Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter October 19, 2021

Molecular mechanisms of vasculopathy and coagulopathy in COVID-19

  • Suzan Al-Gburi ORCID logo EMAIL logo , Stefan Beissert and Claudia Günther EMAIL logo
From the journal Biological Chemistry

Abstract

COVID-19 primarily affects the respiratory system and may lead to severe systemic complications, such as acute respiratory distress syndrome (ARDS), multiple organ failure, cytokine storm, and thromboembolic events. Depending on the immune status of the affected individual early disease control can be reached by a robust type-I-interferon (type-I-IFN) response restricting viral replication. If type-I-IFN upregulation is impaired, patients develop severe COVID-19 that involves profound alveolitis, endothelitis, complement activation, recruitment of immune cells, as well as immunothrombosis. In patients with proper initial disease control there can be a second flare of type-I-IFN release leading to post-COVID manifestation such as chilblain-like lesions that are characterized by thrombosis of small vessels in addition to an inflammatory infiltrate resembling lupus erythematosus (LE). Mechanistically, SARS-CoV-2 invades pneumocytes and endothelial cells by acting on angiotensin-II-converting enzyme 2 (ACE2). It is hypothesized, that viral uptake might downregulate ACE2 bioavailability and enhance angiotensin-II-derived pro-inflammatory and pro-thrombotic state. Since ACE2 is encoded on the X chromosome these conditions might also be influenced by gender-specific regulation. Taken together, SARS-CoV-2 infection affects the vascular compartment leading to variable thrombogenic or inflammatory response depending on the individual immune response status.


Corresponding authors: Suzan Al-Gburi and Claudia Günther, University Hospital Carl Gustav Carus, Technical University of Dresden, Fetscherstr. 74, D-01307 Dresden, Germany, E-mail: (S. Al-Gburi), (C. Günther)

This article is a contribution to the issue highlighting the 25th Anniversary of the Interdisciplinary Centre for Clinical Research (IZKF) Münster.


Award Identifier / Grant number: TRR237 369799452/404458960

Award Identifier / Grant number: MeDDrive Programme (MeDDrive Start Project 2021/2022)

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: This work was supported by the Deutsche Forschungsgemeinschaft (German Research Foundation), grant TRR237 369799452/404458960 to CG; by the MeDDrive Programme (MeDDrive Start Project 2021/2022 grant to SA) of the Medical Faculty Carl Gustav Carus (Technical University Dresden), and by the Dresden Else Kröner Research College “Phosphoproteom-Dynamics” (membership of SA) of the Medical Faculty Carl Gustav Carus (Technical University Dresden), University Hospital Carl Gustav Carus Dresden.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

Abdullah, M., Chai, P.-S., Chong, M.-Y., Tohit, E.R.M., Ramasamy, R., Pei, C.P., and Vidyadaran, S. (2012). Gender effect on in vitro lymphocyte subset levels of healthy individuals. Cell. Immunol. 272: 214–219, https://doi.org/10.1016/j.cellimm.2011.10.009.Search in Google Scholar PubMed

Ackermann, M., Verleden, S.E., Kuehnel, M., Haverich, A., Welte, T., Laenger, F., Vanstapel, A., Werlein, C., Stark, H., Tzankov, A., et al.. (2020). Pulmonary vascular endothelialitis, thrombosis, and angiogenesis in Covid-19. N. Engl. J. Med. 383: 120–128, https://doi.org/10.1056/nejmoa2015432.Search in Google Scholar PubMed PubMed Central

Al-Gburi, S., Deussen, A.J., Galli, R., Muders, M.H., Zatschler, B., Neisser, A., Müller, B., and Kopaliani, I. (2017). Sex-specific differences in age-dependent progression of aortic dysfunction and related cardiac remodeling in spontaneously hypertensive rats. Am. J. Physiol. Regul. Integr. Comp. Physiol. 312: R835–R849, https://doi.org/10.1152/ajpregu.00231.2016.Search in Google Scholar PubMed

Ali, R.A., Wuescher, L.M., and Worth, R.G. (2015). Platelets: essential components of the immune system. Curr. Trends Immunol. 16: 65–78.Search in Google Scholar

Althaus, K., Marini, I., Zlamal, J., Pelzl, L., Singh, A., Häberle, H., Mehrländer, M., Hammer, S., Schulze, H., Bitzer, M., et al.. (2021). Antibody-induced procoagulant platelets in severe COVID-19 infection. Blood 137: 1061–1071, https://doi.org/10.1182/blood.2020008762.Search in Google Scholar PubMed PubMed Central

Årfors, L., Vesterqvist, O., Jphnsson, H., and Gréen, K. (1990). Increased thromboxane formation in patients with antiphospholipid syndrome. Eur. J. Clin. Invest. 20: 607–612, https://doi.org/10.1111/j.1365-2362.1990.tb01908.x.Search in Google Scholar PubMed

Aschoff, R., Zimmermann, N., Beissert, S., and Günther, C. (2020). Type I interferon signature in chilblain-like lesions associated with the COVID-19 pandemic. Dermatopathology 7: 57–63, https://doi.org/10.3390/dermatopathology7030010.Search in Google Scholar PubMed PubMed Central

Bassi, A., Russo, T., Argenziano, G., Mazzatenta, C., Venturini, E., Neri, I., and Piccolo, V. (2021). Chilblain-like lesions during COVID-19 pandemic: the state of the art. Life 11: 1–5, https://doi.org/10.3390/life11010023.Search in Google Scholar PubMed PubMed Central

Bayly-Jones, C., Bubeck, D., and Dunstone, M.A. (2017). The mystery behind membrane insertion: a review of the complement membrane attack complex. Phil. Trans. Biol. Sci. 372: 20160221, https://doi.org/10.1098/rstb.2016.0221.Search in Google Scholar PubMed PubMed Central

Berletch, J.B., Yang, F., Xu, J., Carrel, L., and Disteche, C.M. (2011). Genes that escape from X inactivation. Hum. Genet. 130: 237–245, https://doi.org/10.1007/s00439-011-1011-z.Search in Google Scholar PubMed PubMed Central

Berthelot, J.M., Drouet, L., and Lioté, F. (2020a). Kawasaki-like diseases and thrombotic coagulopathy in COVID-19: delayed over-activation of the STING pathway? Emerg. Microb. Infect. 9: 1514–1522, https://doi.org/10.1080/22221751.2020.1785336.Search in Google Scholar PubMed PubMed Central

Berthelot, J.M., Lioté, F., Maugars, Y., and Sibilia, J. (2020b). Lymphocyte changes in severe COVID-19: delayed over-activation of STING? Front. Immunol. 11: 1–13, https://doi.org/10.3389/fimmu.2020.607069.Search in Google Scholar PubMed PubMed Central

Bonaventura, A., Vecchié, A., Dagna, L., Martinod, K., Dixon, D.L., Van Tassell, B.W., Dentali, F., Montecucco, F., Massberg, S., Levi, M., et al.. (2021). Endothelial dysfunction and immunothrombosis as key pathogenic mechanisms in COVID-19. Nat. Rev. Immunol. 21: 319–329, https://doi.org/10.1038/s41577-021-00536-9.Search in Google Scholar PubMed PubMed Central

Brooks, W.H. (2010). X chromosome inactivation and autoimmunity. Clin. Rev. Allergy Immunol. 39: 20–29, https://doi.org/10.1007/s12016-009-8167-5.Search in Google Scholar PubMed

Brooks, W.H. and Renaudineau, Y. (2015). Epigenetics and autoimmune diseases: the X chromosome-nucleolus nexus. Front. Genet. 6: 1–20, https://doi.org/10.3389/fgene.2015.00022.Search in Google Scholar PubMed PubMed Central

Brumfiel, C.M., DiLorenzo, A.M., and Petronic-Rosic, V.M. (2021). Dermatologic manifestations of COVID-19-associated multisystem inflammatory syndrome in children. Clin. Dermatol 39: 329–333, doi:https://doi.org/10.1016/j.clindermatol.2020.10.021.Search in Google Scholar PubMed PubMed Central

Buckley, C.D., Rainger, G.E., Nash, G.B., Raza, K., and Buckley, C.D. (2005). Endothelial cells, fibroblasts and vasculitis Europe PMC Funders Group. Rheumatology 44: 860–863, https://doi.org/10.1093/rheumatology/keh542.Search in Google Scholar PubMed PubMed Central

Cahill, P.A. and Redmond, E.M. (2016). Vascular endothelium – gatekeeper of vessel health. Atherosclerosis 248: 97–109, https://doi.org/10.1016/j.atherosclerosis.2016.03.007.Search in Google Scholar PubMed PubMed Central

Campbell, C.M. and Kahwash, R. (2020). Will complement inhibition be the new target in treating COVID-19 – related. Circulation 141: 1739–1741, https://doi.org/10.1161/circulationaha.120.047419.Search in Google Scholar PubMed

Campbell, R.A., Boilard, E., and Rondina, M.T. (2021). Is there a role for the ACE2 receptor in SARS-CoV-2 interactions with platelets? J. Thromb. Haemostasis 19: 46–50, https://doi.org/10.1111/jth.15156.Search in Google Scholar PubMed PubMed Central

Cappel, M.A., Cappel, J.A., and Wetter, D.A. (2021). Pernio (chilblains), SARS-CoV-2, and COVID toes unified through cutaneous and systemic mechanisms. Mayo Clin. Proc. 96: 989–1005, https://doi.org/10.1016/j.mayocp.2021.01.009.Search in Google Scholar PubMed PubMed Central

Carreau, A., Kieda, C., and Grillon, C. (2011). Nitric oxide modulates the expression of endothelial cell adhesion molecules involved in angiogenesis and leukocyte recruitment. Exp. Cell Res. 317: 29–41, https://doi.org/10.1016/j.yexcr.2010.08.011.Search in Google Scholar PubMed

Chaudhary, H., Mohan, M., Jain, A., Kumar, V., Takia, L., Sudhakar, M., Angurana, S.K., and Jindal, A.K. (2021). Acral gangrene - ugly cousin of ‘Covid toes’ in multisystem inflammatory syndrome in children associated with SARS-CoV-2? Pediatr. Infect. Dis. J. 40: e312–e313, https://doi.org/10.1097/inf.0000000000003181.Search in Google Scholar

Cheng, Z., Dai, T., He, X., Zhang, Z., Xie, F., Wang, S., Zhang, L., and Zhou, F. (2020). The interactions between cGAS-STING pathway and pathogens. Signal Transduct. Targeted Ther. 5: 91, https://doi.org/10.1038/s41392-020-0198-7.Search in Google Scholar PubMed PubMed Central

Chouaki Benmansour, N., Carvelli, J., and Vivier, E. (2021). Complement cascade in severe forms of COVID-19: recent advances in therapy. Eur. J. Immunol. 51: 1652–1659, https://doi.org/10.1002/eji.202048959.Search in Google Scholar PubMed PubMed Central

Ciulla, M.M. (2020). SARS-CoV-2 downregulation of ACE2 and pleiotropic effects of ACEIs/ARBs. Hypertens. Res. 43: 985–986, https://doi.org/10.1038/s41440-020-0488-z.Search in Google Scholar PubMed PubMed Central

Colmenero, I., Santonja, C., Alonso-Riaño, M., Noguera-Morel, L., Hernández-Martín, A., Andina, D., Wiesner, T., Rodríguez-Peralto, J.L., Requena, L., and Torrelo, A. (2020). SARS-CoV-2 endothelial infection causes COVID-19 chilblains: histopathological, immunohistochemical and ultrastructural study of seven paediatric cases. Br. J. Dermatol. 183: 729–737, https://doi.org/10.1111/bjd.19327.Search in Google Scholar PubMed PubMed Central

Colonna, C., Spinelli, F., Monzani, N.A., Ceriotti, F., and Gelmetti, C. (2020). Chilblains in children in the time of COVID-19: new evidence with serology assay. Pediatr. Dermatol. 37: 1000–1001, https://doi.org/10.1111/pde.14269.Search in Google Scholar PubMed PubMed Central

Crow, Y.J. (2011). Type I interferonopathies: a novel set of inborn errors of immunity. Ann. N. Y. Acad. Sci. 1238: 91–98, https://doi.org/10.1111/j.1749-6632.2011.06220.x.Search in Google Scholar PubMed

Cugno, M., Meroni, P.L., Gualtierotti, R., Griffini, S., Grovetti, E., Torri, A., Panigada, M., Aliberti, S., Blasi, F., Tedesco, F., et al.. (2020). Complement activation in patients with COVID-19: a novel therapeutic target. J. Allergy Clin. Immunol. 146: 215–217, https://doi.org/10.1016/j.jaci.2020.05.006.Search in Google Scholar PubMed PubMed Central

de Masson, A., Bouaziz, J.-D., Sulimovic, L., Cassius, C., Jachiet, M., Ionescu, M.-A., Rybojad, M., Bagot, M., and Duong, T.-A. (2020). Chilblains are a common cutaneous finding during the COVID-19 pandemic: a retrospective nationwide study from France. J. Am. Acad. Dermatol. 83: 667–670, https://doi.org/10.1016/j.jaad.2020.04.161.Search in Google Scholar PubMed PubMed Central

El Hachem, M., Diociaiuti, A., Concato, C., Carsetti, R., Carnevale, C., Ciofi Degli Atti, M., Giovannelli, L., Latella, E., Porzio, O., Rossi, S., et al.. (2020). A clinical, histopathological and laboratory study of 19 consecutive Italian paediatric patients with chilblain-like lesions: lights and shadows on the relationship with COVID-19 infection. J. Eur. Acad. Dermatol. Venereol. 34: 2620–2629, https://doi.org/10.1111/jdv.16682.Search in Google Scholar PubMed PubMed Central

Espinola, R.G., Pierangeli, S.S., Ghara, A.E., and Harris, E.N. (2002). Hydroxychloroquine reverses platelet activation induced by human IgG antiphospholipid antibodies. Thromb. Haemostasis 87: 518–522, https://doi.org/10.1055/s-0037-1613033.Search in Google Scholar

Estébanez, A., Pérez-Santiago, L., Silva, E., Guillen-Climent, S., García-Vázquez, A., and Ramón, M.D. (2020). Cutaneous manifestations in COVID-19: a new contribution. J. Eur. Acad. Dermatol. Venereol. 34: e250–e251, https://doi.org/10.1111/jdv.16474.Search in Google Scholar PubMed PubMed Central

Evans, P.C., Ed Rainger, G., Mason, J.C., Guzik, T.J., Osto, E., Stamataki, Z., Neil, D., Hoefer, I.E., Fragiadaki, M., Waltenberger, J., et al.. (2020). Endothelial dysfunction in COVID-19: a position paper of the ESC Working Group for Atherosclerosis and Vascular Biology, and the ESC Council of Basic Cardiovascular Science. Cardiovasc. Res. 116: 2177–2184, https://doi.org/10.1093/cvr/cvaa230.Search in Google Scholar PubMed PubMed Central

Froldi, G. and Dorigo, P. (2020). Endothelial dysfunction in coronavirus disease 2019 (COVID-19): gender and age influences. Med. Hypotheses 144: 110015, https://doi.org/10.1016/j.mehy.2020.110015.Search in Google Scholar PubMed PubMed Central

Fuchs, T.A., Brill, A., Duerschmied, D., Schatzberg, D., and Monestier, M. (2010). Extracellular DNA traps promote thrombosis. Sci. Rep. 107: 15880–15885, https://doi.org/10.1073/pnas.1005743107.Search in Google Scholar PubMed PubMed Central

Furchgott, F. (1989). Endothelium-derived relaxing and contracting factors. Faseb. J. 3: 2007–2018, https://doi.org/10.1096/fasebj.3.9.2545495.Search in Google Scholar

Gagliardi, M.C., Tieri, P., Ortona, E., and Ruggieri, A. (2020). ACE2 expression and sex disparity in COVID-19. Cell Death Dis. 6: 1–2, https://doi.org/10.1038/s41420-020-0276-1.Search in Google Scholar PubMed PubMed Central

Galván Casas, C., Català, A., Carretero Hernández, G., Rodríguez-Jiménez, P., Fernández-Nieto, D., Rodríguez-Villa Lario, A., Navarro Fernández, I., Ruiz-Villaverde, R., Falkenhain-López, D., Llamas Velasco, M., et al.. (2020). Classification of the cutaneous manifestations of COVID-19: a rapid prospective nationwide consensus study in Spain with 375 cases. Br. J. Dermatol. 183: 71–77, https://doi.org/10.1111/bjd.19163.Search in Google Scholar PubMed PubMed Central

Gao, T., Hu, M., Zhang, X., Li, H., Zhu, L., Liu, H., Dong, Q., Zhang, Z., Wang, Z., Hu, Y., et al.. (2020). Highly pathogenic coronavirus N protein aggravates lung injury by MASP-2-mediated complement over-activation. medRxiv, https://doi.org/10.1101/2020.03.29.20041962, (preprint).Search in Google Scholar

Gebhard, C., Regitz-Zagrosek, V., Neuhauser, H.K., Morgan, R., and Klein, S.L. (2020). Impact of sex and gender on COVID-19 outcomes in Europe. Biol. Sex Differ. 11: 1–13, https://doi.org/10.1186/s13293-020-00304-9.Search in Google Scholar PubMed PubMed Central

Gu, S.X., Tyagi, T., Jain, K., Gu, V.W., Lee, S.H., Hwa, J.M., Kwan, J.M., Krause, D.S., Lee, A.I., Halene, S., et al.. (2021). Thrombocytopathy and endotheliopathy: crucial contributors to COVID-19 thromboinflammation. Nat. Rev. Cardiol. 18: 194–209, https://doi.org/10.1038/s41569-020-00469-1.Search in Google Scholar PubMed PubMed Central

Guan, W., Ni, Z., Hu, Y., Liang, W., Ou, C., He, J., Liu, L., Shan, H., Lei, C., Hui, D.S.C., et al.. (2020). Clinical characteristics of coronavirus disease 2019 in China. N. Engl. J. Med. 382: 1708–1720, https://doi.org/10.1056/nejmoa2002032.Search in Google Scholar PubMed PubMed Central

Günther, C., Aschoff, R., and Beissert, S. (2020). Cutaneous autoimmune diseases during COVID-19 pandemic. J. Eur. Acad. Dermatol. Venereol. 34: e667–e670, https://doi.org/10.1111/jdv.16753.Search in Google Scholar PubMed PubMed Central

Günther, C., Schmidt, F., König, N., and Lee-Kirsch, M.A. (2016). Typ-I-Interferonopathien: Durch Typ-1-Interferone bedingte entzündliche Systemerkrankungen. Z. Rheumatol. 75: 134–140, https://doi.org/10.1007/s00393-015-0027-5.Search in Google Scholar PubMed

Hadi, H.A.R., Carr, C.S., and Al Suwaidi, J. (2005). Endothelial dysfunction: cardiovascular risk factors, therapy, and outcome. Vasc. Health Risk Manag. 1: 183–198.Search in Google Scholar

Hamilos, M., Petousis, S., and Parthenakis, F. (2018). Interaction between platelets and endothelium: from pathophysiology to new therapeutic options. Cardiovasc. Diagn. Ther. 8: 568–580, https://doi.org/10.21037/cdt.2018.07.01.Search in Google Scholar PubMed PubMed Central

Harrison, D.G., Guzik, T.J., Lob, H.E., Madhur, M.S., Marvar, P.J., Thabet, S.R., Vinh, A., and Weyand, C.M. (2011). Inflammation, immunity, and hypertension. Hypertension 57: 132–140, https://doi.org/10.1161/hypertensionaha.110.163576.Search in Google Scholar

Heurich, A., Hofmann-Winkler, H., Gierer, S., Liepold, T., Jahn, O., and Pohlmann, S. (2014). TMPRSS2 and ADAM17 cleave ACE2 differentially and only proteolysis by TMPRSS2 augments entry driven by the severe acute respiratory syndrome coronavirus spike protein. J. Virol. 88: 1293–1307, https://doi.org/10.1128/jvi.02202-13.Search in Google Scholar PubMed PubMed Central

Hilliard, L.M., Sampson, A.K., Brown, R.D., and Denton, K.M. (2013). The ‘his and hers’ of the renin-angiotensin system. Curr. Hypertens. Rep. 15: 71–79, https://doi.org/10.1007/s11906-012-0319-y.Search in Google Scholar PubMed

Hoffmann, M., Kleine-Weber, H., Schroeder, S., Mü, M.A., Drosten, C., and Pö, S. (2020). SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell 181: 271–280, https://doi.org/10.1016/j.cell.2020.02.052.Search in Google Scholar PubMed PubMed Central

Hong, P.J., Look, D.C., Tan, P., Shi, L., Hickey, M., Gakhar, L., Chappell, M.C., Wohlford-Lenane, C., and McCray, P.B. (2009). Ectodomain shedding of angiotensin converting enzyme 2 in human airway epithelia. Am. J. Physiol. Lung Cell Mol. Physiol. 297: 84–96, https://doi.org/10.1152/ajplung.00071.2009.Search in Google Scholar

Honke, N., Shaabani, N., Merches, K., Gassa, A., Kraft, A., Ehrhardt, K., Häussinger, D., Löhning, M., Dittmer, U., Hengel, H., et al.. (2016). Immunoactivation induced by chronic viral infection inhibits viral replication and drives immunosuppression through sustained IFN-I responses. Eur. J. Immunol. 46: 372–380, https://doi.org/10.1002/eji.201545765.Search in Google Scholar

Hopfner, K.P. and Hornung, V. (2020). Molecular mechanisms and cellular functions of cGAS–STING signalling. Nat. Rev. Mol. Cell Biol. 21: 501–521, https://doi.org/10.1038/s41580-020-0244-x.Search in Google Scholar

Hottz, E.D., Azevedo-Quintanilha, I.G., Palhinha, L., Teixeira, L., Barreto, E.A., Pão, C.R.R., Righy, C., Franco, S., Souza, T.M.L., Kurtz, P., et al.. (2020). Platelet activation and platelet-monocyte aggregate formation trigger tissue factor expression in patients with severe COVID-19. Blood 136: 1330–1341, https://doi.org/10.1182/blood.2020007252.Search in Google Scholar

Hubiche, T., Cardot-Leccia, N., Le Duff, F., Seitz-Polski, B., Giordana, P., Chiaverini, C., Giordanengo, V., Gonfrier, G., Raimondi, V., Bausset, O., et al.. (2021a). Clinical, laboratory, and interferon-alpha response characteristics of patients with chilblain-like lesions during the COVID-19 pandemic. JAMA Dermatol. 157: 202–206, https://doi.org/10.1001/jamadermatol.2020.4324.Search in Google Scholar

Hubiche, T., Le Duff, F., Chiaverini, C., Giordanengo, V., and Passeron, T. (2021b). Negative SARS-CoV-2 PCR in patients with chilblain-like lesions. Lancet Infect. Dis. 21: 315–316, https://doi.org/10.1016/s1473-3099(20)30518-1.Search in Google Scholar

Java, A., Apicelli, A.J., Kathryn Liszewski, M., Coler-Reilly, A., Atkinson, J.P., Kim, A.H.J., and Kulkarni, H.S. (2020). The complement system in COVID-19: friend and foe? JCI Insight 5: e140711, https://doi.org/10.1172/jci.insight.140711.Search in Google Scholar PubMed PubMed Central

Jia, H.P., Look, D.C., Shi, L., Hickey, M., Pewe, L., Netland, J., Farzan, M., Wohlford-Lenane, C., Perlman, S., and McCray, P.B. (2005). ACE2 receptor expression and severe acute respiratory syndrome coronavirus infection depend on differentiation of human airway epithelia. J. Virol. 79: 14614–14621, https://doi.org/10.1128/jvi.79.23.14614-14621.2005.Search in Google Scholar

Jimenez-Cebrian, A.M., Castro-Mendez, A., García-Podadera, B., Romero-Galisteo, R., Medina-Alcántara, M., Garcia-Paya, I., Páez-Moguer, J., and Córdoba-Fernández, A. (2021). Clinical manifestations of COVID-19 in the feet: a review of reviews. J. Clin. Med. 10: 2201, https://doi.org/10.3390/jcm10102201.Search in Google Scholar PubMed PubMed Central

Jin, R.C., Voetsch, B., and Loscalzo, J. (2005). Endogenous mechanisms of inhibition of platelet function. Microcirculation 12: 247–258, https://doi.org/10.1080/10739680590925493.Search in Google Scholar PubMed

Klein, S.L. and Flanagan, K.L. (2016). Sex differences in immune responses. Nat. Rev. Immunol. 16: 626–638, https://doi.org/10.1038/nri.2016.90.Search in Google Scholar PubMed

Kleina, S.L., Marriott, I., and Fish, E.N. (2014). Sex-based differences in immune function and responses to vaccination. Trans. R. Soc. Trop. Med. Hyg. 109: 9–15, https://doi.org/10.1093/trstmh/tru167.Search in Google Scholar PubMed PubMed Central

Kolivras, A., Dehavay, F., Delplace, D., Feoli, F., Meiers, I., Milone, L., Olemans, C., Sass, U., Theunis, A., Thompson, C.T., et al.. (2020). Coronavirus (COVID-19) infection–induced chilblains: a case report with histopathologic findings. JAAD Case Rep. 6: 489–492, https://doi.org/10.1016/j.jdcr.2020.04.011.Search in Google Scholar PubMed PubMed Central

Kolluru, G.K., Siamwala, J.H., and Chatterjee, S. (2010). ENOS phosphorylation in health and disease. Biochimie 92: 1186–1198, https://doi.org/10.1016/j.biochi.2010.03.020.Search in Google Scholar PubMed

König, N., Fiehn, C., Wolf, C., Schuster, M., Cura Costa, E., Tüngler, V., Alvarez, H.A., Chara, O., Engel, K., Goldbach-Mansky, R., et al.. (2017). Familial chilblain lupus due to a gain-of-function mutation in STING. Ann. Rheum. Dis. 76: 468–472, https://doi.org/10.1136/annrheumdis-2016-209841.Search in Google Scholar PubMed

Kozarcanin, H., Lood, C., Munthe-Fog, L., Sandholm, K., Hamad, O.A., Bengtsson, A.A., Skjoedt, M.O., Huber-Lang, M., Garred, P., Ekdahl, K.N., et al.. (2016). The lectin complement pathway serine proteases (MASPs) represent a possible crossroad between the coagulation and complement systems in thromboinflammation. J. Thromb. Haemostasis 14: 531–545, https://doi.org/10.1111/jth.13208.Search in Google Scholar PubMed

Krarup, A., Wallis, R., Presanis, J.S., Gál, P., and Sim, R.B. (2007). Simultaneous activation of complement and coagulation by MBL-associated serine protease 2. PLoS One 2: 1–8, https://doi.org/10.1371/journal.pone.0000623.Search in Google Scholar PubMed PubMed Central

Kumar, G., Pillai, S., Norwick, P., and Bukulmez, H. (2021). Leucocytoclastic vasculitis secondary to COVID-19 infection in a young child. BMJ Case Rep. 14: 1–4, https://doi.org/10.1136/bcr-2021-242192.Search in Google Scholar PubMed PubMed Central

Lee-Kirsch, M.A. (2017). The type I interferonopathies. Annu. Rev. Med. 68: 297–315, https://doi.org/10.1146/annurev-med-050715-104506.Search in Google Scholar PubMed

Lesort, C., Kanitakis, J., Donzier, L., and Jullien, D. (2021). Chilblain‐like lesions after BNT162b2 mRNA COVID‐19 vaccine: a case report suggesting that ‘COVID toes’ are due to the immune reaction to SARS‐CoV‐2. J. Eur. Acad. Dermatol. Venereol. 35: e630–e632.10.1111/jdv.17451Search in Google Scholar PubMed PubMed Central

Levi, M., Thachil, J., Iba, T., and Levy, J.H. (2020). Coagulation abnormalities and thrombosis in patients with COVID-19. Lancet Haematol. 7: e438–e440, https://doi.org/10.1016/s2352-3026(20)30145-9.Search in Google Scholar

Lilly, B. (2014). We have contact: endothelial cell-smooth muscle cell interactions. Physiology 29: 234–241, https://doi.org/10.1152/physiol.00047.2013.Search in Google Scholar

Liu, Y., Jesus, A., Marrero, B., Yang, D., Ramsey, S., Montealegre Sanchez, G., Tenbrock, K., Wittkowski, H., Jones, O., Kuehn, H., et al.. (2014). Activated STING in a vascular and pulmonary syndrome. N. Engl. J. Med. 371: 507–518, https://doi.org/10.1056/nejmoa1312625.Search in Google Scholar

Ma, L., Sahu, S.K., Cano, M., Kuppuswamy, V., Bajwa, J., McPhatter, J., Pine, A., Meizlish, M.L., Goshua, G., Chang, C.H., et al.. (2021). Increased complement activation is a distinctive feature of severe SARS-CoV-2 infection. Sci. Immunol. 6: 1–13, https://doi.org/10.1126/sciimmunol.abh2259.Search in Google Scholar

Mackman, N., Antoniak, S., Wolberg, A.S., Kasthuri, R., and Key, N.S. (2020). Coagulation abnormalities and thrombosis in patients infected with SARS-CoV-2 and other pandemic viruses. Arterioscler. Thromb. Vasc. Biol. 40: 2033–2044, https://doi.org/10.1161/atvbaha.120.314514.Search in Google Scholar

Magro, C., Mulvey, J.J., Berlin, D., Nuovo, G., Salvatore, S., Harp, J., Baxter-Stoltzfus, A., and Laurence, J. (2020). Complement associated microvascular injury and thrombosis in the pathogenesis of severe COVID-19 infection: a report of five cases. Transl. Res. 220: 1–13, https://doi.org/10.1016/j.trsl.2020.04.007.Search in Google Scholar

Mak, A., Kow, N.Y., Schwarz, H., Gong, L., Tay, S.H., and Ling, L.H. (2017). Endothelial dysfunction in systemic lupus erythematosus - a case-control study and an updated meta-analysis and meta-regression. Sci. Rep. 7: 1–10, https://doi.org/10.1038/s41598-017-07574-1.Search in Google Scholar

Manne, B.K., Denorme, F., Middleton, E.A., Portier, I., Rowley, J.W., Stubben, C., Petrey, A.C., Tolley, N.D., Guo, L., Cody, M., et al.. (2020). Platelet gene expression and function in patients with COVID-19. Blood 136: 1317–1329, https://doi.org/10.1182/blood.2020007214.Search in Google Scholar

McGonagle, D., Bridgewood, C., and Meaney, J.F.M. (2021a). A tricompartmental model of lung oxygenation disruption to explain pulmonary and systemic pathology in severe COVID-19. Lancet Respir. Med. 9: 665–672, https://doi.org/10.1016/s2213-2600(21)00213-7.Search in Google Scholar

McGonagle, D., Bridgewood, C., Ramanan, A.V., Meaney, J.F.M., and Watad, A. (2021b). COVID-19 vasculitis and novel vasculitis mimics. Lancet Rheumatol. 3: e224–e33, https://doi.org/10.1016/s2665-9913(20)30420-3.Search in Google Scholar

Mendelsohn, M.E., O’Neill, S., George, D., and Loscalzo, J. (1990). Inhibition of fibrinogen binding to human platelets by S-nitroso-N-acetylcysteine. J. Biol. Chem. 265: 19028–19034, https://doi.org/10.1016/s0021-9258(17)30619-1.Search in Google Scholar

Moreau, K.L. (2018). Intersection between gonadal function and vascular aging in women. J. Appl. Physiol. 125: 1881–1887, https://doi.org/10.1152/japplphysiol.00117.2018.Search in Google Scholar

Morrell, C.N., Aggrey, A.A., Chapman, L.M., and Modjeski, K.L. (2014). Emerging roles for platelets as immune and inflammatory cells. Blood 123: 2759–2767, https://doi.org/10.1182/blood-2013-11-462432.Search in Google Scholar

Murohara, T., Parkinson, S.J., Waldman, S.A., and Lefer, A.M. (1995). Inhibition of nitric oxide biosynthesis promotes P-selectin expression in platelets: role of protein kinase C. Arterioscler. Thromb. Vasc. Biol. 15: 2068–2075, https://doi.org/10.1161/01.atv.15.11.2068.Search in Google Scholar

Najafi, S., Rajaei, E., Moallemian, R., and Nokhostin, F. (2020). The potential similarities of COVID-19 and autoimmune disease pathogenesis and therapeutic options: new insights approach. Clin. Rheumatol. 39: 3223–3235, https://doi.org/10.1007/s10067-020-05376-x.Search in Google Scholar

Namsolleck, P., Recarti, C., Foulquier, S., Steckelings, U.M., and Unger, T. (2014). AT2 receptor and tissue injury: therapeutic implications. Curr. Hypertens. Rep. 16: 416, https://doi.org/10.1007/s11906-013-0416-6.Search in Google Scholar

Nardi, M., Tomlinson, S., Greco, M.A., and Karpatkin, S. (2001). Complement-independent, peroxide-induced antibody lysis of platelets in HIV-1-related immune thrombocytopenia. Cell 106: 551–561, doi:https://doi.org/10.1016/s0092-8674(01)00477-9.Search in Google Scholar

Nazy, I., Jevtic, S.D., Moore, J.C., Huynh, A., Smith, J.W., Kelton, J.G., and Arnold, D.M. (2021). Platelet-activating immune complexes identified in critically ill COVID-19 patients suspected of heparin-induced thrombocytopenia. J. Thromb. Haemostasis 19: 1342–1347, https://doi.org/10.1111/jth.15283.Search in Google Scholar PubMed PubMed Central

Nguyen Dinh Cat, A. and Touyz, R.M. (2011). A new look at the renin-angiotensin system--focusing on the vascular system. Peptides 32: 2141–2150, https://doi.org/10.1016/j.peptides.2011.09.010.Search in Google Scholar PubMed

Noris, M., Benigni, A., and Remuzzi, G. (2020). The case of complement activation in COVID-19 multiorgan impact. Kidney Int. 98: 314–322, https://doi.org/10.1016/j.kint.2020.05.013.Search in Google Scholar PubMed PubMed Central

Onabajo, O.O., Banday, A.R., Stanifer, M.L., Yan, W., Obajemu, A., Santer, D.M., Florez-Vargas, O., Piontkivska, H., Vargas, J.M., Ring, T.J., et al.. (2020). Interferons and viruses induce a novel truncated ACE2 isoform and not the full-length SARS-CoV-2 receptor. Nat. Genet. 52: 1283–1293, https://doi.org/10.1038/s41588-020-00731-9.Search in Google Scholar PubMed

Otto, S., Deussen, A., Zatschler, B., Müller, B., Neisser, A., Barth, K., Morawietz, H., and Kopaliani, I. (2016). A novel role of endothelium in activation of latent pro-membrane type 1 MMP and pro-MMP-2 in rat aorta. Cardiovasc. Res. 109: 409–418, https://doi.org/10.1093/cvr/cvv256.Search in Google Scholar PubMed

Papayannopoulos, V. (2018). Neutrophil extracellular traps in immunity and disease. Nat. Rev. Immunol. 18: 134–147, https://doi.org/10.1038/nri.2017.105.Search in Google Scholar PubMed

Peckham, H., de Gruijter, N.M., Raine, C., Radziszewska, A., Ciurtin, C., Wedderburn, L.R., Rosser, E.C., Webb, K., and Deakin, C.T. (2020). Male sex identified by global COVID-19 meta-analysis as a risk factor for death and ITU admission. Nat. Commun. 11: 1–10, https://doi.org/10.1038/s41467-020-19741-6.Search in Google Scholar PubMed PubMed Central

Piccolo, V. and Bassi, A. (2020). Acral findings during the COVID-19 outbreak: chilblain-like lesions should be preferred to acroischemic lesions. J. Am. Acad. Dermatol. 83: e233–e234, https://doi.org/10.1016/j.jaad.2020.05.077.Search in Google Scholar PubMed PubMed Central

Piccolo, V., Bassi, A., Argenziano, G., Mazzatenta, C., Cutrone, M., Neri, I., Grimalt, R., and Russo, T. (2021). BNT162b2 mRNA COVID-19 vaccine-induced chilblain-like lesions reinforces the hypothesis of their relationship with SARS-CoV-2. J. Eur. Acad. Dermatol. Venereol. 35: 3493–3494, https://doi.org/10.1111/jdv.17320.Search in Google Scholar PubMed PubMed Central

Piccolo, V., Neri, I., Filippeschi, C., Oranges, T., Argenziano, G., Battarra, V.C., Berti, S., Manunza, F., Belloni Fortina, A., Di Lernia, V., et al.. (2020). Chilblain‐like lesions during COVID‐19 epidemic: a preliminary study on 63 patients. J. Eur. Acad. Dermatol. Venereol. 34: e291–e293, https://doi.org/10.1111/jdv.16526.Search in Google Scholar PubMed PubMed Central

Pradhan, A. and Olsson, P.E. (2020). Sex differences in severity and mortality from COVID-19: are males more vulnerable? Biol. Sex Differ. 11: 1–11, https://doi.org/10.1186/s13293-020-00330-7.Search in Google Scholar PubMed PubMed Central

Puelles, V.G., Lütgehetmann, M., Lindenmeyer, M.T., Sperhake, J.P., Wong, M.N., Allweiss, L., Chilla, S., Heinemann, A., Wanner, N., Liu, S., et al.. (2020). Multiorgan and renal tropism of SARS-CoV-2. N. Engl. J. Med. 383: 589–590, https://doi.org/10.1056/NEJMc2011400.Search in Google Scholar PubMed PubMed Central

Rajagopalan, S., Somers, E.C., Brook, R.D., Kehrer, C., Pfenninger, D., Lewis, E., Chakrabarti, A., Richardson, B.C., Shelden, E., McCune, W.J., et al.. (2004). Endothelial cell apoptosis in systemic lupus erythematosus: a common pathway for abnormal vascular function and thrombosis propensity. Blood 103: 3677–3683, https://doi.org/10.1182/blood-2003-09-3198.Search in Google Scholar PubMed

Riphagen, S., Gomez, X., Gonzalez-Martinez, C., Wilkinson, N., and Theocharis, P. (2020). Hyperinflammatory shock in children during COVID-19 pandemic. Lancet 395: 1607–1608, https://doi.org/10.1016/S0140-6736(20)31094-1.Search in Google Scholar

Roberts, W., Riba, R., Homer-Vanniasinkam, S., Farndale, R.W., and Naseem, K.M. (2008). Nitric oxide specifically inhibits integrin-mediated platelet adhesion and spreading on collagen. J. Thromb. Haemostasis 6: 2175–2185, https://doi.org/10.1111/j.1538-7836.2008.03190.x.Search in Google Scholar PubMed

Sacharidou, A., Shaul, P.W., and Mineo, C. (2018). New insights in the pathophysiology of antiphospholipid syndrome. Semin. Thromb. Hemost. 44: 475–482, https://doi.org/10.1055/s-0036-1597286.Search in Google Scholar PubMed PubMed Central

Sang, E.R., Tian, Y., and Miller, L.C. (2021). Interferon-stimulated genes correlate to COVID-19 susceptibility in vertebrates. Genes 12: 154, https://doi.org/10.3390/genes12020154.Search in Google Scholar PubMed PubMed Central

Scaradavou, A. (2002). HIV-related thrombocytopenia. Blood Rev. 16: 73–76, https://doi.org/10.1054/blre.2001.0188.Search in Google Scholar PubMed

Schaller, T., Hirschbühl, K., Burkhardt, K., Braun, G., Trepel, M., Märkl, B., and Claus, R. (2020). Postmortem examination of patients with COVID-19. J. Am. Med. Assoc. 323: 2518–2520, https://doi.org/10.1001/jama.2020.8907.Search in Google Scholar PubMed PubMed Central

Schnapp, A., Abulhija, H., Maly, A., Armoni-Weiss, G., Levin, Y., Faitatziadou, S.M., and Molho-Pessach, V. (2020). Introductory histopathological findings may shed light on COVID-19 paediatric hyperinflammatory shock syndrome. J. Eur. Acad. Dermatol. Venereol. 34: e665–e667, https://doi.org/10.1111/jdv.16749.Search in Google Scholar PubMed PubMed Central

Sebag, S.C., Bastarache, J.A., and Ware, L.B. (2011). Therapeutic modulation of coagulation and fibrinolysis in acute lung injury and the acute respiratory distress syndrome. Curr. Pharmaceut. Biotechnol. 12: 1481–1496, https://doi.org/10.2174/138920111798281171.Search in Google Scholar PubMed PubMed Central

Sinkovits, G., Mező, B., Réti, M., Müller, V., Iványi, Z., Gál, J., Gopcsa, L., Reményi, P., Szathmáry, B., Lakatos, B., et al.. (2021). Complement overactivation and consumption predicts in-hospital mortality in SARS-CoV-2 infection. Front. Immunol. 12: 866, https://doi.org/10.3389/fimmu.2021.663187.Search in Google Scholar PubMed PubMed Central

Skendros, P., Mitsios, A., Chrysanthopoulou, A., Mastellos, D.C., Metallidis, S., Rafailidis, P., Ntinopoulou, M., Sertaridou, E., Tsironidou, V., Tsigalou, C., et al.. (2020). Complement and tissue factor–enriched neutrophil extracellular traps are key drivers in COVID-19 immunothrombosis. J. Clin. Invest. 130: 6151–6157, https://doi.org/10.1172/jci141374.Search in Google Scholar

Souyris, M., Cenac, C., Azar, P., Daviaud, D., Canivet, A., Grunenwald, S., Pienkowski, C., Chaumeil, J., Mejía, J.E., and Guéry, J.C. (2018). TLR7 escapes X chromosome inactivation in immune cells. Sci. Immunol. 3: 1–11, https://doi.org/10.1126/sciimmunol.aap8855.Search in Google Scholar PubMed

Spihlman, A.P., Gadi, N., Wu, S.C., and Moulton, V.R. (2020). COVID-19 and systemic lupus erythematosus: focus on immune response and therapeutics. Front. Immunol. 11: 1–12, https://doi.org/10.3389/fimmu.2020.589474.Search in Google Scholar PubMed PubMed Central

Spolarics, Z., Peña, G., Qin, Y., Donnelly, R.J., and Livingston, D.H. (2017). Inherent X-linked genetic variability and cellular mosaicism unique to females contribute to sex-related differences in the innate immune response. Front. Immunol. 8: 1–13, https://doi.org/10.3389/fimmu.2017.01455.Search in Google Scholar PubMed PubMed Central

Stakos, D., Skendros, P., Konstantinides, S., and Ritis, K. (2020). Traps N’ clots: NET-mediated thrombosis and related diseases. Thromb. Haemostasis 120: 373–383, https://doi.org/10.1055/s-0039-3402731.Search in Google Scholar PubMed

Stoica, G., Macarie, E., Michiu, V., and Stoica, R.C. (1980). Biologic variation of human immunoglobulin concentration. I. Sex-age specific effects on serum levels of IgG, IgA, IgM and IgD. Med. Interne. 18: 323–332.Search in Google Scholar

Su, S. and Jiang, S. (2020). A suspicious role of interferon in the pathogenesis of SARS-CoV-2 by enhancing expression of ACE2. Signal Transduct. Targeted Ther. 5: 3–4, https://doi.org/10.1038/s41392-020-0185-z.Search in Google Scholar PubMed PubMed Central

Taha, M. and Samavati, L. (2021). Antiphospholipid antibodies in COVID-19: a meta-analysis and systematic review. RMD Open 7: 1–8, https://doi.org/10.1136/rmdopen-2021-001580.Search in Google Scholar PubMed PubMed Central

Takahashi, M., Ikeda, U., Masuyama, J.-I., Funayama, H., Kano, S., and Shimada, K. (1996). Nitric oxide attenuates adhesion molecule expression in human endothelial cells. Cytokine 8: 817–821, https://doi.org/10.1006/cyto.1996.0109.Search in Google Scholar PubMed

Takahashi, T., Ellingson, M.K., Wong, P., Israelow, B., Lucas, C., Klein, J., Silva, J., Mao, T., Oh, J.E., Tokuyama, M., et al.. (2020). Sex differences in immune responses that underlie COVID-19 disease outcomes. Nature 588: 315–320, https://doi.org/10.1038/s41586-020-2700-3.Search in Google Scholar PubMed PubMed Central

Takahashi, Y., Haga, S., Ishizaka, Y., and Mimori, A. (2010). Autoantibodies to angiotensin-converting enzyme 2 in patients with connective tissue diseases. Arthritis Res. Ther. 12: R85, https://doi.org/10.1186/ar3012.Search in Google Scholar PubMed PubMed Central

Tang, X., Geng, L., Feng, X., and Sun, L. (2021). Decreased serum ACE2 levels in patients with connective tissue diseases. Rheumatology 60: 1–6, doi:https://doi.org/10.1093/rheumatology/keaa898.Search in Google Scholar PubMed

Tchoumi, A., Erikson, U., and Krasniqi, N. (2020). SARS-CoV-2 und das Renin-Angiotensin-System: was wir wissen. Cardiovasc. Med. 23: w02116, https://doi.org/10.4414/cvm.2020.02116.Search in Google Scholar

Tersalvi, G., Vicenzi, M., Calabretta, D., Mdphd, L.B., Pedrazzini, G., Winterton, D., Biasco, L., Pedrazzini, G., and Winterton, D. (2020). Elevated troponin in patients with coronavirus disease 2019: possible mechanisms. J. Card. Fail. 26: 470–475, https://doi.org/10.1016/j.cardfail.2020.04.009.Search in Google Scholar

Tikellis, C., Bernardi, S., and Burns, W.C. (2011). Angiotensin-converting enzyme 2 is a key modulator of the renin-angiotensin system in cardiovascular and renal disease. Curr. Opin. Nephrol. Hypertens. 20: 62–68, https://doi.org/10.1097/mnh.0b013e328341164a.Search in Google Scholar

Tomlins, S.A., Rhodes, D.R., Perner, S., Dhanasekaran, S.M., Mehra, R., Sun, X.-W., Varambally, S., Cao, X., Tchinda, J., Kuefer, R., et al.. (2005). Recurrent fusion of TMPRSS2 and ETS transcription factor genes in prostate cancer. Science 310: 644–648, https://doi.org/10.1126/science.1117679.Search in Google Scholar

Tung, M.L., Tan, B., Cherian, R., and Chandra, B. (2021). Anti-phospholipid syndrome and COVID-19 thrombosis: connecting the dots. Rheumatol. Adv. Pract. 5: 1–14, https://doi.org/10.1093/rap/rkaa081.Search in Google Scholar

Varga, Z., Flammer, A.J., Steiger, P., Haberecker, M., Andermatt, R., Zinkernagel, A.S., Mehra, M.R., Schuepbach, R.A., Ruschitzka, F., and Moch, H. (2020). Endothelial cell infection and endotheliitis in COVID-19. Lancet 395: 1417–1418, https://doi.org/10.1016/s0140-6736(20)30937-5.Search in Google Scholar

Velásquez, M., Rojas, M., Abrahams, V.M., Escudero, C., and Cadavid, Á.P. (2018). Mechanisms of endothelial dysfunction in antiphospholipid syndrome: association with clinical manifestations. Front. Physiol. 9: 1840, https://doi.org/10.3389/fphys.2018.01840.Search in Google Scholar PubMed PubMed Central

Veras, F., Pontelli, M., Silva, C., Toller-Kawahisa, J., de Lima, M., Nascimento, D., Schneider, A., Caetité, D., Rosales, R., Colón, D., et al.. (2020). SARS-CoV-2 triggered neutrophil extracellular traps (NETs) mediate COVID-19 pathology. J. Exp. Med. 217, https://doi.org/10.1084/jem.20201129.Search in Google Scholar PubMed PubMed Central

Verdecchia, P., Cavallini, C., Spanevello, A., and Angeli, F. (2020). The pivotal link between ACE2 deficiency and SARS-CoV-2 infection. Eur. J. Intern. Med. 76: 14–20, https://doi.org/10.1016/j.ejim.2020.04.037.Search in Google Scholar PubMed PubMed Central

Versari, D., Daghini, E., Virdis, A., Ghiadoni, L., and Taddei, S. (2009). Endothelial dysfunction as a target for prevention of cardiovascular disease. Diabetes Care 32(Suppl. 2): S314–S321, https://doi.org/10.2337/dc09-S330.Search in Google Scholar PubMed PubMed Central

Vieira, C., Nery, L., Martins, L., Jabour, L., Dias, R., and Simões e Silva, A.C. (2021). Downregulation of membrane-bound angiotensin converting enzyme 2 (ACE2) receptor has a pivotal role in COVID-19 immunopathology. Curr. Drug Targets 22: 254–281, https://doi.org/10.2174/1389450121666201020154033.Search in Google Scholar

Viner, R.M. and Whittaker, E. (2020). Kawasaki-like disease: emerging complication during the COVID-19 pandemic. Lancet 395: 1741–1743, https://doi.org/10.1016/s0140-6736(20)31129-6.Search in Google Scholar

Walport, M.J. (2001). Complement. First of two parts. N. Engl. J. Med. 344: 1058–1066, https://doi.org/10.1056/nejm200104053441406.Search in Google Scholar

Wang, E.Y., Mao, T., Klein, J., Dai, Y., Huck, J.D., Jaycox, J.R., Liu, F., Zhou, T., Israelow, B., Wong, P., et al.. (2021). Diverse functional autoantibodies in patients with COVID-19. Nature 595: 283–288, https://doi.org/10.1038/s41586-021-03631-y.Search in Google Scholar PubMed

Wichmann, D., Sperhake, J.-P., Lütgehetmann, M., Steurer, S., Edler, C., Heinemann, A., Heinrich, F., Mushumba, H., Kniep, I., Schröder, A.S., et al.. (2020). Autopsy findings and venous thromboembolism in patients with COVID-19. Ann. Intern. Med. 173: 268–277, https://doi.org/10.7326/m20-2003.Search in Google Scholar

Wink, D.A., Miranda, K.M., Espey, M.G., Pluta, R.M., Hewett, S.J., Colton, C., Vitek, M., Feelisch, M., and Grisham, M.B. (2001). Mechanisms of the antioxidant effects of nitric oxide. Antioxidants Redox Signal. 3: 203–213, https://doi.org/10.1089/152308601300185179.Search in Google Scholar PubMed

Wu, H., Wang, Y., Zhang, Y., Xu, F., Chen, J., Duan, L., Zhang, T., Wang, J., and Zhang, F. (2020). Breaking the vicious loop between inflammation, oxidative stress and coagulation, a novel anti-thrombus insight of nattokinase by inhibiting LPS-induced inflammation and oxidative stress. Redox Biol. 32: 101500, https://doi.org/10.1016/j.redox.2020.101500.Search in Google Scholar PubMed PubMed Central

Xu, J., Sriramula, S., Xia, H., Moreno-Walton, L., Culicchia, F., Domenig, O., Poglitsch, M., and Lazartigues, E. (2017). Clinical relevance and role of neuronal AT1 receptors in ADAM17-mediated ACE2 shedding in neurogenic hypertension. Circ. Res. 121: 43–55, https://doi.org/10.1161/circresaha.116.310509.Search in Google Scholar PubMed PubMed Central

Xu, P., Zhou, Q., and Xu, J. (2020). Mechanism of thrombocytopenia in COVID-19 patients. Ann. Hematol. 99: 1205–1208, https://doi.org/10.1007/s00277-020-04019-0.Search in Google Scholar PubMed PubMed Central

Yau, J.W., Teoh, H., and Verma, S. (2012). Endothelial cell control of thrombosis. BMC Cardiovasc. Disord. 15, https://doi.org/10.1186/s12872-015-0124-z.Search in Google Scholar PubMed PubMed Central

Yu, J., Yuan, X., Chen, H., Chaturvedi, S., Braunstein, E.M., and Brodsky, R.A. (2020). Direct activation of the alternative complement pathway by SARS-CoV-2 spike proteins is blocked by factor D inhibition. Blood 136: 2080–2089, https://doi.org/10.1182/blood.2020008248.Search in Google Scholar PubMed PubMed Central

Zaid, Y., Puhm, F., Allaeys, I., Naya, A., Oudghiri, M., Khalki, L., Limami, Y., Zaid, N., Sadki, K., and Ben El Haj, R., et al.. (2020). Platelets can associate with SARS-CoV-2 RNA and are hyperactivated in COVID-19. Circ. Res. 127: 1404–1418, doi:https://doi.org/10.1161/circresaha.120.317703.Search in Google Scholar PubMed PubMed Central

Zhang, S., Liu, Y., Wang, X., Yang, L., Li, H., Wang, Y., Liu, M., Zhao, X., Xie, Y., Yang, Y., et al.. (2020). SARS-CoV-2 binds platelet ACE2 to enhance thrombosis in COVID-19. J. Hematol. Oncol. 13: 1–22, https://doi.org/10.1186/s13045-020-00954-7.Search in Google Scholar PubMed PubMed Central

Zuo, Y., Estes, S.K., Ali, R.A., Gandhi, A.A., Yalavarthi, S., Shi, H., Sule, G., Gockman, K., Madison, J.A., Zuo, M., et al.. (2020a). Prothrombotic autoantibodies in serum from patients hospitalized with COVID-19. Sci. Transl. Med. 12: eabd3876, https://doi.org/10.1126/scitranslmed.abd3876.Search in Google Scholar PubMed PubMed Central

Zuo, Y., Yalavarthi, S., Shi, H., Gockman, K., Zuo, M., Madison, J.A., Blair, C., Weber, A., Barnes, B.J., Egeblad, M., et al.. (2020b). Neutrophil extracellular traps in COVID-19. JCI Insight 5: e138999.10.1172/jci.insight.138999Search in Google Scholar PubMed PubMed Central

Received: 2021-04-30
Accepted: 2021-10-06
Published Online: 2021-10-19
Published in Print: 2021-11-25

© 2021 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 16.4.2024 from https://www.degruyter.com/document/doi/10.1515/hsz-2021-0245/html
Scroll to top button