulmonary angiotensin-converting enzyme 2 (ACE2) and inflammatory lung disease. Shock, 46, 239–248. Doi: 10.1097/ SHK.0000000000000633.

Kleinnijenhuis, J., Quintin, J., Preijers, F., Joosten, L. A., et al. (2014). BCG induced trained immunity in NK cells: role for non-specific protection to infection. Clin Immunol, 155, 213–219. Doi: 10.1016/ j.clim.2014.10.005.

Kleinnijenhuis, J., Van Crevel, R., & Netea, M. G. (2015). Trained immunity: consequences for the heterologous effects of BCG vaccination. Trans R Soc Trop Med Hyg, 109, 29–35. Doi: 10.1093/ trstmh/tru168.

Li, Z., et al. (2020). Development and Clinical Application of A Rapid IgM-IgG Combined Antibody Test for SARS-CoV-2 Infection Diagnosis. J Med Virol, 92(9), 1518-1524. Doi: https://doi.org/10.1002/ jmv.25727.

Li, J., Huang, D. Q., Zou, B., et al. (2021). Epidemiology of COVID-19: A systematic review and meta-analysis of clinical characteristics, risk factors, and outcomes. J Med Virol, 93, 1449- 1458. Doi: https://doi.org/10.1002/jmv.26424.

Liu, Y., et al. (2020). Clinical and biochemical indexes from 2019-nCoV infected patients linked to viral loads and lung injury. Sci China Life Sci, 63(3), 364-374. Doi: https://doi.org/10.1007/ s11427-020-1643-8.

Loveday, M., Cox, H., Evans, D., Furin, J., Ndjeka, N., Osman, M., et al. (2020). Opportunitiesfrom a new disease for anoldthreat: Extending COVID-19 effortstoaddresstuberculosis in South Africa. S Afr Med J, 110(12), 1160-1167. Doi: https://doi.org/10.7196/SAMJ.2020. v110i12.15126.

Lu, H. (2020). Drug treatment options for the 2019-new coronavirus (2019-nCoV). Biosci Trends, 14(1), 69-71. Doi: https://doi.org/10.5582/bst.2020.01020.

Lucas, C., Wong, P., Klein, J., Castro, T. B. R., Silva, J., Sundaram, M., et al. (2020). Longitudinal analyses reveal immunological misfiring in severe COVID-19. Nature, 584(7821), 463-469. Doi: http://dx.doi.org/10.1038/s41586-020-2588-y.

Mangtani, P., Abubakar, I., Ariti, C., Beynon, R., Pimpin, L., et al. (2014). Protection by BCG vaccine against tuberculosis: a systematic review of randomized controlled trials. Clin Infect Dis, 58, 470–80. Doi: 10.1093/cid/cit790.

Mehta, P., McAuley, D. F., Brown, M., Sanchez, E., Tattersall, R. S., & Manson, J. J. (2020). COVID-19: consider cytokine storm syndromes and immune suppression. Lancet, 395(10229), 1033-1034. Doi: http://dx. doi.org/10.1016/S0140-6736(20)30628-0.

Miller, A., Reandelar, M. J., Fasciglione, K., et al. (2020). Correlation between universal BCG vaccination policy and reduced morbidity and mortality for COVID-19: an epidemiological study. medRxiv. Doi: https://doi.org/10.1101/2020.03.24.20042937.

Motta, I., Centis, R., D’Ambrosio, L., García-García, J. M., Goletti, D., Gualano, G., et al. (2020). Tuberculosis, COVID-19 and migrants: Preliminary analysis of deathso ccurring in 69 patients from two cohorts. Pulmonology, 26(4), 233-240. Doi: https://doi.org/10.1016/j.pulmoe.2020.05.002.

Pathangey, E., et al. (2021). Angiotensin-converting enzyme 2 and COVID-19: patients, comorbidities, and therapies.

Am J Physiol Lung Cell Mol Physiol, 320(3), 303-330. Doi: https://doi.org/10.1152/ajplung.00259.2020.

Pereira, A. S., et al. (2018). Metodologia da pesquisa científica. UFSM.

Puelles, V. G., Lutgehetmann, M. €., Lindenmeyer, M. T., Sperhake, J. P., Wong, M. N., et al. (2020). Multiorgan and renal tropism of SARS-CoV-2. N Engl J Med, 383, 590–592. Doi: 10.1056/NEJMc2011400.

Raman, B., Cassar, M. P., Tunnicliffe, E. M., Filippini, N., Griffanti, L., FAlfaro-Almagro, F., et al. (2020). Medium-term effects of SARS-CoV-2 infection on multiple vital organs, exercise capacity, cognition, quality of life and mental health, post-hospital discharge. medRxiv. Doi: http://dx.doi. org/10.1101/2020.10.15.20205054, 2020.10.15.20205054.

Rosen, G. (1994). Uma história da Saúde Pública. São Paulo: Hucitec.

Sousa, G. O., Sales, B. N., Gomes, J. G. F., Silva, M. do A., & Oliveira, G. A. L. de. (2020). Tuberculosis epidemiology in northeastern Brazil, 2015 – 2019. Research, Society and Development, 9(8), e82985403. Doi: https://doi.org/10.33448/rsd-v9i8.5403.

Stop TB Partnership. (2020). The Potential Impact of the COVID-19 Response On Tuberculosis In High-BurdenCountries: A Modelling Analysis. In collaboration with Imperial College, Avenir Health, Johns Hopkins University and USAID. Available in: <https://www.stoptb.org/assets/documents/news/Modeling%20Report_1%20May%202020_FINAL.pdf>.

Sy, K. T. L., Haw, N. J. L., & Uy, J. (2020). Previous and active tuberculosis increases risk of death and prolongs recovery in patients with COVID-19. London. Infect Dis, 52(12), 902-907. Doi: https://doi.org/10.1080/23744235. 2020.1806353.

Tadolini, M., Codecasa, L. R., García-García, J. M., Blanc, F. X., Borisov, S., Alffenaar, J. W., et al. (2020). Active tuberculosis, sequelaeand COVID-19 coinfection: first cohort of 49 cases. Eur Respir J, 56(1), 2001398. Doi: https://doi.org/10.1183/13993003.01398-2020.

Tamuzi, J. L., Ayele, B. T., Shumba, C. S., Adetokunboh, O. O., Uwimana-Nicol, J., Haile, Z. T., et al. (2020). Implications of COVID-19 in high burden countries for HIV/TB: A systematic review of evidence. BMC Infect Dis, 20(744), 1-18. Doi: https://doi.org/10.1186/s12879-020-05450-4.

Tan, W., et al. (2020). A Novel Coronavirus Genome Identified in a Cluster of Pneumonia Cases — Wuhan, China 2019−2020. China CDC Weekly. 2(4), 61-62. Doi: https://doi.org/10.1056/ NEJMoa2001017.

To, K. K. W., Tsang, O. T. Y., Leung, W. S., et al. (2020). Temporal profiles of viral load in posterior oropharyngeal saliva samples and serum antibody responses during infection by SARSCoV-2: anobservational cohort study. Lancet InfectDis, 20, 565-574. Doi: https://doi.org/10.1016/S1473-3099(20)30196-1.

Togun, T., Kampmann, B., Stoker, N. G., & Lipman, M. (2020). Anticipating the impact of the COVID-19 pandemic on TB patients and TB control programmes. Ann Clin Microbiol Antimicrob, 19(21), 1-6. Doi: https://doi.org/10.1186/s12941-020-00363-1.

Trunz, B. B., Fine, P., & Dye, C. (2006). Effect of BCG vaccination on childhood tuberculous meningitis and miliary tuberculosis worldwide: a meta-analysis and assessment of cost-effectiveness. Lancet, 367, 1173–1180. Doi:10.1016/S0140-6736(06)68507-3.

Udwadia, Z. F., Vora, A., Tripathi, A. R., Malu, K. N., Lange, C., & Raju, R. S. (2020). COVID-19 – Tuberculosis interactions: When dark forces colide. Indian Journal of Tuberculosis,67(4), 155-162. Doi: https://doi.org/10.1016/j.ijtb.2020.07.003.

Vabret, N., Britton, G. J., Gruber, C., Hegde, S., Kim, J., Kuksin, M., et al. (2020). Immunology of COVID-19: current state of the Science. Immunity, 52, 910–941. Doi:10.1016/j. immuni.2020.05.002.

Wang, D., Hu, B., Hu, C., Zhu, F., Liu, X., Zhang, J., et al. (2020). Clinical Characteristics of 138 Hospitalized Patients With 2019 Novel Coronavirus-Infected Pneumonia in Wuhan, China. JAMA, 323(11), 1061-1069. Doi: http://dx.doi. org/10.1001/jama.2020.1585.

Wang, Y., Dong, C., Hu, Y., et al. (2020). Temporal changes of CT findings in 90 patients with COVID-19 pneumonia: a longitudinal study. Radiology, 296(2), 55-64. Doi: 10.1148/radiol.2020200843.

Wang, Z., Yang, B., Li, Q., Wen, L., & Zhang, R. (2020). Clinical Features of 69 Cases With Coronavirus Disease 2019 in Wuhan, China. Clin Infect Dis, 71(15), 769-777. Doi: http://dx.doi. org/10.1093/cid/ciaa272.

Wingfield, T., Cuevas, L. E., MacPherson, P., Millington, K. A., & Squire, S. B. (2020). Tack ling two pandemics: a plea on World Tuberculosis Day. Lancet Respir Med, 8(6), 536-538. Doi: https://doi.org/10.1016/S2213-2600(20)30151-X.

Wong, C. Y., Wong, K. Y., Law, T. S., Shum, T. T., Li, Y. K., & Pang, W. K. (2004). Tuberculosis in a SARS outbreak. J Chin Med Assoc, 67(11), 579-582.

Who. (2020). COVID-19: Considerations for tuberculosis (TB) care. Retrieved 9 Aug, 2021, from https://www.who.int/docs/default-source/documents/tuberculosis/infonote-tb-covid-19.pdf.

Who. (2020). Draft landscape of COVID-19 candidate vaccines. Retrived 10 Aug, 2021, from https://www.who. int/blueprint/priority-diseases/key-action/novel-coronavirus-landscape-ncov.pdf?ua=1.

Who. (2005). Global tuberculosis control: surveillance, planning, financing. Retrieved 6 Aug, 2021, from https://apps.who.int/iris/bitstream/handle/10665/9241562919_eng.pdf.

Who. (2019). Global Tuberculosis Report 2019. Retrieved 10 Aug, 2021, from https://apps.who.int/iris/bitstream/han dle/10665/329368/9789241565714-eng.pdf?ua=1.

Who. (2020). Rolling updates on coronavirus disease (COVID-19). Retrived 10 Aug, 2021, from https://www.who.int/ emergencies/diseases/novel-coronavirus-2019/events-as-they-happen.

Who. (2020). Statement on these condmeeting of the International Health Regulations Emergency Committee eregarding the outbreak of novel coronavirus (2019-nCoV). Retrieved 11 Aug, 2021, from https://www.who.int/news-room/detail/30-01-2020-statement-on-the-second-meeting-of-theinternational-health-regulations-(2005)-emergency-committee-regarding-the-outbreak-of-novelcoronavirus-(2019-ncov).

Wu, P., Hao, X., Lau, E. H. Y., Wong, J. Y., Leung, K. S. M., Wu, J. T., et al. Real-time tentative assessment of the epidemiological characteristics of novel coronavirus infections in Wuhan, China, as at 22 January 2020. Euro Surveill, 25(3), 2000044. Doi: 10.2807/1560-7917.ES.2020.25.3.2000044.

Yang, J., Zheng, Y., Gou, X., et al. (2020). Prevalence of comorbidities and its effects in coronavirus disease 2019 patients: a systematic review and meta-analysis. Int J Infect Dis, 94, 91-95. Doi: https://doi.org/10.1016/j.ijid.2020.03.017.

Ye, R., & Liu, Z. (2020). ACE2 exhibits protective effects against LPS-induced acute lung injury in mice by inhibiting the LPS-TLR4 pathway. Exp Mol Pathol, 113, 104350. Doi: 10.1016/j.yexmp.2019.104350.

Zhang, W., et al. (2020). Molecular and serological investigation of 2019-nCoV infected patients: implication of multiples heddin groutes. Emerg Microbes Infect, 9(1), 386-389. Doi: https://doi.org/10.1080/22221751.2020.1729071.

Zimmermann, P., & Curtis, N. (2018). The influence of BCG on vaccine responses - a systematic review. Expert Rev Vaccines, 17, 547–554. Doi: 10.1080/14760584.2018.1483727.

Zou, X., Chen, K., Zou, J., Han, P., Hao, J., & Han, Z. Single-cell RNA-seq data analysis on the receptor ACE2 expression reveals the potential risk of different human organs vulnerable to 2019-nCoV infection. Front Med, 14, 185–192. Doi:10.1007/s11684-020-0754-0.

Published

02/09/2021

How to Cite

SILVA, L. L. M. da; GARRIDO, R. G. COVID-19/tuberculosis interaction: how the persistence of a millennial disease impacts the severity of an emerging pandemic. Research, Society and Development, [S. l.], v. 10, n. 11, p. e305101119754, 2021. DOI: 10.33448/rsd-v10i11.19754. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/19754. Acesso em: 20 apr. 2024.

Issue

Section

Review Article