1932

Abstract

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has created a global pandemic. Beyond the well-described respiratory manifestations, SARS-CoV-2 may cause a variety of neurologic complications, including headaches, alteration in taste and smell, encephalopathy, cerebrovascular disease, myopathy, psychiatric diseases, and ocular disorders. Herein we describe SARS-CoV-2’s mechanism of neuroinvasion and the epidemiology, outcomes, and treatments for neurologic manifestations of COVID-19.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-med-042320-010427
2022-01-27
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/med/73/1/annurev-med-042320-010427.html?itemId=/content/journals/10.1146/annurev-med-042320-010427&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    CDC (Cent. Dis. Control Prev.) 2020. COVID data tracker. Centers for Disease Control and Prevention https://covid.cdc.gov/covid-data-tracker/#datatracker-home
    [Google Scholar]
  2. 2. 
    Bhatraju PK, Ghassemieh BJ, Nichols M et al. 2020. Covid-19 in critically ill patients in the Seattle region—case series. N. Engl. J. Med. 382:2012–22
    [Google Scholar]
  3. 3. 
    Cummings MJ, Baldwin MR, Abrams D et al. 2020. Epidemiology, clinical course, and outcomes of critically ill adults with COVID-19 in New York City: a prospective cohort study. Lancet 395:102391763–70
    [Google Scholar]
  4. 4. 
    McMichael TM, Currie DW, Clark S et al. 2020. Epidemiology of Covid-19 in a long-term care facility in King County, Washington. N. Engl. J. Med. 382:212005–11
    [Google Scholar]
  5. 5. 
    Wiersinga WJ, Rhodes A, Cheng AC et al. 2020. Pathophysiology, transmission, diagnosis, and treatment of coronavirus disease 2019 (COVID-19): a review. JAMA 324:8782–93
    [Google Scholar]
  6. 6. 
    Ziehr DR, Alladina J, Petri CR et al. 2020. Respiratory pathophysiology of mechanically ventilated patients with COVID-19: a cohort study. Am. J. Respir. Crit. Care Med. 201:121560–64
    [Google Scholar]
  7. 7. 
    Ellul MA, Benjamin L, Singh B et al. 2020. Neurological associations of COVID-19. Lancet Neurol 19:9767–83
    [Google Scholar]
  8. 8. 
    Romero-Sánchez CM, Díaz-Maroto I, Fernández-Díaz E et al. 2020. Neurologic manifestations in hospitalized patients with COVID-19: the ALBACOVID registry. Neurology 95:8e1060–70
    [Google Scholar]
  9. 9. 
    Helms J, Kremer S, Merdji H et al. 2020. Neurologic features in severe SARS-CoV-2 infection. N. Engl. J. Med. 382:232268–70
    [Google Scholar]
  10. 10. 
    Mao L, Jin H, Wang M et al. 2020. Neurologic manifestations of hospitalized patients with coronavirus disease 2019 in Wuhan, China. JAMA Neurol 77:6683–90
    [Google Scholar]
  11. 11. 
    Zubair AS, McAlpine LS, Gardin T et al. 2020. Neuropathogenesis and neurologic manifestations of the coronaviruses in the age of coronavirus disease 2019: a review. JAMA Neurol 77:81018–27
    [Google Scholar]
  12. 12. 
    Prather KA, Wang CC, Schooley RT. 2020. Reducing transmission of SARS-CoV-2. Science 368:64981422–24
    [Google Scholar]
  13. 13. 
    Dubé M, Le Coupanec A, Wong AHM et al. 2018. Axonal transport enables neuron-to-neuron propagation of human coronavirus OC43. J. Virol. 92:17e00404-18
    [Google Scholar]
  14. 14. 
    Yang L, Han Y, Nilsson-Payant BE et al. 2020. A human pluripotent stem cell-based platform to study SARS-CoV-2 tropism and model virus infection in human cells and organoids. Cell Stem Cell 27:1125–36.e7
    [Google Scholar]
  15. 15. 
    Li Y-C, Bai W-Z, Hashikawa T. 2020. The neuroinvasive potential of SARS-CoV2 may play a role in the respiratory failure of COVID-19 patients. J. Med. Virol. 92:6552–55
    [Google Scholar]
  16. 16. 
    Rhea EM, Logsdon AF, Hansen KM et al. 2020. The S1 protein of SARS-CoV-2 crosses the blood–brain barrier in mice. Nat. Neurosci. 24:368–78
    [Google Scholar]
  17. 17. 
    Paniz-Mondolfi A, Bryce C, Grimes Z et al. 2020. Central nervous system involvement by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). J. Med. Virol. 92:7699–702
    [Google Scholar]
  18. 18. 
    Kantonen J, Mahzabin S, Mäyränpää MI et al. 2020. Neuropathologic features of four autopsied COVID-19 patients. Brain Pathol 30:61012–16
    [Google Scholar]
  19. 19. 
    Solomon IH, Normandin E, Bhattacharyya S et al. 2020. Neuropathological features of Covid-19. N. Engl. J. Med. 383:10989–92
    [Google Scholar]
  20. 20. 
    Brann DH, Tsukahara T, Weinreb C et al. 2020. Non-neuronal expression of SARS-CoV-2 entry genes in the olfactory system suggests mechanisms underlying COVID-19-associated anosmia. Sci. Adv. 6:31eabc5801
    [Google Scholar]
  21. 21. 
    Gu J, Gong E, Zhang B et al. 2005. Multiple organ infection and the pathogenesis of SARS. J. Exp. Med. 202:3415–24
    [Google Scholar]
  22. 22. 
    Howard J, Guy J. 2020. Doctors say loss of sense of smell might be Covid-19 symptom. CNN Health Mar. 23. https://www.cnn.com/2020/03/23/health/coronavirus-symptoms-smell-intl/index.html
    [Google Scholar]
  23. 23. 
    Spinato G, Fabbris C, Polesel J et al. 2020. Alterations in smell or taste in mildly symptomatic outpatients with SARS-CoV-2 infection. JAMA 323:202089–90
    [Google Scholar]
  24. 24. 
    Lechien JR, Chiesa-Estomba CM, De Siati DR et al. 2020. Olfactory and gustatory dysfunctions as a clinical presentation of mild-to-moderate forms of the coronavirus disease (COVID-19): a multicenter European study. Eur. Arch. Otorhinolaryngol. 277:82251–61
    [Google Scholar]
  25. 25. 
    Giacomelli A, Pezzati L, Conti F et al. 2020. Self-reported olfactory and taste disorders in patients with severe acute respiratory coronavirus 2 infection: a cross-sectional study. Clin. Infect. Dis. 71:15889–90
    [Google Scholar]
  26. 26. 
    Ibekwe TS, Fasunla AJ, Orimadegun AE. 2020. Systematic review and meta-analysis of smell and taste disorders in COVID-19. OTO Open 4:32473974X20957975
    [Google Scholar]
  27. 27. 
    Speth MM, Singer-Cornelius T, Oberle M et al. 2020. Olfactory dysfunction and sinonasal symptomatology in COVID-19: prevalence, severity, timing, and associated characteristics. Otolaryngol. Head Neck Surg. 163:1114–20
    [Google Scholar]
  28. 28. 
    Politi LS, Salsano E, Grimaldi M. 2020. Magnetic resonance imaging alteration of the brain in a patient with coronavirus disease 2019 (COVID-19) and anosmia. JAMA Neurol 77:81028–29
    [Google Scholar]
  29. 29. 
    Whitcroft KL, Hummel T. 2020. Olfactory dysfunction in COVID-19: diagnosis and management. JAMA 323:242512
    [Google Scholar]
  30. 30. 
    Huang C, Wang Y, Li X et al. 2020. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 395:10223497–506
    [Google Scholar]
  31. 31. 
    Bolay H, Gül A, Baykan B. 2020. COVID-19 is a real headache!. Headache 60:71415–21
    [Google Scholar]
  32. 32. 
    Guan W, Ni Z, Hu Y et al. 2020. Clinical characteristics of coronavirus disease 2019 in China. N. Engl. J. Med. 382:181708–20
    [Google Scholar]
  33. 33. 
    Zhu J, Ji P, Pang J et al. 2020. Clinical characteristics of 3062 COVID-19 patients: a meta-analysis. J. Med. Virol. 92:101902–14
    [Google Scholar]
  34. 34. 
    Borges do Nascimento IJ, Cacic N, Abdulazeem HM et al. 2020. Novel coronavirus infection (COVID-19) in humans: a scoping review and meta-analysis. J. Clin. Med. 9:4941
    [Google Scholar]
  35. 35. 
    Pun BT, Badenes R, Heras La Calle G et al. 2021. Prevalence and risk factors for delirium in critically ill patients with COVID-19 (COVID-D): a multicentre cohort study. Lancet Respir. Med. 9:3239–50
    [Google Scholar]
  36. 36. 
    Ely EW, Shintani A, Truman B et al. 2004. Delirium as a predictor of mortality in mechanically ventilated patients in the intensive care unit. JAMA 291:141753–62
    [Google Scholar]
  37. 37. 
    Girard TD, Jackson JC, Pandharipande PP et al. 2010. Delirium as a predictor of long-term cognitive impairment in survivors of critical illness. Crit. Care Med. 38:71513–20
    [Google Scholar]
  38. 38. 
    Botta M, Tsonas AM, Pillay J et al. 2021. Ventilation management and clinical outcomes in invasively ventilated patients with COVID-19 (PRoVENT-COVID): a national, multicentre, observational cohort study. Lancet Respir. Med. 9:2139–48
    [Google Scholar]
  39. 39. 
    Hanidziar D, Bittner EA. 2020. Sedation of mechanically ventilated COVID-19 patients: challenges and special considerations. Anesth. Analg. 131:1e40–41
    [Google Scholar]
  40. 40. 
    Iwashyna TJ, Ely EW, Smith DM et al. 2010. Long-term cognitive impairment and functional disability among survivors of severe sepsis. JAMA 304:161787–94
    [Google Scholar]
  41. 41. 
    Ye M, Ren Y, Lv T. 2020. Encephalitis as a clinical manifestation of COVID-19. Brain Behav. Immun. 88:945–46
    [Google Scholar]
  42. 42. 
    Pilotto A, Odolini S, Masciocchi S et al. 2020. Steroid-responsive encephalitis in coronavirus disease 2019. Ann. Neurol. 88:2423–27
    [Google Scholar]
  43. 43. 
    Bernard-Valnet R, Pizzarotti B, Anichini A et al. 2020. Two patients with acute meningoencephalitis concomitant with SARS-CoV-2 infection. Eur. J. Neurol. 27:9e43–44
    [Google Scholar]
  44. 44. 
    Moriguchi T, Harii N, Goto J et al. 2020. A first case of meningitis/encephalitis associated with SARS-Coronavirus-2. Int. J. Infect. Dis. 94:55–58
    [Google Scholar]
  45. 45. 
    Parsons T, Banks S, Bae C et al. 2020. COVID-19-associated acute disseminated encephalomyelitis (ADEM). J. Neurol. 267:102799–802
    [Google Scholar]
  46. 46. 
    Huang YH, Jiang D, Huang JT. 2020. SARS-CoV-2 detected in cerebrospinal fluid by PCR in a case of COVID-19 encephalitis. Brain Behav. Immun. 87:149
    [Google Scholar]
  47. 47. 
    Paterson RW, Brown RL, Benjamin L et al. 2020. The emerging spectrum of COVID-19 neurology: clinical, radiological and laboratory findings. Brain 143:103104–20
    [Google Scholar]
  48. 48. 
    Poyiadji N, Shahin G, Noujaim D et al. 2020. COVID-19-associated acute hemorrhagic necrotizing encephalopathy: imaging features. Radiology 296:2E119–20
    [Google Scholar]
  49. 49. 
    Reichard RR, Kashani KB, Boire NA et al. 2020. Neuropathology of COVID-19: a spectrum of vascular and acute disseminated encephalomyelitis (ADEM)-like pathology. Acta Neuropathol 140:11–6
    [Google Scholar]
  50. 50. 
    Princiotta Cariddi L, Tabaee Damavandi P, Carimati F et al. 2020. Reversible encephalopathy syndrome (PRES) in a COVID-19 patient. J. Neurol. 267:113157–60
    [Google Scholar]
  51. 51. 
    Franceschi AM, Arora R, Wilson R et al. 2020. Neurovascular complications in COVID-19 infection: case series. Am. J. Neuroradiol. 41:91632–40
    [Google Scholar]
  52. 52. 
    Mirza J, Ganguly A, Ostrovskaya A et al. 2020. Command suicidal hallucination as initial presentation of coronavirus disease 2019 (COVID-19): a case report. Psychosomatics 61:5561–64
    [Google Scholar]
  53. 53. 
    Smith CM, Komisar JR, Mourad A et al. 2020. COVID-19-associated brief psychotic disorder. BMJ Case Rep 13:8e236940
    [Google Scholar]
  54. 54. 
    Ferrando SJ, Klepacz L, Lynch S et al. 2020. COVID-19 psychosis: a potential new neuropsychiatric condition triggered by novel coronavirus infection and the inflammatory response?. Psychosomatics 61:5551–55
    [Google Scholar]
  55. 55. 
    Taquet M, Luciano S, Geddes JR et al. 2020. Bidirectional associations between COVID-19 and psychiatric disorder: retrospective cohort studies of 62 354 COVID-19 cases in the USA. Lancet Psychiatry 8:2130–40
    [Google Scholar]
  56. 56. 
    Romo V. 2020. NYC emergency room physician who treated coronavirus patients dies by suicide. NPR Apr. 28. https://www.npr.org/sections/coronavirus-live-updates/2020/04/28/847305408/nyc-emergency-room-physician-who-treated-coronavirus-patients-dies-by-suicide
    [Google Scholar]
  57. 57. 
    Bao Y, Sun Y, Meng S et al. 2020. 2019-nCoV epidemic: address mental health care to empower society. Lancet 395:10224e37–38
    [Google Scholar]
  58. 58. 
    Reger MA, Stanley IH, Joiner TE. 2020. Suicide mortality and coronavirus disease 2019—a perfect storm?. JAMA Psychiatry 77:1110193–94
    [Google Scholar]
  59. 59. 
    Yaghi S, Ishida K, Torres J et al. 2020. SARS-CoV-2 and stroke in a New York healthcare system. Stroke 51:72002–11
    [Google Scholar]
  60. 60. 
    Merkler AE, Parikh NS, Mir S et al. 2020. Risk of ischemic stroke in patients with coronavirus disease 2019 (COVID-19) versus patients with influenza. JAMA Neurol 77:111366–72
    [Google Scholar]
  61. 61. 
    Dhamoon MS, Thaler A, Gururangan K et al. 2021. Acute cerebrovascular events with COVID-19 infection. Stroke 52:148–56
    [Google Scholar]
  62. 62. 
    Spence JD, de Freitas GR, Pettigrew LC et al. 2020. Mechanisms of stroke in COVID-19. Cerebrovasc. Dis. 49:4451–58
    [Google Scholar]
  63. 63. 
    Harzallah I, Debliquis A, Drénou B. 2020. Lupus anticoagulant is frequent in patients with Covid-19. J. Thromb. Haemost. 18:82064–65
    [Google Scholar]
  64. 64. 
    Tang N, Bai H, Chen X et al. 2020. Anticoagulant treatment is associated with decreased mortality in severe coronavirus disease 2019 patients with coagulopathy. J. Thromb. Haemost. 18:51094–99
    [Google Scholar]
  65. 65. 
    Fifi JT, Mocco J. 2020. COVID-19 related stroke in young individuals. Lancet Neurol 19:9713–15
    [Google Scholar]
  66. 66. 
    Dakay K, Cooper J, Bloomfield J et al. 2021. Cerebral venous sinus thrombosis in COVID-19 infection: a case series and review of the literature. J. Stroke Cerebrovasc. Dis. 30:1105434
    [Google Scholar]
  67. 67. 
    Garaci F, Di Giuliano F, Picchi E et al. 2020. Venous cerebral thrombosis in COVID-19 patient. J. Neurol. Sci. 414:116871
    [Google Scholar]
  68. 68. 
    Abdalkader M, Shaikh SP, Siegler JE et al. 2021. Cerebral venous sinus thrombosis in COVID-19 patients: a multicenter study and review of literature. J. Stroke Cerebrovasc. Dis. 30:6105733
    [Google Scholar]
  69. 69. 
    Lee SG, Fralick M, Sholzberg M. 2020. Coagulopathy associated with COVID-19. CMAJ 192:21E583
    [Google Scholar]
  70. 70. 
    Panigada M, Bottino N, Tagliabue P et al. 2020. Hypercoagulability of COVID-19 patients in intensive care unit: a report of thromboelastography findings and other parameters of hemostasis. J. Thromb. Haemost. 18:71738–42
    [Google Scholar]
  71. 71. 
    Abou-Ismail MY, Diamond A, Kapoor S et al. 2020. The hypercoagulable state in COVID-19: incidence, pathophysiology, and management. Thromb. Res. 194:101–15
    [Google Scholar]
  72. 72. 
    NIH (Natl. Inst. Health) 2021. Full-dose blood thinners decreased need for life support and improved outcome in hospitalized COVID-19 patients News release, Jan. 22 NIH, Bethesda, MD: https://www.nih.gov/news-events/news-releases/full-dose-blood-thinners-decreased-need-life-support-improved-outcome-hospitalized-covid-19-patients
  73. 73. 
    NIH (Natl. Inst. Health) 2020. NIH ACTIV Trial of blood thinners pauses enrollment of critically ill COVID-19 patients News release, Dec. 22 NIH, Bethesda, MD: https://www.nih.gov/news-events/news-releases/nih-activ-trial-blood-thinners-pauses-enrollment-critically-ill-covid-19-patients
  74. 74. 
    Lu L, Xiong W, Liu D et al. 2020. New onset acute symptomatic seizure and risk factors in coronavirus disease 2019: a retrospective multicenter study. Epilepsia 61:6e49–53
    [Google Scholar]
  75. 75. 
    Emami A, Fadakar N, Akbari A et al. 2020. Seizure in patients with COVID-19. Neurol. Sci. 41:113057–61
    [Google Scholar]
  76. 76. 
    Anand P, Al-Faraj A, Sader E et al. 2020. Seizure as the presenting symptom of COVID-19: a retrospective case series. Epilepsy Behav 112:107335
    [Google Scholar]
  77. 77. 
    Zhang Q, Schultz JL, Aldridge GM et al. 2020. Coronavirus disease 2019 case fatality and Parkinson's disease. Mov. Disord. 35:111914–15
    [Google Scholar]
  78. 78. 
    Vignatelli L, Zenesini C, Belotti LMB et al. 2021. Risk of hospitalization and death for COVID-19 in people with Parkinson's disease or parkinsonism. Mov. Disord. 36:11–10
    [Google Scholar]
  79. 79. 
    Toscano G, Palmerini F, Ravaglia S et al. 2020. Guillain-Barré syndrome associated with SARS-CoV-2. N. Engl. J. Med. 382:262574–76
    [Google Scholar]
  80. 80. 
    Hadden RD, Cornblath DR, Hughes RA et al. 1998. Electrophysiological classification of Guillain-Barré syndrome: clinical associations and outcome. Ann. Neurol. 44:5780–88
    [Google Scholar]
  81. 81. 
    Abrams RMC, Kim BD, Markantone DM et al. 2020. Severe rapidly progressive Guillain-Barré syndrome in the setting of acute COVID-19 disease. J. Neurovirol. 26:5797–99
    [Google Scholar]
  82. 82. 
    Arnaud S, Budowski C, Ng Wing Tin S et al. 2020. Post SARS-CoV-2 Guillain-Barré syndrome. Clin. Neurophysiol. 131:71652–54
    [Google Scholar]
  83. 83. 
    Samies NL, Pinninti S, James SH. 2020. Rhabdomyolysis and acute renal failure in an adolescent with coronavirus disease 2019. J. Pediatr. Infect. Dis. Soc. 9:4507–9
    [Google Scholar]
  84. 84. 
    Meegada S, Muppidi V, Wilkinson DC et al. 2020. Coronavirus disease 2019-induced rhabdomyolysis. Cureus 12:8e10123
    [Google Scholar]
  85. 85. 
    Jin M, Tong Q 2020. Rhabdomyolysis as potential late complication associated with COVID-19. Emerg. Infect. Dis. 26:71618–20
    [Google Scholar]
  86. 86. 
    Puelles VG, Lütgehetmann M, Lindenmeyer MT et al. 2020. Multiorgan and renal tropism of SARS-CoV-2. N. Engl. J. Med. 383:590–92
    [Google Scholar]
  87. 87. 
    Sánchez-Soblechero A, García CA, Ansotegui AS et al. 2020. Upper trunk brachial plexopathy as a consequence of prone positioning due to SARS-CoV-2 acute respiratory distress syndrome. Muscle Nerve 62:5E76–78
    [Google Scholar]
  88. 88. 
    Han CY, Tarr AM, Gewirtz AN et al. 2021. Brachial plexopathy as a complication of COVID-19. BMJ Case Rep. 14:3e237459
    [Google Scholar]
  89. 89. 
    Chow CCN, Magnussen J, Ip J et al. 2020. Acute transverse myelitis in COVID-19 infection. BMJ Case Rep 13:8e236720
    [Google Scholar]
  90. 90. 
    Munz M, Wessendorf S, Koretsis G et al. 2020. Acute transverse myelitis after COVID-19 pneumonia. J. Neurol. 267:82196–97
    [Google Scholar]
  91. 91. 
    Komaroff AL, Bateman L. 2021. Will COVID-19 lead to myalgic encephalomyelitis/chronic fatigue syndrome?. Front. Med. 7:1132
    [Google Scholar]
  92. 92. 
    Chopra V, Flanders SA, O'Malley M et al. 2020. Sixty-day outcomes among patients hospitalized with COVID-19. Ann. Intern. Med. 174:4576–78
    [Google Scholar]
  93. 93. 
    Perego E, Callard F, Stras L et al. 2020. Why we need to keep using the patient made term “Long Covid. .” BMJ Opin. Blog Oct. 1. https://blogs.bmj.com/bmj/2020/10/01/why-we-need-to-keep-using-the-patient-made-term-long-covid
    [Google Scholar]
  94. 94. 
    Dani M, Dirksen A, Taraborrelli P et al. 2021. Autonomic dysfunction in “long COVID”: rationale, physiology and management strategies. Clin. Med. 21:1e63–67
    [Google Scholar]
  95. 95. 
    Del Rio R, Marcus NJ, Inestrosa NC. 2020. Potential role of autonomic dysfunction in Covid-19 morbidity and mortality. Front. Physiol. 11:561749
    [Google Scholar]
  96. 96. 
    Blitshteyn S, Whitelaw S. 2021. Postural orthostatic tachycardia syndrome (POTS) and other autonomic disorders after COVID-19 infection: a case series of 20 patients. Immunol. Res. 69:220511
    [Google Scholar]
  97. 97. 
    Bertoli F, Veritti D, Danese C et al. 2020. Ocular findings in COVID-19 patients: a review of direct manifestations and indirect effects on the eye. J. Ophthalmol. 2020:4827304
    [Google Scholar]
  98. 98. 
    Wu P, Duan F, Luo C et al. 2020. Characteristics of ocular findings of patients with coronavirus disease 2019 (COVID-19) in Hubei Province, China. JAMA Ophthalmol 138:5575
    [Google Scholar]
  99. 99. 
    Peng M, Dai J, Sugali CK et al. 2020. The role of the ocular tissue in SARS-CoV-2 transmission. Clin. Ophthalmol. 14:3017–24
    [Google Scholar]
  100. 100. 
    Román GC, Reis J, Spencer PS et al. 2020. COVID-19 international neurological registries. Lancet Neurol 19:6484–85
    [Google Scholar]
  101. 101. 
    Polack FP, Thomas SJ, Kitchin N et al. 2020. Safety and efficacy of the BNT162b2 mRNA Covid-19 vaccine. N. Engl. J. Med. 383:2603–15
    [Google Scholar]
/content/journals/10.1146/annurev-med-042320-010427
Loading
/content/journals/10.1146/annurev-med-042320-010427
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error