Improved LSTM-based deep learning model for COVID-19 prediction using optimized approach

https://doi.org/10.1016/j.engappai.2023.106157Get rights and content
Under a Creative Commons license
open access

Abstract

Individuals in any country are badly impacted both economically and physically whenever an epidemic of infectious illnesses breaks out. A novel coronavirus strain was responsible for the outbreak of the coronavirus sickness in 2019. Corona Virus Disease 2019 (COVID-19) is the name that the World Health Organization (WHO) officially gave to the pneumonia that was caused by the novel coronavirus on February 11, 2020. The use of models that are informed by machine learning is currently a major focus of study in the field of improved forecasting. By displaying annual trends, forecasting models can be of use in performing impact assessments of potential outcomes. In this paper, proposed forecast models consisting of time series models such as long short-term memory (LSTM), bidirectional long short-term memory (Bi-LSTM), generalized regression unit (GRU), and dense-LSTM have been evaluated for time series prediction of confirmed cases, deaths, and recoveries in 12 major countries that have been affected by COVID-19. Tensorflow1.0 was used for programming. Indices known as mean absolute error (MAE), root means square error (RMSE), Median Absolute Error (MEDAE) and r2 score are utilized in the process of evaluating the performance of models. We presented various ways to time-series forecasting by making use of LSTM models (LSTM, BiLSTM), and we compared these proposed methods to other machine learning models to evaluate the performance of the models. Our study suggests that LSTM based models are among the most advanced models to forecast time series data.

Keywords

Forecast
COVID-19
Long short-term memory (LSTM)
Prediction

Data availability

All data are included in this article.

Cited by (0)

1

These authors contributed equally to this work.