Pneumologie 2020; 74(06): 337-357
DOI: 10.1055/a-1157-9976
Positionspapier der DGP

Positionspapier zur praktischen Umsetzung der apparativen Differenzialtherapie der akuten respiratorischen Insuffizienz bei COVID-19

Deutsche Gesellschaft für Pneumologie und Beatmungsmedizin e.V. (DGP)Position Paper for the State of the Art Application of Respiratory Support in Patients with COVID-19German Respiratory Society
M. Pfeifer
 1   Klinik und Poliklinik für Innere Medizin II, Universitätsklinik Regensburg, Regensburg
 2   Abteilung für Pneumologie, Fachklinik für Lungenerkrankungen Donaustauf
 3   Krankenhaus Barmherzige Brüder, Klinik für Pneumologie und konservative Intensivmedizin, Regensburg
,
S. Ewig
 4   Thoraxzentrum Ruhrgebiet, Department of Respiratory and Infectious Diseases, EVK Herne and Augusta-Krankenanstalt Bochum, Bochum
,
T. Voshaar
 5   Schwerpunkt Pneumologie, Allergologie, Klinische Immunologie, Zentrum für Schlaf- und Beatmungsmedizin, Krankenhaus Bethanien, Moers
,
W. Randerath
 6   Institut für Pneumologie an der Universität zu Köln, Köln
 7   Klinik für Pneumologie, Krankenhaus Bethanien, Solingen
,
T. Bauer
 8   Lungenklinik Heckeshorn, Helios Klinikum Emil von Behring GmbH, Berlin
,
J. Geiseler
 9   Medizinische Klinik IV: Klinik für Pneumologie, Beatmungs- und Schlafmedizin, Klinikum Vest GmbH, Paracelsus-Klinik, Marl
,
D. Dellweg
10   Fachkrankenhaus Kloster Grafschaft GmbH, Akademisches Lehrkrankenhaus der Philipps-Universität Marburg, Schmallenberg Grafschaft
,
M. Westhoff
11   Klinik für Pneumologie, Lungenklinik Hemer, Hemer
12   Universität Witten-Herdecke, Witten
,
W. Windisch
12   Universität Witten-Herdecke, Witten
13   Klinik für Pneumologie, Klinikum Köln-Merheim, Kliniken der Stadt Köln, Lehrstuhl für Pneumologie der Universität Witten-Herdecke, Köln
,
B. Schönhofer
14   Pneumologische Praxis und pneumologischer Konsildienst im Klinikum Agnes Karll Laatzen, Klinikum Region Hannover, Laatzen
,
S. Kluge
15   Klinik für Intensivmedizin, Universitätsklinikum Hamburg-Eppendorf, Hamburg
,
P. M. Lepper
16   Innere Medizin V – Pneumologie, Allergologie, Beatmungs- und Umweltmedizin, Universitätsklinikum des Saarlandes, Homburg/Saar
› Author Affiliations

Zusammenfassung

Vor dem Hintergrund der Pandemie durch Infektionen mit dem SARS-CoV-2 hat die Deutsche Gesellschaft für Pneumologie und Beatmungsmedizin (DGP e.V.) federführend in Kooperation mit weiteren Verbänden ein Expertenteam benannt, um die zur Zeit drängenden Fragen zu Therapiestrategien im Umgang mit COVID-19-Patienten, die an akut respiratorischer Insuffizienz (ARI) leiden, zu beantworten. Das Positionspapier basiert auf dem momentanen aktuellen Wissen, das sich täglich weiterentwickelt. Viele der publizierten und zitierten Studien bedürfen weiterer Überprüfungen, auch weil viele kein übliches Review-Verfahren durchlaufen haben Daher unterliegt auch dieses Positionspapier einer ständigen Überprüfung und wird in Zusammenarbeit in der Zusammenarbeit mit den anderen Fachgesellschaften weiterentwickelt.

Dieses Positionspapier wurde in die folgenden fünf Themenfelder gegliedert:

1. Pathophysiologie der akuten respiratorischen Insuffizienz bei Infektionen mit SARS-CoV-2 bei Patienten ohne Immunität

2. Zeitlicher Verlauf und Prognose der akuten respiratorischen Insuffizienz im Laufe der Erkrankung

3. Sauerstoff-Insufflation, High-Flow Sauerstoff, nicht-invasive Beatmung und invasive Beatmung unter besonderer Berücksichtigung der infektiösen Aerosolbildung

4. Nicht-Invasive Beatmung bei der ARI

5. Versorgungskontinuum zur Behandlung der ARI

Zentrale Punkte wurden hierbei als Kernaussagen und Feststellungen herausgehoben. Bezüglich pathophysiologischer Aspekte der akuten respiratorischen Insuffizienz (ARI) verläuft die pulmonale Infektion mit SARS-CoV-2 COVID-19 in drei Phasen: Frühe Infektion, pulmonale Manifestation und schwere hyperinflammatorische Phase.

Der fortgeschrittene COVID-19-induzierte Lungenschaden weist häufig Unterschiede zu den bekannten Veränderungen entsprechend der Definition des Acute Respiratory Distress Syndrome (ARDS) nach den Berlin-Kriterien auf.

In einem pathophysiologisch plausiblen – zur Zeit aber noch nicht histopathologisch untermauerten – Modell wird in zwei Typen (L-Typ und H-Typ) unterschieden, die einer frühen und späten Phase entsprechen. Diese Unterscheidung kann für die apparative Differenzialtherapie der ARI erwogen werden.

Die Einschätzung des Ausmaßes der ARI soll durch eine arterielle oder kapilläre Blutgasanalyse bei Raumluft erfolgen und die Errechnung des Sauerstoffangebotes (bemisst sich aus den Variablen der Sauerstoffsättigung, des Hb-Wertes, der Hüfnerʼschen Korrekturzahl sowie des Herzminutenvolumens) beinhalten.

Durch Aerosole ist eine Übertragung von infektiösen, Viren-haltigen Partikeln prinzipiell möglich. Offene Systeme bzw. Leckage-Systeme (sog. vented Masken) können die Abgabe von respirablen Partikeln erhöhen. Prozeduren, bei denen das invasive Beatmungssystem geöffnet werden muss, sowie die endotracheale Intubation sind mit einem erhöhten Infektionsrisiko verbunden.

Der Schutz des Personals durch persönliche Schutzausrüstung soll sehr hohe Priorität haben, weil die Angst vor Ansteckung kein primärer Intubationsgrund sein darf. Bei Einhaltung der Vorgaben zu Schutzausrüstung (Augenschutz, FFP2- bzw. FFP-3 Maske, Kittel) kann eine Inhalationstherapie, nasale High Flow (NHF) -Therapie, eine CPAP-Therapie oder eine NIV nach jetzigem Kenntnisstand vom Personal ohne erhöhtes Infektionsrisiko durchgeführt werden.

Ein signifikanter Anteil der respiratorisch insuffizienten Patienten präsentiert sich mit einer relevanten Hypoxämie, die häufig auch durch eine hohe inspiratorische Sauerstofffraktion (FiO2) inklusive NHF nicht vollständig korrigiert werden kann.

In dieser Situation können die CPAP/NIV-Therapie unter Verwendung einer Mund-Nasen-Maske oder eines Beatmungshelms als Therapieeskalation durchgeführt werden, solange die Kriterien für eine endotracheale Intubation nicht erfüllt sind.

Die NIV bei akuter hypoxämischer Insuffizienz sollte auf der Intensivstation oder in einer vergleichbaren Struktur mit entsprechender personeller Expertise erfolgen. Unter CPAP/NIV kann es zu einer raschen Verschlechterung kommen. Aus diesem Grund soll ein ständiges Monitoring unter ständiger Intubationsbereitschaft gewährleistet sein. Kommt es unter CPAP/NIV zur weiteren Progression des ARI, sollte ohne zeitliche Verzögerung die Intubation und nachfolgende invasive Beatmung erfolgen, wenn keine DNI-Order vorliegt.

Bei Patienten, bei denen eine invasive Beatmung unter Ausschöpfung aller leitliniengerechter Maßnahmen nicht ausreicht, um eine ausreichende Sauerstoffaufnahme und CO2-Abgabe zu gewährleisten, soll ein extrakorporales Lungenersatzverfahren erwogen werden (ECMO).

Abstract

Against the background of the pandemic caused by infection with the SARS-CoV-2, the German Society for Pneumology and Respiratory Medicine (DGP e.V.), in cooperation with other associations, has designated a team of experts in order to answer the currently pressing questions about therapy strategies in dealing with COVID-19 patients suffering from acute respiratory insufficiency (ARI).

The position paper is based on the current knowledge that is evolving daily. Many of the published and cited studies require further review, also because many of them did not undergo standard review processes.Therefore, this position paper is also subject to a continuous review process and will be further developed in cooperation with the other professional societies.

This position paper is structured into the following five topics:

1. Pathophysiology of acute respiratory insufficiency in patients without immunity infected with SARS-CoV-2

2. Temporal course and prognosis of acute respiratory insufficiency during the course of the disease

3. Oxygen insufflation, high-flow oxygen, non-invasive ventilation and invasive ventilation with special consideration of infectious aerosol formation

4. Non-invasive ventilation in ARI

5. Supply continuum for the treatment of ARI

Key points have been highlighted as core statements and significant observations. Regarding the pathophysiological aspects of acute respiratory insufficiency (ARI), the pulmonary infection with SARS-CoV-2 COVID-19 runs through three phases: early infection, pulmonary manifestation and severe hyperinflammatory phase.

There are differences between advanced COVID-19-induced lung damage and those changes seen in Acute Respiratory Distress Syndromes (ARDS) as defined by the Berlin criteria. In a pathophysiologically plausible - but currently not yet histopathologically substantiated – model, two types (L-type and H-type) are distinguished, which correspond to an early and late phase. This distinction can be taken into consideration in the differential instrumentation in the therapy of ARI.

The assessment of the extent of ARI should be carried out by an arterial or capillary blood gas analysis under room air conditions and must include the calculation of the oxygen supply (measured from the variables of oxygen saturation, the Hb value, the corrected values of the Hüfner number and the cardiac output). In principle, aerosols can cause transmission of infectious viral particles. Open systems or leakage systems (so-called vented masks) can prevent the release of respirable particles. Procedures in which the invasive ventilation system must be opened, and endotracheal intubation must be carried out are associated with an increased risk of infection.

The protection of personnel with personal protective equipment should have very high priority because fear of contagion must not be a primary reason for intubation. If the specifications for protective equipment (eye protection, FFP2 or FFP-3 mask, gown) are adhered to, inhalation therapy, nasal high-flow (NHF) therapy, CPAP therapy or NIV can be carried out according to the current state of knowledge without increased risk of infection to the staff. A significant proportion of patients with respiratory failure presents with relevant hypoxemia, often also caused by a high inspiratory oxygen fraction (FiO2) including NHF, and this hypoxemia cannot be not completely corrected. In this situation, CPAP/NIV therapy can be administered under use of a mouth and nose mask or a respiratory helmet as therapy escalation, as long as the criteria for endotracheal intubation are not fulfilled.

In acute hypoxemic respiratory insufficiency, NIV should be performed in an intensive care unit or in a comparable unit by personnel with appropriate expertise. Under CPAP/NIV, a patient can deteriorate rapidly. For this reason, continuous monitoring with readiness to carry out intubation must be ensured at all times. If CPAP/NIV leads to further progression of ARI, intubation and subsequent invasive ventilation should be carried out without delay if no DNI order is in place.

In the case of patients in whom invasive ventilation, after exhausting all guideline-based measures, is not sufficient, extracorporeal membrane oxygenation procedure (ECMO) should be considered to ensure sufficient oxygen supply and to remove CO2.



Publication History

Article published online:
22 April 2020

© Georg Thieme Verlag KG
Stuttgart · New York

 
  • Literatur

  • 1 An der Heiden M, Buchholz U. Modelierung von Beispielszenarien der SARS-CoV-2 Epidemie 2020 in Deutschland. 2020 DOI: 10.25646/6571.2
  • 2 Kluge S, Janssens U, Welte T. et al. Empfehlungen zur intensivmedizinischen Therapie von Patienten mit COVID-19. Med Klin Intensivmed Notfmed 2020; 115: 175-177
  • 3 Ewig S, Hoffken G, Kern WV. et al. Behandlung von erwachsenen Patienten mit ambulant erworbener Pneumonie und Pravention - Update 2016. Pneumologie 2016; 70: 151-200
  • 4 Fichtner F, Moerer O, Laudi S. et al. Mechanical Ventilation and Extracorporeal Membrane Oxygena tion in Acute Respiratory Insufficiency. Dtsch Arztebl Int 2018; 115: 840-847
  • 5 Westhoff M, Schönhofer B, Neumann P. et al. S3 Leitlinien: Nicht-invasive Beatmung als Therapie der akuten respiratorischen Insuffizienz. Pneumologie 2015; 69: 719-756
  • 6 Huang C, Wang Y, Li X. et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 2020; 395: 497-506
  • 7 Zhu N, Zhang D, Wang W. et al. A Novel Coronavirus from Patients with Pneumonia in China, 2019. N Engl J Med 2020; 382: 727-733
  • 8 Chen N, Zhou M, Dong X. et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. Lancet 2020; 395: 507-513
  • 9 Wu Z, McGoogan JM. Characteristics of and Important Lessons From the Coronavirus Disease 2019 (COVID-19) Outbreak in China: Summary of a Report of 72314 Cases From the Chinese Center for Disease Control and Prevention. Jama 2020; DOI: 10.1001/jama.2020.2648.
  • 10 South AM, Diz DI, Chappell MC. COVID-19, ACE2, and the cardiovascular consequences. Am J Physiol Heart Circ Physiol 2020; 318: H1084-H1090
  • 11 Zheng YY, Ma YT, Zhang JY. et al. COVID-19 and the cardiovascular system. Nat Rev Cardiol 2020; DOI: 10.1038/s41569-020-0360-5.
  • 12 Cheung KS, Hung IF, Chan PP. et al. Gastrointestinal Manifestations of SARS-CoV-2 Infection and Virus Load in Fecal Samples from the Hong Kong Cohort and Systematic Review and Meta-analysis. Gastroenterology 2020; DOI: 10.1053/j.gastro.2020.03.065.
  • 13 Lin L, Jiang X, Zhang Z. et al. Gastrointestinal symptoms of 95 cases with SARS-CoV-2 infection. Gut 2020; DOI: 10.1136/gutjnl-2020-321013.
  • 14 Channappanavar R, Perlman S. Pathogenic human coronavirus infections: causes and consequences of cytokine storm and immunopathology. Semin Immunopathol 2017; 39: 529-539
  • 15 Siddiqi HK, Mehra MR. COVID-19 Illness in Native and Immunosuppressed States: A Clinical-Therapeutic Staging Proposal. The Journal of Heart and Lung Transplantation 2020; DOI: 10.1016/j.healun.2020.03.012.
  • 16 Peiris JS, Chu CM, Cheng VC. et al. Clinical progression and viral load in a community outbreak of coronavirus-associated SARS pneumonia: a prospective study. Lancet 2003; 361: 1767-1772
  • 17 Yang X, Yu Y, Xu J. et al. Clinical course and outcomes of critically ill patients with SARS-CoV-2 pneumonia in Wuhan, China: a single-centered, retrospective, observational study. The Lancet Respiratory Medicine 2020; DOI: 10.1016/S2213-2600(20)30079-5.
  • 18 Tetro JA. Is COVID-19 receiving ADE from other coronaviruses?. Microbes Infect 2020; 22: 72-73
  • 19 Tilocca B, Soggiu A, Musella V. et al. Molecular basis of COVID-19 relationships in different species: a one health perspective. Microbes Infect 2020; DOI: 10.1016/j.micinf.2020.03.002.
  • 20 Wang D, Hu B, Hu C. et al. Clinical Characteristics of 138 Hospitalized Patients With 2019 Novel Coronavirus-Infected Pneumonia in Wuhan, China. Jama 2020; DOI: 10.1001/jama.2020.1585.
  • 21 Ruan Q, Yang K, Wang W. et al. Clinical predictors of mortality due to COVID-19 based on an analysis of data of 150 patients from Wuhan, China. Intensive Care Med 2020; DOI: 10.1007/s00134-020-05991-x.
  • 22 Zhou F, Yu T, Du R. et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet 2020; 395: 1054-1062
  • 23 Gu J, Gong E, Zhang B. et al. Multiple organ infection and the pathogenesis of SARS. J Exp Med 2005; 202: 415-424
  • 24 Ai T, Yang Z, Hou H. et al. Correlation of Chest CT and RT-PCR Testing in Coronavirus Disease 2019 (COVID-19) in China: A Report of 1014 Cases. Radiology 2020; DOI: 10.1148/radiol.2020200642: 200642.
  • 25 Fang Y, Zhang H, Xu Y. et al. CT Manifestations of Two Cases of 2019 Novel Coronavirus (2019-nCoV) Pneumonia. Radiology 2020; 295: 208-209
  • 26 Duan YN, Qin J. Pre- and Posttreatment Chest CT Findings: 2019 Novel Coronavirus (2019-nCoV) Pneumonia. Radiology 2020; 295: 21
  • 27 Bai HX, Hsieh B, Xiong Z. et al. Performance of radiologists in differentiating COVID-19 from viral pneumonia on chest CT. Radiology 2020; DOI: 10.1148/radiol.2020200823: 200823.
  • 28 Maiolo G, Collino F, Vasques F. et al. Reclassifying Acute Respiratory Distress Syndrome. Am J Respir Crit Care Med 2018; 197: 1586-1595
  • 29 Gattinoni L, Chiumello D, Caironi P. et al. COVID-19 pneumonia: different respiratory treatments for different phenotypes?. Intensive Care Med 2020; DOI: 10.1007/s00134-020-06033-2.
  • 30 Dreher M, Kersten A, Bickenbach J. et al. Charakteristik von 50 hospitalisierten COVID-19-Patienten mit und ohne ARDS. Dtsch Arztebl International 2020; 117: 271-278
  • 31 Han R, Huang L, Jiang H. et al. Early Clinical and CT Manifestations of Coronavirus Disease 2019 (COVID-19) Pneumonia. AJR Am J Roentgenol 2020; 1-6 DOI: 10.2214/AJR.20.22961.
  • 32 Zhao W, Zhong Z, Xie X. et al. Relation Between Chest CT Findings and Clinical Conditions of Coronavirus Disease (COVID-19) Pneumonia: A Multicenter Study. AJR Am J Roentgenol 2020; 1-6 DOI: 10.2214/AJR.20.22976.
  • 33 Li Y, Xia L. Coronavirus Disease 2019 (COVID-19): Role of Chest CT in Diagnosis and Management. AJR Am J Roentgenol 2020; 1-7 DOI: 10.2214/AJR.20.22954.
  • 34 Gattinoni L, Coppola S, Cressoni M. et al. Covid-19 Does Not Lead to a "Typical" Acute Respiratory Distress Syndrome. Am J Respir Crit Care Med 2020; DOI: 10.1164/rccm.202003-0817LE.
  • 35 Barach A, Martin J, Eckman M. Positive Pressure Respiration And Its Application To The Treatment Of Acute Pulmonary Edema. Annals of Internal Medicine 1938; 12: 754-759
  • 36 Barach AL, Eckman M. et al. Studies on positive pressure respiration; general aspects and types of pressure breathing; effects on respiration and circulation at sea level. J Aviat Med 1946; 17: 290-232
  • 37 Mascheroni D, Kolobow T, Fumagalli R. et al. Acute respiratory failure following pharmacologically induced hyperventilation: an experimental animal study. Intensive Care Med 1988; 15: 8-14
  • 38 Brochard L, Slutsky A, Pesenti A. Mechanical Ventilation to Minimize Progression of Lung Injury in Acute Respiratory Failure. Am J Respir Crit Care Med 2017; 195: 438-442
  • 39 Xu Z, Shi L, Wang Y. et al. Pathological findings of COVID-19 associated with acute respiratory distress syndrome. Lancet Respir Med 2020; 8: 420-422
  • 40 Ding Y, Wang H, Shen H. et al. The clinical pathology of severe acute respiratory syndrome (SARS): a report from China. J Pathol 2003; 200: 282-289
  • 41 Ng DL, Al Hosani F, Keating MK. et al. Clinicopathologic, Immunohistochemical, and Ultrastructural Findings of a Fatal Case of Middle East Respiratory Syndrome Coronavirus Infection in the United Arab Emirates, April 2014. Am J Pathol 2016; 186: 652-658
  • 42 Grasselli G, Pesenti A, Cecconi M. Critical Care Utilization for the COVID-19 Outbreak in Lombardy, Italy: Early Experience and Forecast During an Emergency Response. JAMA 2020; DOI: 10.1001/jama.2020.4031.
  • 43 Zhou F, Yu T, Du R. et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. The Lancet 2020; DOI: 10.1016/S0140-6736(20)30566-3.
  • 44 Shi H, Han X, Jiang N. et al. Radiological findings from 81 patients with COVID-19 pneumonia in Wuhan, China: a descriptive study. Lancet Infect Dis 2020; DOI: 10.1016/s1473-3099(20)30086-4.
  • 45 Guo T, Fan Y, Chen M. et al. Cardiovascular Implications of Fatal Outcomes of Patients With Coronavirus Disease 2019 (COVID-19). JAMA cardiology 2020; DOI: 10.1001/jamacardio.2020.1017.
  • 46 Gao C, Wang Y, Gu X. et al. Association Between Cardiac Injury and Mortality in Hospitalized Patients Infected With Avian Influenza A (H7N9) Virus. Crit Care Med 2020; 48: 451-458
  • 47 Cui S, Chen S, Li X. et al. Prevalence of venous thromboembolism in patients with severe novel coronavirus pneumonia. J Thromb Haemost 2020; DOI: 10.1111/jth.14830.
  • 48 Schaberg T, Bauer T, Dalhoff K. et al. Management der Influenza A/H1N1 - Pandemie im Krankenhaus: Update Januar 2010. Eine Stellungnahme der Deutschen Gesellschaft für Pneumologie und Beatmungsmedizin. Pneumologie 2010; 64: 124-129
  • 49 Grasselli G, Zangrillo A, Zanella A. et al. Baseline Characteristics and Outcomes of 1591 Patients Infected With SARS-CoV-2 Admitted to ICUs of the Lombardy Region, Italy. JAMA 2020; DOI: 10.1001/jama.2020.5394.
  • 50 Onder G, Rezza G, Brusaferro S. Case-Fatality Rate and Characteristics of Patients Dying in Relation to COVID-19 in Italy. Jama 2020; DOI: 10.1001/jama.2020.4683.
  • 51 Wang W, Xu Y, Gao R. et al. Detection of SARS-CoV-2 in Different Types of Clinical Specimens. Jama 2020; DOI: 10.1001/jama.2020.3786.
  • 52 Pan Y, Zhang D, Yang P. et al. Viral load of SARS-CoV-2 in clinical samples. Lancet Infect Dis 2020; 20: 411-412
  • 53 Zou L, Ruan F, Huang M. et al. SARS-CoV-2 Viral Load in Upper Respiratory Specimens of Infected Patients. N Engl J Med 2020; 382: 1177-1179
  • 54 Fang Y, Zhang H, Xie J. et al. Sensitivity of Chest CT for COVID-19: Comparison to RT-PCR. Radiology 2020; DOI: 10.1148/radiol.2020200432.
  • 55 Jiang J, Yang J, Jin Y. et al. Role of qSOFA in predicting mortality of pneumonia: A systematic review and meta-analysis. Medicine (Baltimore) 2018; 97: e12634
  • 56 Shi S, Qin M, Shen B. et al. Association of Cardiac Injury With Mortality in Hospitalized Patients With COVID-19 in Wuhan, China. JAMA cardiology 2020; DOI: 10.1001/jamacardio.2020.0950.
  • 57 Madjid M, Safavi-Naeini P, Solomon SD. et al. Potential Effects of Coronaviruses on the Cardiovascular System: A Review. JAMA cardiology 2020; DOI: 10.1001/jamacardio.2020.1286.
  • 58 Seymour CW, Liu VX, Iwashyna TJ. et al. Assessment of Clinical Criteria for Sepsis: For the Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA 2016; 315: 762-774
  • 59 Tang N, Li D, Wang X. et al. Abnormal coagulation parameters are associated with poor prognosis in patients with novel coronavirus pneumonia. J Thromb Haemost 2020; 18: 844-847
  • 60 Yin S, Huang M, Li D. et al. Difference of coagulation features between severe pneumonia induced by SARS-CoV2 and non-SARS-CoV2. J Thromb Thrombolysis 2020; DOI: 10.1007/s11239-020-02105-8.
  • 61 Dembinski R, Mielck F. ARDS – Ein Update – Teil 1: Epidemiologie, Pathophysiologie und Diagnostik. Anasthesiol Intensivmed Notfallmed Schmerzther 2018; 53: 102-111
  • 62 Force ADT, Ranieri VM, Rubenfeld GD. et al. Acute respiratory distress syndrome: the Berlin Definition. JAMA 2012; 307: 2526-2533
  • 63 Arentz M, Yim E, Klaff L. et al. Characteristics and Outcomes of 21 Critically Ill Patients With COVID-19 in Washington State. Jama 2020; DOI: 10.1001/jama.2020.4326.
  • 64 Yang X, Yu Y, Xu J. et al. Clinical course and outcomes of critically ill patients with SARS-CoV-2 pneumonia in Wuhan, China: a single-centered, retrospective, observational study. Lancet Respir Med 2020; DOI: 10.1016/s2213-2600(20)30079-5.
  • 65 Wu C, Chen X, Cai Y. et al. Risk Factors Associated With Acute Respiratory Distress Syndrome and Death in Patients With Coronavirus Disease 2019 Pneumonia in Wuhan, China. JAMA internal medicine 2020; DOI: 10.1001/jamainternmed.2020.0994.
  • 66 Team CC-R. Severe Outcomes Among Patients with Coronavirus Disease 2019 (COVID-19) - United States, February 12-March 16, 2020. MMWR Morbidity and mortality weekly report 2020; 69: 343-346
  • 67 Zhu N, Zhang D, Wang W. et al. A Novel Coronavirus from Patients with Pneumonia in China, 2019. N Engl J Med 2020; 382: 727-733
  • 68 Papineni RS, Rosenthal FS. The size distribution of droplets in the exhaled breath of healthy human subjects. J Aerosol Med 1997; 10: 105-116
  • 69 Brown JR, Tang JW, Pankhurst L. et al. Influenza virus survival in aerosols and estimates of viable virus loss resulting from aerosolization and air-sampling. J Hosp Infect 2015; 91: 278-281
  • 70 Yan J, Grantham M, Pantelic J. et al. Infectious virus in exhaled breath of symptomatic seasonal influenza cases from a college community. Proc Natl Acad Sci U S A 2018; 115: 1081-1086
  • 71 Leung NHL, Chu DKW, Shiu EYC. et al. Respiratory virus shedding in exhaled breath and efficacy of face masks. Nature Medicine 2020; DOI: 10.1038/s41591-020-0843-2.
  • 72 Fabian P, McDevitt JJ, DeHaan WH. et al. Influenza virus in human exhaled breath: an observational study. PLoS One 2008; 3: e2691
  • 73 Tang JW, Nicolle AD, Klettner CA. et al. Airflow dynamics of human jets: sneezing and breathing - potential sources of infectious aerosols. PLoS One 2013; 8: e59970
  • 74 Bischoff WE, Swett K, Leng I. et al. Exposure to influenza virus aerosols during routine patient care. J Infect Dis 2013; 207: 1037-1046
  • 75 Köhler D, Fleischer W. Inhalationstherapie. München: Arcis Verlag; 2000
  • 76 Wang B, Zhang A, Sun JL. et al. Study of SARS transmission via liquid droplets in air. J Biomech Eng 2005; 127: 32-38
  • 77 Blachere FM, Lindsley WG, Pearce TA. et al. Measurement of airborne influenza virus in a hospital emergency department. Clin Infect Dis 2009; 48: 438-440
  • 78 Yang W, Elankumaran S, Marr LC. Concentrations and size distributions of airborne influenza A viruses measured indoors at a health centre, a day-care centre and on aeroplanes. J R Soc Interface 2011; 8: 1176-1184
  • 79 Alford RH, Kasel JA, Gerone PJ. et al. Human influenza resulting from aerosol inhalation. Proc Soc Exp Biol Med 1966; 122: 800-804
  • 80 van Doremalen N, Bushmaker T, Morris DH. et al. Aerosol and Surface Stability of SARS-CoV-2 as Compared with SARS-CoV-1. N Engl J Med 2020; DOI: 10.1056/NEJMc2004973.
  • 81 Cowling BJ, Ip DK, Fang VJ. et al. Aerosol transmission is an important mode of influenza A virus spread. Nature communications 2013; 4: 1935
  • 82 Simonds AK, Hanak A, Chatwin M. et al. Evaluation of droplet dispersion during non-invasive ventilation, oxygen therapy, nebuliser treatment and chest physiotherapy in clinical practice: implications for management of pandemic influenza and other airborne infections. Health Technol Assess 2010; 14: 131-172
  • 83 Köhler D, Simonides R, Rothfuss J. et al. Aerosolverteilungsmuster von 16 handelsublichen Inhalationsgeraten. Prax Klin Pneumol 1983; 37 (Suppl. 01) 922-924
  • 84 Wan GH, Wu CL, Chen YF. et al. Particle size concentration distribution and influences on exhaled breath particles in mechanically ventilated patients. PLoS One 2014; 9: e87088
  • 85 Munsiff SS, Li J, Cook SV. et al. Trends in Drug-Resistant Mycobacterium tuberculosis in New York City, 1991-2003. Clinical Infectious Diseases 2006; 42: 1702-1710
  • 86 Hui DS, Chow BK, Ng SS. et al. Exhaled air dispersion distances during noninvasive ventilation via different Respironics face masks. Chest 2009; 136: 998-1005
  • 87 Hui DS, Hall SD, Chan MT. et al. Noninvasive positive-pressure ventilation: An experimental model to assess air and particle dispersion. Chest 2006; 130: 730-740
  • 88 Fowler RA, Guest CB, Lapinsky SE. et al. Transmission of severe acute respiratory syndrome during intubation and mechanical ventilation. Am J Respir Crit Care Med 2004; 169: 1198-1202
  • 89 Raboud J, Shigayeva A, McGeer A. et al. Risk factors for SARS transmission from patients requiring intubation: a multicentre investigation in Toronto, Canada. PLoS One 2010; 5: e10717
  • 90 Thompson KA, Pappachan JV, Bennett AM. et al. Influenza aerosols in UK hospitals during the H1N1 (2009) pandemic--the risk of aerosol generation during medical procedures. PLoS One 2013; 8: e56278
  • 91 Canelli R, Connor CW, Gonzalez M. et al. Barrier Enclosure during Endotracheal Intubation. N Engl J Med 2020; DOI: 10.1056/NEJMc2007589.
  • 92 Braunlich J, Goldner F, Wirtz H. Nasal highflow eliminates CO2 from lower airways. Respir Physiol Neurobiol 2017; 242: 86-88
  • 93 Hui DS, Chow BK, Lo T. et al. Exhaled air dispersion during high-flow nasal cannula therapy versus CPAP via different masks. Eur Respir J 2019; 53 DOI: 10.1183/13993003.02339-2018.
  • 94 Kotoda M, Hishiyama S, Mitsui K. et al. Assessment of the potential for pathogen dispersal during high-flow nasal therapy. J Hosp Infect 2019; DOI: 10.1016/j.jhin.2019.11.010.
  • 95 Leung CCH, Joynt GM, Gomersall CD. et al. Comparison of high-flow nasal cannula versus oxygen face mask for environmental bacterial contamination in critically ill pneumonia patients: a randomized controlled crossover trial. J Hosp Infect 2019; 101: 84-87
  • 96 He G, Han Y, Fang Q. et al. [Clinical experience of high-flow nasal cannula oxygen therapy in severe corona virus disease 2019 (COVID-19) patients]. Zhejiang Da Xue Xue Bao Yi Xue Ban 2020; 49: 0
  • 97 Loeb M, McGeer A, Henry B. et al. SARS among critical care nurses, Toronto. Emerg Infect Dis 2004; 10: 251-255
  • 98 Edwards DA, Man JC, Brand P. et al. Inhaling to mitigate exhaled bioaerosols. Proc Natl Acad Sci U S A 2004; 101: 17383-17388
  • 99 Rochwerg B, Brochard L, Elliott MW. et al. Official ERS/ATS clinical practice guidelines: noninvasive ventilation for acute respiratory failure. Eur Respir J 2017; 50 DOI: 10.1183/13993003.02426-2016.
  • 100 World Health Organization. IMAI district clinician manual: hospital care for adolescents and adults: guidelines for the management of illnesses with limited-resources. 2020
  • 101 World Health Organization. Clinical management of severe acute respiratory infection (SARI) when COVID-19 disease is suspected: Interim guidance V 1.2. 2020
  • 102 Pediatric Acute Lung Injury Consensus Conference G. Pediatric acute respiratory distress syndrome: consensus recommendations from the Pediatric Acute Lung Injury Consensus Conference. Pediatr Crit Care Med 2015; 16: 428-439
  • 103 Riviello ED, Kiviri W, Twagirumugabe T. et al. Hospital Incidence and Outcomes of the Acute Respiratory Distress Syndrome Using the Kigali Modification of the Berlin Definition. Am J Respir Crit Care Med 2016; 193: 52-59
  • 104 RKI. Ständiger Arbeitskreis der Kompetenz- und Behandlungszentren für Krankheiten durch hochpathogene Erreger am Robert Koch-Institut. 2020
  • 105 Nehls W, Delis S, Haberland B. et al. Handlungsempfehlung zur Therapie von Patient*innen mit COVID-19 aus palliativmedizinischer Perspektive 2.0. In: Beatmungsmedizin DGfPDGfPu ed 2020
  • 106 Rhodes A, Evans LE, Alhazzani W. et al. Surviving Sepsis Campaign: International Guidelines for Management of Sepsis and Septic Shock: 2016. Crit Care Med 2017; 45: 486-552
  • 107 Pan C, Chen L, Lu C. et al. Lung Recruitability in SARS-CoV-2 Associated Acute Respiratory Distress Syndrome: A Single-center, Observational Study. Am J Respir Crit Care Med 2020; DOI: 10.1164/rccm.202003-0527LE.
  • 108 Bellani G, Laffey JG, Pham T. et al. Noninvasive Ventilation of Patients with Acute Respiratory Distress Syndrome. Insights from the LUNG SAFE Study. Am J Respir Crit Care Med 2017; 195: 67-77
  • 109 Frat JP, Ragot S, Coudroy R. et al. Predictors of Intubation in Patients With Acute Hypoxemic Respiratory Failure Treated With a Noninvasive Oxygenation Strategy. Crit Care Med 2018; 46: 208-215
  • 110 Frat JP, Thille AW, Mercat A. et al. High-flow oxygen through nasal cannula in acute hypoxemic respiratory failure. N Engl J Med 2015; 372: 2185-2196
  • 111 Carteaux G, Millan-Guilarte T, De Prost N. et al. Failure of Noninvasive Ventilation for De Novo Acute Hypoxemic Respiratory Failure: Role of Tidal Volume. Crit Care Med 2016; 44: 282-290
  • 112 Karagiannidis C, Bein T, Windisch W. Was hat sich seit Publikation der S3-Leitlinie “Invasive Beatmung und Einsatz extrakorporaler Verfahren” getan?. Pneumologie 2020; 74: 46-49
  • 113 Harari SA, Vitacca M, Blasi F. et al. Managing the Respiratory care of patients with COVID-19. 2020
  • 114 NHS. Guidance for the role and use of non-invasive respiratory support in adult patients with COVID-19 (confirmed or suspected). 2020
  • 115 Arabi YM, Fowler R, Hayden FG. Critical care management of adults with community-acquired severe respiratory viral infection. Intensive Care Med 2020; 46: 315-328
  • 116 Goh KJ, Choong MC, Cheong EH. et al. Rapid Progression to Acute Respiratory Distress Syndrome: Review of Current Understanding of Critical Illness from COVID-19 Infection. Ann Acad Med Singapore 2020; 49: 1-9
  • 117 Du Y, Tu L, Zhu P. et al. Clinical Features of 85 Fatal Cases of COVID-19 from Wuhan: A Retrospective Observational Study. Am J Respir Crit Care Med 2020; DOI: 10.1164/rccm.202003-0543OC.
  • 118 Liang T. Handbook of COVID-19 Prevention and Treatment.
  • 119 Phua J, Weng L, Ling L. et al. Intensive care management of coronavirus disease 2019 (COVID-19): challenges and recommendations. Lancet Respir Med 2020; DOI: 10.1016/s2213-2600(20)30161-2.
  • 120 Wallet F, Schoeffler M, Reynaud M. et al. Factors associated with noninvasive ventilation failure in postoperative acute respiratory insufficiency: an observational study. Eur J Anaesthesiol 2010; 27: 270-274
  • 121 Antonelli M, Conti G, Moro ML. et al. Predictors of failure of noninvasive positive pressure ventilation in patients with acute hypoxemic respiratory failure: a multi-center study. Intensive Care Med 2001; 27: 1718-1728
  • 122 Bourke SC, Piraino T, Pisani L. et al. Beyond the guidelines for non-invasive ventilation in acute respiratory failure: implications for practice. Lancet Respir Med 2018; 6: 935-947
  • 123 Duan J, Han X, Bai L. et al. Assessment of heart rate, acidosis, consciousness, oxygenation, and respiratory rate to predict noninvasive ventilation failure in hypoxemic patients. Intensive Care Med 2017; 43: 192-199
  • 124 Guan L, Zhou L, Zhang J. et al. More awareness is needed for severe acute respiratory syndrome coronavirus 2019 transmission through exhaled air during non-invasive respiratory support: experience from China. Eur Respir J 2020; 55 DOI: 10.1183/13993003.00352-2020.
  • 125 Baker JG, Sovani M. Case for continuing community NIV and CPAP during the COVID-19 epidemic. Thorax 2020; DOI: 10.1136/thoraxjnl-2020-214913.
  • 126 Alhazzani W, Moller MH, Arabi YM. et al. Surviving Sepsis Campaign: Guidelines on the Management of Critically Ill Adults with Coronavirus Disease 2019 (COVID-19). Crit Care Med 2020; DOI: 10.1097/ccm.0000000000004363.
  • 127 Wang Y, Lu X, Chen H. et al. Clinical Course and Outcomes of 344 Intensive Care Patients with COVID-19. Am J Respir Crit Care Med 2020; DOI: 10.1164/rccm.202003-0736LE.
  • 128 Mandell LA, Wunderink RG, Anzueto A. et al. Infectious Diseases Society of America/American Thoracic Society consensus guidelines on the management of community-acquired pneumonia in adults. Clin Infect Dis 2007; 44 (Suppl. 02) S27-72