Systems biology models to identify the influence of SARS-CoV-2 infections to the progression of human autoimmune diseases

https://doi.org/10.1016/j.imu.2022.101003Get rights and content
Under a Creative Commons license
open access

Abstract

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been circulating since 2019, and its global dominance is rising. Evidences suggest the respiratory illness SARS-CoV-2 has a sensitive affect on causing organ damage and other complications to the patients with autoimmune diseases (AD), posing a significant risk factor. The genetic interrelationships and molecular appearances between SARS-CoV-2 and AD are yet unknown. We carried out the transcriptomic analytical framework to delve into the SARS-CoV-2 impacts on AD progression. We analyzed both gene expression microarray and RNA-Seq datasets from SARS-CoV-2 and AD affected tissues. With neighborhood-based benchmarks and multilevel network topology, we obtained dysfunctional signaling and ontological pathways, gene disease (diseasesome) association network and protein-protein interaction network (PPIN), uncovered essential shared infection recurrence connectivities with biological insights underlying between SARS-CoV-2 and AD. We found a total of 77, 21, 9, 54 common DEGs for SARS-CoV-2 and inflammatory bowel disorder (IBD), SARS-CoV-2 and rheumatoid arthritis (RA), SARS-CoV-2 and systemic lupus erythematosus (SLE) and SARS-CoV-2 and type 1 diabetes (T1D). The enclosure of these common DEGs with bimolecular networks revealed 10 hub proteins (FYN, VEGFA, CTNNB1, KDR, STAT1, B2M, CD3G, ITGAV, TGFB3). Drugs such as amlodipine besylate, vorinostat, methylprednisolone, and disulfiram have been identified as a common ground between SARS-CoV-2 and AD from drug repurposing investigation which will stimulate the optimal selection of medications in the battle against this ongoing pandemic triggered by COVID-19.

Keywords

COVID-19
SARS-CoV-2
Autoimmune diseases
Transcriptomic analysis
DEGs
Protein-protein interaction network (PPIN)
Hub gene
Drug repurposing

Cited by (0)