Generic placeholder image

Combinatorial Chemistry & High Throughput Screening

Editor-in-Chief

ISSN (Print): 1386-2073
ISSN (Online): 1875-5402

Research Article

Repurposing Ayush-64 for COVID-19: A Computational Study Based on Network Pharmacology and Molecular Docking

Author(s): Mahija K.C.* and Abdul Nazeer K.A.

Volume 25, Issue 12, 2022

Published on: 07 March, 2022

Page: [2089 - 2102] Pages: 14

DOI: 10.2174/1386207325666220210125923

Price: $65

Abstract

Background: As COVID-19 pandemic continues to affect people’s lives, the government of India gave emergency use approval to the ayurvedic antimalarial drug Ayush-64 in April 2021 to treat asymptomatic COVID-19 positive and mild COVID-19 positive patients.

Objective: This study aims to explore the therapeutic potential of Ayush-64 to treat COVID-19 and provide a new approach for repurposing Ayurvedic drugs.

Methods: The bioactives present in Ayush-64 were found along with their targets, and a plantbioactive- target network was created. A protein-protein interaction network of the common targets of Ayush-64 and COVID-19 was constructed and analyzed to find the key targets of Ayush-64 associated with the disease. Gene ontology and pathway enrichment analysis were performed to find COVID-19 related biological processes and pathways involved by the key targets. The key bioactives were docked with SARS-CoV-2 main protease 3CL, native Human Angiotensin-converting Enzyme ACE2, Spike protein S1, and RNA-dependent RNA polymerase RdRp.

Results: From the 336 targets for Ayush-64, we found 38 key targets. Functional enrichment analysis of the key targets resulted in 121 gene ontology terms and 38 pathways. When molecular docking was performed with four receptors, thirteen bioactives showed good binding affinity comparable to that of the eight drugs presently used to treat COVID-19.

Conclusion: Network pharmacological analysis and molecular docking study of Ayush-64 revealed that it can be recommended to treat COVID-19. Further in vitro and in vivo studies are needed to confirm the results. The study demonstrated a new approach for repurposing Ayurvedic drugs.

Keywords: Drug repurposing, Ayush-64, Ayurveda, COVID-19, SARS-CoV-2, network pharmacology, molecular docking.

Graphical Abstract
[1]
Wishart, D.S.; Feunang, Y.D.; Guo, A.C.; Lo, E.J.; Marcu, A.; Grant, J.R.; Sajed, T.; Johnson, D.; Li, C.; Sayeeda, Z.; Assempour, N.; Iyn-kkaran, I.; Liu, Y.; Maciejewski, A.; Gale, N.; Wilson, A.; Chin, L.; Cummings, R.; Le, D.; Pon, A.; Knox, C.; Wilson, M. DrugBank 5.0: A major update to the DrugBank database for 2018. Nucleic Acids Res., 2018, 46(D1), D1074-D1082.
[http://dx.doi.org/10.1093/nar/gkx1037] [PMID: 29126136]
[2]
Pan, H.; Peto, R.; Henao-Restrepo, A.M.; Preziosi, M.P.; Sathiyamoorthy, V.; Abdool Karim, Q.; Alejandria, M.M.; Hernández García, C.; Kieny, M.P.; Malekzadeh, R.; Murthy, S.; Reddy, K.S.; Roses Periago, M.; Abi Hanna, P.; Ader, F.; Al-Bader, A.M.; Alhasawi, A.; Allum, E.; Alotaibi, A.; Alvarez-Moreno, C.A.; Appadoo, S.; Asiri, A.; Aukrust, P.; Barratt-Due, A.; Bellani, S.; Branca, M.; Cappel-Porter, H.B.C.; Cerrato, N.; Chow, T.S.; Como, N.; Eustace, J.; García, P.J.; Godbole, S.; Gotuzzo, E.; Griskevicius, L.; Hamra, R.; Hassan, M.; Hassany, M.; Hutton, D.; Irmansyah, I.; Jancoriene, L.; Kirwan, J.; Kumar, S.; Lennon, P.; Lopardo, G.; Lydon, P.; Magrini, N.; Maguire, T.; Ma-nevska, S.; Manuel, O.; McGinty, S.; Medina, M.T.; Mesa Rubio, M.L.; Miranda-Montoya, M.C. Nel, J.; Nunes, E.P.; Perola, M.; Portolés, A.; Rasmin, M.R.; Raza, A.; Rees, H.; Reges, P.P.S.; Rogers, C.A.; Salami, K.; Salvadori, M.I.; Sinani, N.; Sterne, J.A.C.; Stevanovikj, M.; Tacconelli, E.; Tikkinen, K.A.O.; Trelle, S.; Zaid, H.; Røttingen, J.A.; Swaminathan, S. Repurposed antiviral drugs for covid-19-interim WHO SOLIDARITY trial results. N. Engl. J. Med., 2021, 384(6), 497-511.
[http://dx.doi.org/10.1056/NEJMoa2023184] [PMID: 33264556]
[3]
Younis, N.K.; Zareef, R.O.; Fakhri, G.; Bitar, F.; Eid, A.H.; Arabi, M. COVID-19: Potential therapeutics for pediatric patients. Pharmacol. Rep., 2021, 73(6), 1520-1538.
[http://dx.doi.org/10.1007/s43440-021-00316-1] [PMID: 34458951]
[4]
The central council for research in Ayurvedic sciences, drug development for select diseases: Evidence based approach based on CCRAS R&D contributions; central council for research in Ayurvedic Sciences; CCRAS: New Delhi 2016.
[5]
AYUSH Ministry. National clinical management protocol based on ayurveda and yoga for management of COVID-19., 2020, 27(4), 19. Available from: https://www.ayush.gov.in/docs/ayush-Protocol-covid-19.pdf
[6]
Ram, T.S.; Munikumar, M.; Raju, V.N.; Devaraj, P.; Boiroju, N.K.; Hemalatha, R.; Prasad, P.V.V.; Gundeti, M.; Sisodia, B.S.; Pawar, S.; Prasad, G.P.; Chincholikar, M.; Goel, S.; Mangal, A.; Gaidhani, S.; Srikanth, N.; Dhiman, K.S. In silico evaluation of the compounds of the ayurvedic drug, AYUSH-64, for the action against the SARS-CoV-2 main protease. J. Ayurveda Integr. Med., 2022, 13(1), 100413.
[http://dx.doi.org/10.1016/j.jaim.2021.02.004] [PMID: 33654345]
[7]
Thakar, A.; Panara, K.; Patel, F.; Bhagiya, S.; Goyal, M.; Bhinde, S.; Chaudhari, S.; Chaturvedi, S. Add-on Ayurveda treatment for early stage COVID-19: A single center retrospective cohort study From Gujarat, India. J. Evid. Based Integr. Med., 2021, 26, X211020685.
[http://dx.doi.org/10.1177/2515690X211020685] [PMID: 34057365]
[8]
Gundeti, M.S.; Bhurke, L.W.; Mundada, P.S.; Murudkar, S.; Surve, A.; Sharma, R.; Mata, S.; Rana, R.; Singhal, R.; Vyas, N.; Khanduri, S.; Sharma, B.S.; Srikanth, N.; Dhiman, K.S. AYUSH 64, a polyherbal Ayurvedic formulation in Influenza-like illness - Results of a pilot study. J. Ayurveda Integr. Med., 2020, S0975-9476(20), 30025-5.
[http://dx.doi.org/10.1016/j.jaim.2020.05.010] [PMID: 33446377]
[9]
Chandran, U.; Mehendale, N.; Tillu, G.; Patwardhan, B. Network pharmacology of Ayurveda formulation Triphala with special reference to anti-cancer property. Comb. Chem. High Throughput Screen., 2015, 18(9), 846-854.
[http://dx.doi.org/10.2174/1386207318666151019093606] [PMID: 26477351]
[10]
US department of agriculture, agricultural research service. 1992-2021. Dr. Duke's phytochemical and ethnobotanical databases. Available from: https://phytochem.nal.usda.gov/phytochem/search (Accessed August 01, 2021).
[11]
Mohanraj, K.; Karthikeyan, B.S. VivekAnanth, R.; Chand, R. B.; Aparna, S.; Mangalapandi, P.; Samal, A IMPPAT: A curated database of Indian medicinal plants, phytochemistry and therapeutics. bioRxiv, 2017, 8(1), 4329.
[12]
Ru, J.; Li, P.; Wang, J.; Zhou, W.; Li, B.; Huang, C.; Li, P.; Guo, Z.; Tao, W.; Yang, Y.; Xu, X.; Li, Y.; Wang, Y.; Yang, L. TCMSP: A data-base of systems pharmacology for drug discovery from herbal medicines. J. Cheminform., 2014, 6, 13.
[http://dx.doi.org/10.1186/1758-2946-6-13] [PMID: 24735618]
[13]
Pandey, K.; Shevkar, C.; Bairwa, K.; Kate, A.S. Pharmaceutical perspective on bioactives from Alstonia scholaris: Ethnomedicinal knowledge, phytochemistry, clinical status, patent space, and future directions. Phytochem. Rev., 2020, 191-233.
[http://dx.doi.org/10.1007/s11101-020-09662-z]
[14]
Khyade, M.S.; Kasote, D.M.; Vaikos, N.P. Alstonia scholaris (L.) R. Br. and Alstonia macrophylla Wall. ex G. Don: A comparative review on traditional uses, phytochemistry and pharmacology. J. Ethnopharmacol., 2014, 153(1), 1-18.
[http://dx.doi.org/10.1016/j.jep.2014.01.025] [PMID: 24486598]
[15]
Soni, D.; Grover, A. “Picrosides” from Picrorhiza kurroa as potential anti-carcinogenic agents. Biomed. Pharmacother., 2019, 109, 1680-1687.
[http://dx.doi.org/10.1016/j.biopha.2018.11.048] [PMID: 30551422]
[16]
Kumar, A.; Garg, V.; Chaudhary, A.; Jain, P.K.; Tomar, P.K. Isolation, characterisation and antibacterial activity of new compounds from methanolic extract of seeds of Caesalpinia crista L. (Caesalpinaceae). Nat. Prod. Res., 2014, 28(4), 230-238.
[http://dx.doi.org/10.1080/14786419.2013.814054] [PMID: 23822804]
[17]
Dey, P.; Singh, J.; Suluvoy, J.K.; Dilip, K.J.; Nayak, J. Utilization of Swertia chirayita Plant extracts for management of diabetes and asso-ciated disorders: Present status, future prospects and limitations. Nat. Prod. Bioprospect., 2020, 10(6), 431-443.
[http://dx.doi.org/10.1007/s13659-020-00277-7] [PMID: 33118125]
[18]
Kandasamy, V.; Balasundaram, U. Caesalpinia bonduc (L.) Roxb. as a promising source of pharmacological compounds to treat Poly Cystic Ovary Syndrome (PCOS): A review. J. Ethnopharmacol., 2021, 279, 114375.
[http://dx.doi.org/10.1016/j.jep.2021.114375] [PMID: 34192600]
[19]
Kim, S.; Chen, J.; Cheng, T.; Gindulyte, A.; He, J.; He, S.; Li, Q.; Shoemaker, B.A.; Thiessen, P.A.; Yu, B.; Zaslavsky, L.; Zhang, J.; Bol-ton, E.E. PubChem in 2021: New data content and improved web interfaces. Nucleic Acids Res., 2021, 49(D1), D1388-D1395.
[http://dx.doi.org/10.1093/nar/gkaa971] [PMID: 33151290]
[20]
Daina, A.; Michielin, O.; Zoete, V. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci. Rep., 2017, 7, 42717.
[http://dx.doi.org/10.1038/srep42717] [PMID: 28256516]
[21]
Daina, A.; Zoete, V. A BOILED-Egg to predict gastrointestinal absorption and brain penetration of small molecules. ChemMedChem, 2016, 11(11), 1117-1121.
[http://dx.doi.org/10.1002/cmdc.201600182] [PMID: 27218427]
[22]
Gilson, M.K.; Liu, T.; Baitaluk, M.; Nicola, G.; Hwang, L.; Chong, J. BindingDB in 2015: A public database for medicinal chemistry, com-putational chemistry and systems pharmacology. Nucleic Acids Res., 2016, 44(D1), D1045-D1053.
[http://dx.doi.org/10.1093/nar/gkv1072] [PMID: 26481362]
[23]
UniProt Consortium. UniProt: The universal protein knowledgebase in 2021. Nucleic Acids Res., 2021, 49(D1), D480-D489.
[http://dx.doi.org/10.1093/nar/gkaa1100] [PMID: 33237286]
[24]
Shannon, P.; Markiel, A.; Ozier, O.; Baliga, N.S.; Wang, J.T.; Ramage, D.; Amin, N.; Schwikowski, B.; Ideker, T. Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Res., 2003, 13(11), 2498-2504.
[http://dx.doi.org/10.1101/gr.1239303] [PMID: 14597658]
[25]
Piñero, J.; Ramírez-Anguita, J.M.; Saüch-Pitarch, J.; Ronzano, F.; Centeno, E.; Sanz, F.; Furlong, L.I. The DisGeNET knowledge platform for disease genomics: 2019 update. Nucleic Acids Res., 2020, 48(D1), D845-D855.
[PMID: 31680165]
[26]
Fishilevich, S.; Zimmerman, S.; Kohn, A.; Iny Stein, T.; Olender, T.; Kolker, E.; Safran, M.; Lancet, D. Genic insights from integrated human proteomics in GeneCards. Database, 2016, 2016, baw030.
[27]
Szklarczyk, D.; Gable, A.L.; Nastou, K.C.; Lyon, D.; Kirsch, R.; Pyysalo, S.; Doncheva, N.T.; Legeay, M.; Fang, T.; Bork, P.; Jensen, L.J.; von Mering, C. The STRING database in 2021: Customizable protein-protein networks, and functional characterization of user-uploaded gene/measurement sets. Nucleic Acids Res., 2021, 49(D1), D605-D612.
[http://dx.doi.org/10.1093/nar/gkaa1074] [PMID: 33237311]
[28]
Huang, W.; Sherman, B.T.; Lempicki, R.A. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat. Protoc., 2009, 4(1), 44-57.
[http://dx.doi.org/10.1038/nprot.2008.211] [PMID: 19131956]
[29]
Kanehisa, M.; Furumichi, M.; Sato, Y.; Ishiguro-Watanabe, M.; Tanabe, M. KEGG: integrating viruses and cellular organisms. Nucleic Acids Res., 2021, 49(D1), D545-D551.
[http://dx.doi.org/10.1093/nar/gkaa970] [PMID: 33125081]
[30]
Huang, Y.; Yang, C.; Xu, X.F.; Xu, W.; Liu, S.W. Structural and functional properties of SARS-CoV-2 spike protein: Potential antivirus drug development for COVID-19. Acta Pharmacol. Sin., 2020, 41(9), 1141-1149.
[http://dx.doi.org/10.1038/s41401-020-0485-4] [PMID: 32747721]
[31]
Jin, Z.; Du, X.; Xu, Y.; Deng, Y.; Liu, M.; Zhao, Y.; Zhang, B.; Li, X.; Zhang, L.; Peng, C.; Duan, Y.; Yu, J.; Wang, L.; Yang, K.; Liu, F.; Jiang, R.; Yang, X.; You, T.; Liu, X.; Yang, X.; Bai, F.; Liu, H.; Liu, X.; Guddat, L.W.; Xu, W.; Xiao, G.; Qin, C.; Shi, Z.; Jiang, H.; Rao, Z.; Yang, H. Structure of Mpro from SARS-CoV-2 and discovery of its inhibitors. Nature, 2020, 582(7811), 289-293.
[http://dx.doi.org/10.1038/s41586-020-2223-y] [PMID: 32272481]
[32]
Burley, S.K.; Bhikadiya, C.; Bi, C.; Bittrich, S.; Chen, L.; Crichlow, G.V.; Christie, C.H.; Dalenberg, K.; Di Costanzo, L.; Duarte, J.M.; Dut-ta, S.; Feng, Z.; Ganesan, S.; Goodsell, D.S.; Ghosh, S.; Green, R.K.; Guranović, V.; Guzenko, D.; Hudson, B.P.; Lawson, C.L.; Liang, Y.; Lowe, R.; Namkoong, H.; Peisach, E.; Persikova, I.; Randle, C.; Rose, A.; Rose, Y.; Sali, A.; Segura, J.; Sekharan, M.; Shao, C.; Tao, Y.P.; Voigt, M.; Westbrook, J.D.; Young, J.Y.; Zardecki, C.; Zhuravleva, M. RCSB Protein Data Bank: Powerful new tools for exploring 3D structures of biological macromolecules for basic and applied research and education in fundamental biology, biomedicine, biotechnology, bioengineering and energy sciences. Nucleic Acids Res., 2021, 49(D1), D437-D451.
[http://dx.doi.org/10.1093/nar/gkaa1038] [PMID: 33211854]
[33]
Liu, Y.; Grimm, M.; Dai, W.T.; Hou, M.C.; Xiao, Z-X.; Cao, Y. CB-Dock: A web server for cavity detection-guided protein-ligand blind docking. Acta Pharmacol. Sin., 2020, 41(1), 138-144.
[http://dx.doi.org/10.1038/s41401-019-0228-6] [PMID: 31263275]
[34]
O’Boyle, N.M.; Banck, M.; James, C.A.; Morley, C.; Vandermeersch, T.; Hutchison, G.R. Open Babel: An open chemical toolbox. J. Cheminform., 2011, 3, 33.
[http://dx.doi.org/10.1186/1758-2946-3-33] [PMID: 21982300]
[35]
Morris, G.M.; Huey, R.; Lindstrom, W.; Sanner, M.F.; Belew, R.K.; Goodsell, D.S.; Olson, A.J. AutoDock4 and AutoDockTools4: Auto-mated docking with selective receptor flexibility. J. Comput. Chem., 2009, 30(16), 2785-2791.
[http://dx.doi.org/10.1002/jcc.21256] [PMID: 19399780]
[36]
Bioinformatics & evolutionary genomics- calculate and draw custom Venn diagrams 2021. Available from: http://bioinformatics.psb.ugent.be/webtools/Venn/ (Accessed 01-August-2021).
[37]
Fang, W.; Jiang, J.; Su, L.; Shu, T.; Liu, H.; Lai, S.; Ghiladi, R.A.; Wang, J. The role of NO in COVID-19 and potential therapeutic strate-gies. Free Radic. Biol. Med., 2021, 163, 153-162.
[http://dx.doi.org/10.1016/j.freeradbiomed.2020.12.008] [PMID: 33347987]
[38]
Petruk, G.; Puthia, M.; Petrlova, J.; Samsudin, F.; Strömdahl, A-C.; Cerps, S.; Uller, L.; Kjellström, S.; Bond, P.J.; Schmidtchen, A.A. SARS-CoV-2 spike protein binds to bacterial lipopolysaccharide and boosts proinflammatory activity. J. Mol. Cell Biol., 2020, 12(12), 916-932.
[http://dx.doi.org/10.1093/jmcb/mjaa067] [PMID: 33295606]
[39]
Del Valle, D.M.; Kim-Schulze, S.; Huang, H-H.; Beckmann, N.D.; Nirenberg, S.; Wang, B.; Lavin, Y.; Swartz, T.H.; Madduri, D.; Stock, A.; Marron, T.U.; Xie, H.; Patel, M.; Tuballes, K.; Van Oekelen, O.; Rahman, A.; Kovatch, P.; Aberg, J.A.; Schadt, E.; Jagannath, S.; Ma-zumdar, M.; Charney, A.W.; Firpo-Betancourt, A.; Mendu, D.R.; Jhang, J.; Reich, D.; Sigel, K.; Cordon-Cardo, C.; Feldmann, M.; Parekh, S.; Merad, M.; Gnjatic, S. An inflammatory cytokine signature predicts COVID-19 severity and survival. Nat. Med., 2020, 26(10), 1636-1643.
[http://dx.doi.org/10.1038/s41591-020-1051-9] [PMID: 32839624]
[40]
Stochino, C.; Villa, S.; Zucchi, P.; Parravicini, P.; Gori, A.; Raviglione, M.C. Clinical characteristics of COVID-19 and active tuberculosis co-infection in an Italian reference hospital. Eur. Respir. J., 2020, 56(1), 56.
[http://dx.doi.org/10.1183/13993003.01708-2020] [PMID: 32482787]
[41]
Zong, Z.; Wei, Y.; Ren, J.; Zhang, L.; Zhou, F. The intersection of COVID-19 and cancer: signaling pathways and treatment implications. Mol. Cancer, 2021, 20(1), 76.
[http://dx.doi.org/10.1186/s12943-021-01363-1] [PMID: 34001144]
[42]
Ullrich, S.; Nitsche, C. The SARS-CoV-2 main protease as drug target. Bioorg. Med. Chem. Lett., 2020, 30(17), 127377.
[http://dx.doi.org/10.1016/j.bmcl.2020.127377] [PMID: 32738988]
[43]
Ni, W.; Yang, X.; Yang, D.; Bao, J.; Li, R.; Xiao, Y.; Hou, C.; Wang, H.; Liu, J.; Yang, D.; Xu, Y.; Cao, Z.; Gao, Z. Role of angiotensin-converting enzyme 2 (ACE2) in COVID-19. Crit. Care, 2020, 24(1), 422.
[http://dx.doi.org/10.1186/s13054-020-03120-0] [PMID: 32660650]
[44]
Aftab, S.O.; Ghouri, M.Z.; Masood, M.U.; Haider, Z.; Khan, Z.; Ahmad, A.; Munawar, N. Analysis of SARS-CoV-2 RNA-dependent RNA polymerase as a potential therapeutic drug target using a computational approach. J. Transl. Med., 2020, 18(1), 275.
[http://dx.doi.org/10.1186/s12967-020-02439-0] [PMID: 32635935]
[45]
CSIR-India. CUReD: CSIR ushered repurposed drugs- a website that provides information on CSIR partnered clinical trials Available from: https://iiim.res.in/cured/pipeline.php (Accessed November 22, 2021).

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy