Generic placeholder image

Coronaviruses

Editor-in-Chief

ISSN (Print): 2666-7967
ISSN (Online): 2666-7975

Review Article

History, Diagnosis, and Treatment of Coronavirus Disease 2019 (COVID-19)

Author(s): Amaresh Mishra, Nisha Nair, Vishwas Tripathi*, Yamini Pathak and Jaseela Majeed

Volume 3, Issue 1, 2022

Published on: 05 August, 2021

Article ID: e221221195288 Pages: 8

DOI: 10.2174/2666796702666210805101958

Abstract

The Coronavirus Disease 2019 (COVID-19), also known as a novel coronavirus (2019-n- CoV), reportedly originated from Wuhan City, Hubei Province, China. Coronavirus Disease 2019 rapidly spread all over the world within a short period. On January 30, 2020, the World Health Organization (WHO) declared it a global epidemic. COVID-19 is a Severe Acute Respiratory Syndrome coronavirus (SARS-CoV) evolves to respiratory, hepatic, gastrointestinal, and neurological complications, and eventually death. SARS-CoV and the Middle East Respiratory Syndrome coronavirus (MERS-CoV) genome sequences similar identity with 2019-nCoV or Severe Acute Respiratory Syndrome coronavirus 2 (SARS-CoV-2). However, few amino acid sequences of 2019-nCoV differ from SARS-CoV and MERS-CoV. COVID-19 shares about 90% amino acid sequence similarity with SARS-CoV. Effective prevention methods should be taken in order to control this pandemic situation. To date, there are no effective treatments available to treat COVID-19. This review provides information regarding COVID-19 history, epidemiology, pathogenesis and molecular diagnosis. Also, we focus on the development of vaccines in the management of this COVID-19 pandemic and limiting the spread of the virus.

Keywords: COVID-19, SARS-CoV-2 infection, epidemiology, diagnosis, treatment, CP therapy for COVID, MARS-SARS.

Graphical Abstract
[1]
World Health Organization. Infection prevention and control during health care when novel coronavirus (nCoV) infection is suspected: interim guidance. Available from: https://www.who.int/publications/i/item/10665-331495 (Accessed October 19 2020).
[2]
Guo Y-R, Cao Q-D, Hong Z-S, et al. The origin, transmission and clinical therapies on coronavirus disease 2019 (COVID-19) outbreak–an update on the status. Mil Med Res 2020; 7(1): 1-10.
[http://dx.doi.org/10.1186/s40779-020-00240-0] [PMID: 31928528]
[3]
Corman VM, Landt O, Kaiser M, et al. Detection of 2019 novel coronavirus (2019-nCoV) by real-time RT-PCR. Euro Surveill 2020; 25(3): 2000045.
[http://dx.doi.org/10.2807/1560-7917.ES.2020.25.3.2000045] [PMID: 31992387]
[4]
Sethuraman N, Jeremiah SS, Ryo A. Interpreting diagnostic tests for SARS-CoV-2. JAMA 2020; 323(22): 2249-51.
[http://dx.doi.org/10.1001/jama.2020.8259] [PMID: 32374370]
[5]
Xu Y, Xiao M, Liu X, et al. Significance of serology testing to assist timely diagnosis of SARS-CoV-2 infections: implication from a family cluster. Emerg Microbes Infect 2020; 9(1): 924-7.
[http://dx.doi.org/10.1080/22221751.2020.1752610] [PMID: 32286155]
[6]
Xiang F, Wang X, He X, et al. Antibody detection and dynamic characteristics in patients with COVID-19. Clin Infect Dis 2020.
[7]
Zhang F, Abudayyeh OO, Gootenberg JS. A protocol for detection of COVID-19 using CRISPR diagnostics. Available from: https://www.broadinstitute.org/files/publications/special/COVID-19%20detection%20(updated).pdf (Accessed October 19 2020).
[8]
Broughton JP, Deng X, Yu G, et al. CRISPR-Cas12-based detection of SARS-CoV-2. Nat Biotechnol 2020; 38(7): 870-4.
[http://dx.doi.org/10.1038/s41587-020-0513-4] [PMID: 32300245]
[9]
Li Z, Yi Y, Luo X, et al. Development and clinical application of a rapid IgM-IgG combined antibody test for SARS-CoV-2 infection diagnosis. J Med Virol 2020; 92(9): 1518-24.
[http://dx.doi.org/10.1002/jmv.25727] [PMID: 32104917]
[10]
Gambino CM, Lo Sasso B, Colomba C, et al. Comparison of a rapid immunochromatographic test with a chemiluminescence immunoassay for detection of anti-SARS-CoV-2 IgM and IgG. Biochem Med (Zagreb) 2020; 30(3): 030901.
[http://dx.doi.org/10.11613/BM.2020.030901] [PMID: 33071558]
[11]
Azhar M, Phutela R, Kumar M, et al. Rapid, accurate, nucleobase detection using FnCas9. medRxiv 2020.
[12]
Liu S, Zheng Q, Wang Z. Potential covalent drugs targeting the main protease of the SARS-CoV-2 coronavirus. Bioinformatics 2020; 36(11): 3295-8.
[http://dx.doi.org/10.1093/bioinformatics/btaa224] [PMID: 32239142]
[13]
Ton AT, Gentile F, Hsing M, Ban F, Cherkasov A. Rapid identification of potential inhibitors of SARS‐CoV‐2 main protease by deep docking of 1.3 billion compounds. Mol Inform 2020; 39(8): e2000028.
[http://dx.doi.org/10.1002/minf.202000028] [PMID: 32162456]
[14]
Yao X, Ye F, Zhang M, et al. In vitro antiviral activity and projection of optimized dosing design of Hydroxychloroquine for the treatment of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Clin Infect Dis 2020; 71(15): 732-9.
[http://dx.doi.org/10.1093/cid/ciaa237] [PMID: 32150618]
[15]
Kruse RL. Therapeutic strategies in an outbreak scenario to treat the novel coronavirus originating in Wuhan, China. F1000 Res 2020; 9: 72.
[http://dx.doi.org/10.12688/f1000research.22211.2] [PMID: 32117569]
[16]
Berman HM, Westbrook J, Feng Z, et al. The protein data bank. Nucleic Acids Res 2000; 28(1): 235-42.
[http://dx.doi.org/10.1093/nar/28.1.235] [PMID: 10592235]
[17]
Wang J. Fast identification of possible drug treatment of coronavirus disease-19 (COVID-19) through computational drug repurposing study. J Chem Inf Model 2020; 60(6): 3277-86.
[http://dx.doi.org/10.1021/acs.jcim.0c00179] [PMID: 32315171]
[18]
Beura S, Chetti P. In silico strategies for probing chloroquine based inhibitors against SARS-CoV-2. J Biomol Struct Dyn 2020; 1-13.
[http://dx.doi.org/10.1080/07391102.2020.1772111]
[19]
Pathak Y, Mishra A, Tripathi V. Rifampicin may be repurposed for COVID-19 treatment: Insights from an in silico study. 2020.
[20]
Jin Z, Du X, Xu Y, et al. Structure of M pro from SARS-CoV-2 and discovery of its inhibitors. Nature 2020; 1-5.
[21]
Chellapandi P, Saranya S. Genomics insights of SARS-CoV-2 (COVID-19) into target-based drug discovery. Med Chem Res 2020; 29(10): 1-15.
[http://dx.doi.org/10.1007/s00044-020-02610-8] [PMID: 32837137]
[22]
Singhal T. A review of coronavirus disease-2019 (COVID-19). Indian J Pediatr 2020; 87(4): 281-6.
[http://dx.doi.org/10.1007/s12098-020-03263-6] [PMID: 32166607]
[23]
Chang D, Xu H, Rebaza A, Sharma L, Dela Cruz CS. Protecting health-care workers from subclinical coronavirus infection. Lancet Respir Med 2020; 8(3): e13.
[http://dx.doi.org/10.1016/S2213-2600(20)30066-7] [PMID: 32061333]
[24]
Xia S, Duan K, Zhang Y, et al. Effect of an inactivated vaccine against SARS-CoV-2 on safety and immunogenicity outcomes: interim analysis of 2 randomized clinical trials. JAMA 2020; 324(10): 951-60.
[http://dx.doi.org/10.1001/jama.2020.15543] [PMID: 32789505]
[25]
Masihi KN. Fighting infection using immunomodulatory agents. Expert Opin Biol Ther 2001; 1(4): 641-53.
[http://dx.doi.org/10.1517/14712598.1.4.641] [PMID: 11727500]
[26]
World Health Organisation. Draft landscape of COVID-19 candidate vaccines. Available from: https://www.who.int/publications/m/item/draft-landscape-of-covid-19-candidate-vaccines (Accessed October 19 2020).
[27]
Wang N, Shang J, Jiang S, Du L. Subunit vaccines against emerging pathogenic human coronaviruses. Front Microbiol 2020; 11: 298.
[http://dx.doi.org/10.3389/fmicb.2020.00298] [PMID: 32265848]
[28]
Lee J. These 23 companies are working on coronavirus treatments or vaccine-here where things stand. Available from: https://www.marketwatch.com/story/these-nine-companies-are-working-on- coronavirus-treatments-or-vaccines-heres-where-things-stand-2020-03-06 (Accessed October 19 2020).
[29]
Ou X, Liu Y, Lei X, et al. Characterization of spike glycoprotein of SARS-CoV-2 on virus entry and its immune cross-reactivity with SARS-CoV. Nat Commun 2020; 11(1): 1620.
[http://dx.doi.org/10.1038/s41467-020-15562-9] [PMID: 32221306]
[30]
Mulligan MJ. An Inactivated Virus Candidate Vaccine to Prevent COVID-19. JAMA 2020; 324(10): 943-5.
[http://dx.doi.org/10.1001/jama.2020.15539] [PMID: 32789500]
[31]
Maxwell C, McGeer A, Tai KFY, Sermer M. No. 225-Management guidelines for obstetric patients and neonates born to mothers with suspected or probable severe acute respiratory syndrome (SARS). J Obstet Gynaecol Can 2017; 39(8): e130-7.
[http://dx.doi.org/10.1016/j.jogc.2017.04.024] [PMID: 28729104]
[32]
ClinicalTrials.gov. CD24Fc as a Non-antiviral Immunomodulator in COVID-19 Treatment. Available from: https://ichgcp.net/clinical-trials-registry/NCT04317040 (Accessed 26-10-2020).
[33]
Cao Y, Zhu X, Hossen MN, Kakar P, Zhao Y, Chen X. Augmentation of vaccine-induced humoral and cellular immunity by a physical radiofrequency adjuvant. Nat Commun 2018; 9(1): 3695.
[http://dx.doi.org/10.1038/s41467-018-06151-y] [PMID: 30209303]
[34]
Graham BS. Rapid COVID-19 vaccine development. Science 2020; 368(6494): 945-6.
[http://dx.doi.org/10.1126/science.abb8923] [PMID: 32385100]
[35]
Coleman CM, Liu YV, Mu H, et al. Purified coronavirus spike protein nanoparticles induce coronavirus neutralizing antibodies in mice. Vaccine 2014; 32(26): 3169-74.
[http://dx.doi.org/10.1016/j.vaccine.2014.04.016] [PMID: 24736006]
[36]
Kaur SP, Gupta V. COVID-19 Vaccine: A comprehensive status report. Virus Res 2020; 288: 198114.
[http://dx.doi.org/10.1016/j.virusres.2020.198114] [PMID: 32800805]
[37]
Tu Y-F, Chien C-S, Yarmishyn AA, et al. A review of SARS- CoV-2 and the ongoing clinical trials. Int J Mol Sci 2020; 21(7): 2657.
[http://dx.doi.org/10.3390/ijms21072657] [PMID: 32290293]
[38]
Ura T, Okuda K, Shimada M. Developments in viral vector-based vaccines. Vaccines (Basel) 2014; 2(3): 624-41.
[http://dx.doi.org/10.3390/vaccines2030624] [PMID: 26344749]
[39]
Zhu F-C, Li Y-H, Guan X-H, et al. Safety, tolerability, and immunogenicity of a recombinant adenovirus type-5 vectored COVID-19 vaccine: a dose-escalation, open-label, non-randomised, first-in-human trial. Lancet 2020; 395(10240): 1845-54.
[http://dx.doi.org/10.1016/S0140-6736(20)31208-3] [PMID: 32450106]
[40]
Zhu F-C, Guan X-H, Li Y-H, et al. Immunogenicity and safety of a recombinant adenovirus type-5-vectored COVID-19 vaccine in healthy adults aged 18 years or older: a randomised, double-blind, placebo-controlled, phase 2 trial. Lancet 2020; 396(10249): 479-88.
[http://dx.doi.org/10.1016/S0140-6736(20)31605-6] [PMID: 32702299]
[41]
Adhish SV, Saxena S. The Vaccine Trials in COVID-19. Health Popul Perspect Issues 2020; 43(2): 61-70.
[42]
van Doremalen N, Lambe T, Spencer A, et al. ChAdOx1 nCoV-19 vaccination prevents SARS-CoV-2 pneumonia in rhesusmacaques bioRxiv 2020.
[43]
Folegatti PM, Ewer KJ, Aley PK, et al. Safety and immunogenicity of the ChAdOx1 nCoV-19 vaccine against SARS-CoV-2: a preliminary report of a phase 1/2, single-blind, randomised controlled trial. Lancet 2020; 396(10249): 467-78.
[http://dx.doi.org/10.1016/S0140-6736(20)31604-4] [PMID: 32702298]
[44]
Pulido MR, Sobrino F, Borrego B, Sáiz M. RNA immunization can protect mice against foot-and-mouth disease virus. Antiviral Res 2010; 85(3): 556-8.
[http://dx.doi.org/10.1016/j.antiviral.2009.12.005] [PMID: 20005905]
[45]
VanBlargan LA, Himansu S, Foreman BM, Ebel GD, Pierson TC, Diamond MS. An mRNA vaccine protects mice against multiple tick-transmitted flavivirus infections. Cell Rep 2018; 25(12): 3382-92.
[http://dx.doi.org/10.1016/j.celrep.2018.11.082]
[46]
Mulligan MJ, Lyke KE, Kitchin N, et al. Phase 1/2 study to describe the safety and immunogenicity of a COVID-19 RNA vaccine candidate (BNT162b1) in adults 18 to 55 years of age: interim report MedRxiv 2020.
[http://dx.doi.org/10.1101/2020.06.30.20142570]
[47]
Smith TRF, Patel A, Ramos S, et al. Immunogenicity of a DNA vaccine candidate for COVID-19. Nat Commun 2020; 11(1): 2601.
[http://dx.doi.org/10.1038/s41467-020-16505-0] [PMID: 32433465]
[48]
World Health Organization. Use of convalescent whole blood or plasma collected from patients recovered from Ebola virus disease for transfusion, as an empirical treatment during outbreaks: interim guidance for national health authorities and blood transfusion services. Available from: https://apps.who.int/iris/handle/10665/135591 (Accessed October 19 2020).
[49]
Duan K, Liu B, Li C, et al. Effectiveness of convalescent plasma therapy in severe COVID-19 patients. Proc Natl Acad Sci USA 2020; 117(17): 9490-6.
[http://dx.doi.org/10.1073/pnas.2004168117] [PMID: 32253318]
[50]
Lai ST. Treatment of severe acute respiratory syndrome. Eur J Clin Microbiol Infect Dis 2005; 24(9): 583-91.
[http://dx.doi.org/10.1007/s10096-005-0004-z] [PMID: 16172857]
[51]
Zhang B, Liu S, Tan T, et al. Treatment with convalescent plasma for critically ill patients with SARS-CoV-2 infection. Chest 2020; 158(1): e9-e13.
[http://dx.doi.org/10.1016/j.chest.2020.03.039] [PMID: 32243945]
[52]
Shen C, Wang Z, Zhao F, et al. Treatment of 5 critically ill patients with COVID-19 with convalescent plasma. JAMA 2020; 323(16): 1582-9.
[http://dx.doi.org/10.1001/jama.2020.4783] [PMID: 32219428]
[53]
Roy A, Patwardhan B, Chaguturu R. Reigniting pharmaceutical innovation through holistic drug targeting. Available from: https://www.ddw-online.com/media/32/reigniting-pharmaceutical-innovation-through-holistic-drug-targeting.pdf (Accessed October 19 2020).
[54]
Saggam A, Tillu G, Dixit S, et al. Withania somnifera (L.) Dunal: A potential therapeutic adjuvant in cancer. J Ethnopharmacol 2020; 255: 112759.
[http://dx.doi.org/10.1016/j.jep.2020.112759] [PMID: 32173425]
[55]
Rege A, Chowdhary AS. Evaluation of Ocimum sanctum and Tinospora cordifolia as probable HIV protease inhibitors. Int J Pharm Sci Rev Res 2014; 25: 315-8.
[56]
Cinatl J, Morgenstern B, Bauer G, Chandra P, Rabenau H, Doerr HW. Glycyrrhizin, an active component of liquorice roots, and replication of SARS-associated coronavirus. Lancet 2003; 361(9374): 2045-6.
[http://dx.doi.org/10.1016/S0140-6736(03)13615-X] [PMID: 12814717]
[57]
Balkrishna A, Pokhrel S, Singh J, Varshney A. Withanone from Withania somnifera May Inhibit Novel Coronavirus (COVID-19) Entry by Disrupting Interactions between Viral S-Protein Receptor Binding Domain and Host ACE2 Receptor. Virology 2020.
[58]
Jia W, Gao W. Is traditional Chinese medicine useful in the treatment of SARS? Phytother Res 2003; 17(7): 840-1.
[http://dx.doi.org/10.1002/ptr.1397] [PMID: 12916093]
[59]
Lavekar G, Padhi M. Management of chikungunya through Ayurveda and Siddha: a technical report. Available from: http://www.ccras.nic.in/sites/default/files/22092016_MANAGEMENT%20OF%20CHIKUNGUNYA%20THROUGH%20AYURVEDA%20AND%20SIDDHA-A%20TECHNICAL%20REPORT.pdf (Accessed October 19 2020).
[60]
Kumar S, Pandey AK. Chemistry and biological activities of flavonoids: an overview. Scientific World Journal 2013; 2013: 162750.
[http://dx.doi.org/10.1155/2013/162750] [PMID: 24470791]
[61]
Mounce BC, Cesaro T, Carrau L, Vallet T, Vignuzzi M. Curcumin inhibits Zika and chikungunya virus infection by inhibiting cell binding. Antiviral Res 2017; 142: 148-57.
[http://dx.doi.org/10.1016/j.antiviral.2017.03.014] [PMID: 28343845]
[62]
Chiang LC, Ng LT, Cheng PW, Chiang W, Lin CC. Antiviral activities of extracts and selected pure constituents of Ocimum basilicum. Clin Exp Pharmacol Physiol 2005; 32(10): 811-6.
[http://dx.doi.org/10.1111/j.1440-1681.2005.04270.x] [PMID: 16173941]
[63]
Zakaryan H, Arabyan E, Oo A, Zandi K. Flavonoids: promising natural compounds against viral infections. Arch Virol 2017; 162(9): 2539-51.
[http://dx.doi.org/10.1007/s00705-017-3417-y] [PMID: 28547385]
[64]
Zhao X, Cui Q, Fu Q, et al. Antiviral properties of resveratrol against pseudorabies virus are associated with the inhibition of IκB kinase activation. Sci Rep 2017; 7(1): 1-11.
[http://dx.doi.org/10.1038/s41598-017-09365-0] [PMID: 28127051]
[65]
Mishra A, Pathak Y, Choudhir G, Kumar A, Mishra SK, Tripathi V. Natural compounds as potential inhibitors of novel coronavirus (COVID-19) main protease: An in silico study. 2020.
[66]
Sharma P. Available from: https://www.exoticindiaart.com/book/details/dravyaguna-vijnana-vol-ii-MZB206/ (Accessed October 19 2020).
[67]
Charan J, Kaur R, Bhardwaj P, et al. Snapshot of COVID-19 related clinical trials in India. Indian J Clin Biochem 2020; 35(4): 1-5.
[http://dx.doi.org/10.1007/s12291-020-00918-1] [PMID: 32837035]
[68]
Purohit R, Joshi A, Kumar A, Dadhich R. CSIR begins clinical trials of four Ayurvedic medicines for COVID-19. Available from: https://m.economictimes.com/industry/healthcare/biotech/pharmaceuticals/covid-19-treatment-csir-begins-clinical-trial-of-phytopharmaceutical-acqh/videoshow/76232521.cms (Accessed October 19 2020).

© 2024 Bentham Science Publishers | Privacy Policy