Comprehensive micropollutant characterization of wastewater during Covid-19 crisis in 2020: Suspect screening and environmental risk prioritization strategy

https://doi.org/10.1016/j.scitotenv.2023.162281Get rights and content
Under a Creative Commons license
open access

Highlights

  • Suspect screening was useful to provide deep information about micropollutant presence in WWTPs.

  • Some pandemic-related compounds showed considerable concentrations during the lockdown.

  • Prioritization strategy unravelled at least 33 key contaminants in the effluents.

  • Two antibiotics were found at levels to cause antibiotic resistance with moderate impact.

  • All effluents showed STUs >1 stressing the need for performance enhancement.

Abstract

Micropollutants monitoring in wastewater can serve as a picture of what is consuming society and how it can impact the aquatic environment. In this work, a suspect screening approach was used to detect the known and unknown contaminants in wastewater samples collected from two wastewater treatment plants (WWTPs) located in the Basque Country (Crispijana in Alava, and Galindo in Vizcaya) during two weekly sampling campaigns, which included the months from April to July 2020, part of the confinement period caused by COVID-19. To that aim, high-resolution mass spectrometry was used to collect full-scan data-dependent tandem mass spectra from the water samples using a suspect database containing >40,000 chemical substances. The presence of > 80 contaminants was confirmed (level 1) and quantified in both WWTP samples, while at least 47 compounds were tentatively identified (2a). Among the contaminants of concern, an increase in the occurrence of some compounds used for COVID-19 disease treatment, such as lopinavir and hydroxychloroquine, was observed during the lockdown. A prioritization strategy for environmental risk assessment was carried out considering only the compounds quantified in the effluents of Crispijana and Galindo WWTPs. The compounds were scored based on the removal efficiency, estimated persistency, bioconcentration factor, mobility, toxicity potential and frequency of detection in the samples. With this approach, 33 compounds (e.g. amantadine, clozapine or lopinavir) were found to be considered key contaminants in the analyzed samples based on their concentration, occurrence and potential toxicity. Additionally, antimicrobial (RQ-AR) and antiviral (EDRP) risk of certain compounds was evaluated, where ciprofloxacin and fluconazole represented medium risk for antibiotic resistance (1 > RQ-AR > 0.1) in the aquatic ecosystems. Regarding mixture toxicity, the computed sum of toxic unit values of the different effluents (> 1) suggest that interactions between the compounds need to be considered for future environmental risk assessments.

Keywords

Emerging organic contaminants
Suspect screening
COVID-19 pandemic
Prioritization strategy
WWTP effluent
LC-qOrbitrap

Data availability

Data will be made available on request.

Cited by (0)