Ácidos grasos de cadena corta y media como precursores para inhibir los síntomas del coronavirus

Palabras clave: ácidos grasos, antiinflamatorio, antimicrobiano, citocinas, coronavirus

Resumen

Los ácidos grasos de cadena corta (acético C2:0, propiónico C3:0 y butírico C4:0) y media (caproico C6:0, caprílico C8:0, cáprico C10:0  y láurico C12:0), se originan por la fermentación de la ingesta de fibra en la dieta, llevada a cabo por los microorganismos en el tracto intestinal, y se encuentra en algunos alimentos, su consumo ejerce un efecto antiinflamatorio y antiviral, en virtud de que reducen la expresión de citocinas proinflamatorias como TNF-α, IL-6 e IL-12 y la mediación de IL-10 y son antimicrobianos contra hongos, virus y bacterias debido a que destruyen su membrana celular respectivamente. El objetivo de este trabajo fue revisar el efecto de los ácidos grasos de cadena corta y media, como precursores para inhibir los síntomas del coronavirus. Se ha realizado una búsqueda bibliográfica a través de bases de datos electrónicas y estudios han demostrado que los C2:0, C3:0 y C4:0 a una concentración de 200 mM, 50 mM y 5 mM respectivamente, reducen la inflamación mediante la activación de varios GPCR, que suprimen la expresión de moléculas de adhesión en células inflamatorias y células endoteliales, previniendo la quimiotaxis de monocitos en el sitio inflamatorio. Mientras que el C12:0 a 250 mM es antimicrobiano e inhibe la etapa de maduración tardía del ciclo de replicación del virus. En conclusión, la ingesta de C2:0, C3:0, C4:0 y C12:0 podría disminuir o inhibir los síntomas de la familia del coronavirus, como es el COVID-19.

Descargas

La descarga de datos todavía no está disponible.

Citas

Schönfeld P, Wojtczak L. Short- and medium-chain fatty acids in energy metabolism: the cellular perspective. J Lipid Res. 2016; 57(6): 943-54.

Wang S, Wang Y, Shahidi F, Ho CT. Lipids and Health. En: Bailey AE, Shahidi F, editores. Bailey's Industrial Oil and Fat Products. USA; 2020: 1-22.

Parada Venegas D, De la Fuente MK, Landskron G, González MJ, Quera R, Dijkstra G, et al. Short Chain Fatty Acids (SCFAs)-Mediated Gut Epithelial and Immune Regulation and Its Relevance for Inflammatory Bowel Diseases. Front Immunol. 2019; 10: 277.

Kim DB, Jang GJ, Yoo M, Lee G, Yun SS, Lim HS, et al. Sorbic, benzoic and propionic acids in fishery products: a survey of the South Korean market. Food Addit Contam Part A Chem Anal Control Expo Risk Assess. 2018; 35(6): 1071-1077.

Hernández MAG, Canfora EE, Jocken JWE, Blaak EE. The Short-Chain Fatty Acid Acetate in Body Weight Control and Insulin Sensitivity. Nutrients. 2019; 11(8): 1943.

Stilling RM, van de Wouw M, Clarke G, Stanton C, Dinan TG, Cryan JF. The neuropharmacology of butyrate: The bread and butter of the microbiota-gut-brain axis? Neurochem Int. 2016; 99: 110-132.

Dalile B, Van Oudenhove L, Vervliet B, Verbeke K. The role of short-chain fatty acids in microbiota-gut-brain communication. Nat Rev Gastroenterol Hepatol. 2019; 16(8): 461-478.

Sánchez HN, Moroney JB, Gan H, Shen T, Im JL, Li T, et al. B cell-intrinsic epigenetic modulation of antibody responses by dietary fiber-derived short-chain fatty acids. Nat Commun. 2020; 11(60): 1-19.

Liu H, Wang J, He T, et al. Butyrate: A Double-Edged Sword for Health?. Adv Nutr. 2018; 9(1): 21-29.

Nitbani FO, Jumina, Siswanta D, Solikhah EN. Isolation and Antibacterial Activity Test of Lauric Acid from Crude Coconut Oil (Cocos nucifera L.). Procedia Chem. 2016; 18: 132-140.

Jackman JA, Boyd RD, Elrod CC. Medium-chain fatty acids and monoglycerides as feed additives for pig production: towards gut health improvement and feed pathogen mitigation.J Animal Sci Biotechnol. 2020; 11(44): 2-15.

Wang J, Wang X, Li J, Chen Y, Yang W, Zhang L. Effects of Dietary Coconut Oil as a Medium-chain Fatty Acid Source on Performance, Carcass Composition and Serum Lipids in Male Broilers. Asian-Australas J Anim Sci. 2015; 28(2): 223-30.

Boateng L, Ansong R, Owusu WB, Steiner-Asiedu M. Coconut oil and palm oil's role in nutrition, health and national development: A review. Ghana Med J. 2016; 50(3): 189-196.

Efendy Goon D, Sheikh Abdul Kadir SH, Latip NA, Ab Rahim S, Mazlan M. Palm Oil in Lipid-Based Formulations and Drug Delivery Systems. Biomolecules. 2019; 9(2): 64.

Mancini A, Imperlini E, Nigro E, Montagnese C, Daniele A, Orrù S, et al. Biological and Nutritional Properties of Palm Oil and Palmitic Acid: Effects on Health. Molecules. 2015; 20(9): 17339-17361.

Gesteiro E, Galera-Gordo J, González-Gross M. Aceite de palma y salud cardiovascular: consideraciones para valorar la literatura. Nutr Hosp. 2018; 35(5): 1229-1242.

Rojas M, Rodríguez Y, Monsalve D, Acosta-Ampudia Y, Camacho B, Gallo JE, et al. Convalescent plasma in Covid-19: Possible mechanisms of action. Autoimmun Rev 2020; 19(7): 2-10.

Esakandari H, Nabi-Afjadi M, Fakkari-Afjadi J, Farahmandian N, Miresmaeili SM, Bahreini E. A comprehensive review of COVID-19 characteristics. Biol Proced Online. 2020; 22: 19.

Soy M, Keser G, Atagündüz P, Tabak F, Atagündüz I, Kayhan S. Cytokine storm in COVID-19: pathogenesis and overview of anti-inflammatory agents used in treatment. Clin Rheumatol. 2020; 39(7): 2085-2094.

Song P, Li W, Xie J, Hou Y, You C. Cytokine storm induced by SARS-CoV-2. Clin Chim Acta. 2020; 509: 280-287.

Ciampolini M. Residue, Fiber and Subjectivity. Adv Nutr. 2016; 7(2): 420.

Bailey MA, Holscher HD. Microbiome-Mediated Effects of the Mediterranean Diet on Inflammation. Adv Nutr. 2018; 9(3): 193-206.

Silva YP, Bernardi A, Frozza RL. The Role of Short-Chain Fatty Acids From Gut Microbiota in Gut-Brain Communication. Front Endocrinol. 2020; 11: 1-14.

Bach Knudsen KE. Microbial degradation of whole-grain complex carbohydrates and impact on short-chain fatty acids and health. Adv Nutr. 2015; 6(2): 206-13.

Pujol JB, Christinat N, Ratinaud Y, Savoia C, Mitchell SE, Dioum EHM. Coordination of GPR40 and Ketogenesis Signaling by Medium Chain Fatty Acids Regulates Beta Cell Function. Nutrients. 2018; 10(4): 473.

Wallace TC. Health Effects of Coconut Oil-A Narrative Review of Current Evidence. J Am Coll Nutr. 2019; 38(2): 97-107.

Chatterjee P, Fernando M, Fernando B, Dias CB, Shah T, Silva R, et al. Potential of coconut oil and medium chain triglycerides in the prevention and treatment of Alzheimer's disease. Mech Ageing Dev. 2020; 186: 1-10.

Corrêa-Oliveira R, Fachi JL, Vieira A, Sato FT, Vinolo MA. Regulation of immune cell function by short-chain fatty acids. Clin Transl Immunology. 2016; 5(4): e73.

Brown EM, Kenny DJ, Xavier, RJ. Gut Microbiota Regulation of T Cells During Inflammation and Autoimmunity. Annu. Rev Immunol. 2019; 26(37): 599-624..

Haase S, Haghikia A, Wilck N, Müller DN, Linker RA. Impacts of microbiome metabolites on immune regulation and autoimmunity. Immunology. 2018; 154(2): 230-238.

Kim CH. Immune regulation by microbiome metabolites. Immunology. 2018; 154(2): 220-229.

Zhang Y, Zhang B, Dong L, Chang P. Potential of Omega-3 Polyunsaturated Fatty Acids in Managing Chemotherapy- or Radiotherapy-Related Intestinal Microbial Dysbiosis. Adv Nutr. 2019; 10(1): 133-147.

Li M, van Esch BCAM, Wagenaar GTM, Garssen J, Folkerts G, Henricks PAJ. Pro- and anti-inflammatory effects of short chain fatty acids on immune and endothelial cells. Eur J Pharmacol. 2018; 831: 52-59.

Shukla S, Tekwani BL. Histone Deacetylases Inhibitors in Neurodegenerative Diseases, Neuroprotection and Neuronal Differentiation. Front Pharmacol. 2020; 11: 537.

Tan JK, McKenzie C, Mariño E, Macia L, Mackay CR. Metabolite-Sensing G Protein-Coupled Receptors-Facilitators of Diet-Related Immune Regulation. Annu Rev Immunol. 2017; 35: 371-402.

Melhem H, Kaya B, Ayata CK, Hruz P, Niess JH. Metabolite-Sensing G Protein-Coupled Receptors Connect the Diet-Microbiota-Metabolites Axis to Inflammatory Bowel Disease. Cells. 2019; 8(5): 450.

Li G, Fan Y, Lai Y, Han T, Li Z, Zhou P. Coronavirus infections and immune responses. J Med Virol. 2020; 92(4): 424-432.

Weisberg E, Sattler M, Yang P, Parent A, Gray N, Griffin J. Current Therapies Under Investigation for COVID-19 Potential COVID-19 Treatments. Can J Physiol Pharmacol. 2020; 98(8): 483-489.

Wu C, Chen X, Cai Y, Xia J, Zhou X, Xu S, et al. Risk Factors Associated With Acute Respiratory Distress Syndrome and Death in Patients With Coronavirus Disease 2019 Pneumonia in Wuhan, China. JAMA Intern Med. 2020; 180(7): 934–943.

Suárez V, Suarez Quezada M, Oros Ruiz S, Ronquillo De Jesús E. Epidemiology of COVID-19 in Mexico: from the 27th of February to the 30th of April 2020. Rev Clin Esp. 2020; 220(8): 463-471..

Bhaskar S, Sinha A, Banach M, Mittoo S, Weissert R, Kass JS, et al. Cytokine Storm in COVID-19-Immunopathological Mechanisms, Clinical Considerations, and Therapeutic Approaches: The REPROGRAM Consortium Position Paper. Front Immunol. 2020; 11: 1648.

Ragab D, Salah Eldin H, Taeimah M, Khattab R, Salem R. The COVID-19 Cytokine Storm; What We Know So Far. Front Immunol. 2020; 11: 1446.

Yang L, Liu S, Liu J, Zhang Z, Wan X, Huang B, et al. COVID-19: Immunopathogenesis and Immunotherapeutics. Sig Transduct Target Ther. 2020; 5: 128.

Chen G, Wu D, Guo W, Cao Y, Huang D, Wang H, et al. Clinical and immunological features of severe and moderate coronavirus disease 2019. J Clin Invest. 2020; 130(5): 2620-2629..

Kaisar MMM, Pelgrom LR, van der Ham AJ, Yazdanbakhsh M, Everts B. Butyrate Conditions Human Dendritic Cells to Prime Type 1 Regulatory T Cells via both Histone Deacetylase Inhibition and G Protein-Coupled Receptor 109A Signaling. Front Immunol. 2017; 8: 1429.

Chen J, Vitetta L. The Role of Butyrate in Attenuating Pathobiont-Induced Hyperinflammation. Immune Netw. 2020; 20(2): e15.

Wang J, Wei Z, Zhang X, Wang Y, Yang Z, Fu Y. Propionate Protects against Lipopolysaccharide-Induced Mastitis in Mice by Restoring Blood-Milk Barrier Disruption and Suppressing Inflammatory Response. Front Immunol. 2017; 8: 1108.

Chen G, Ran X, Li B, Li Y, He D, Huang B, et al. Sodium Butyrate Inhibits Inflammation and Maintains Epithelium Barrier Integrity in a TNBS-induced Inflammatory Bowel Disease Mice Model. EBioMedicine. 2018; 30: 317-325.

Magnusson MK, Isaksson S, Öhman L. The Anti-inflammatory Immune Regulation Induced by Butyrate Is Impaired in Inflamed Intestinal Mucosa from Patients with Ulcerative Colitis. Inflammation. 2020; 43(2): 507-517.

Liu J, Zhu H, Li B, Lee C, Alganabi M, Zheng S, et al. Beneficial effects of butyrate in intestinal injury. J Pediatr Sur. 2020; 55(6): 1088-1093.

Archer DL, Kramer DC. The Use of Microbial Accessible and Fermentable Carbohydrates and/or Butyrate as Supportive Treatment for Patients With Coronavirus SARS-CoV-2 Infection. Front Med (Lausanne). 2020; 7: 292.

Sencio V, Barthelemy A, Tavares LP, Machado MG, Soulard D, Cuinat C, et al. Gut Dysbiosis during Influenza Contributes to Pulmonary Pneumococcal Superinfection through Altered Short-Chain Fatty Acid Production. Cell Rep. 2020; 30(9): 2934-2947..

Matsue M, Mori Y, Nagase S, Sugiyama Y, Hirano R, Ogai K, et al. Measuring the Antimicrobial Activity of Lauric Acid against Various Bacteria in Human Gut Microbiota Using a New Method. Cell Transplant. 2019; 28(12): 1528-1541.

Li Y. The application of caprylic acid in downstream processing of monoclonal antibodies. Protein Expr Purif. 2019; 153: 92-96.

Solano R, Sierra C, Murillo M. Antifungal activity of LDPE/lauric acid films against Colletotrichum tamarilloi. Food Packag Shelf Life. 2020; 24: 1-8.

Anzaku AA, Ishaku JI, Juliet A, Obianuju EC. Antibacterial Activity of Lauric Acid on Some Selected Clinical Isolates. Ann Clin Lab Res. 2017; 5(2), 1-5.

Yang HT, Chen JW, Rathod J, Jiang YZ, Tsai PJ, Hung YP, et al. Lauric Acid Is an Inhibitor of Clostridium difficile Growth in Vitro and Reduces Inflammation in a Mouse Infection Model. Front Microbiol. 2018; 8: 2635.

Widianingrum DC, Noviandi CT, Salasia, SIO. Antibacterial and immunomodulator activities of virgin coconut oil (VCO) against Staphylococcus aureus. Heliyon. 2019; 5(10): 1-5.

Soliman S, Faris M, E, Ratemi Z, Halwani R. Switching Host Metabolism as an Approach to Dampen SARS-CoV-2 Infection. Ann Nutr Metab. 2020: 1-7.

Jadhav A, Mortale S, Halbandge S, Jangid P, Patil R, Gade W, et al. The Dietary Food Components Capric Acid and Caprylic Acid Inhibit Virulence Factors in Candida albicans Through Multitargeting. J Med Food. 2017; 20(11): 1083-1090.

Publicado
2021-06-05
Cómo citar
Mateos-Islas, M., Ventura-Pérez, P., & Ariza-Ortega, J. A. (2021). Ácidos grasos de cadena corta y media como precursores para inhibir los síntomas del coronavirus. Educación Y Salud Boletín Científico Instituto De Ciencias De La Salud Universidad Autónoma Del Estado De Hidalgo, 9(18), 224-231. https://doi.org/10.29057/icsa.v9i18.6918

Artículos más leídos del mismo autor/a