1887
Research Open Access
Like 0

Abstract

Background

To mitigate SARS-CoV-2 transmission risks from international air travellers, many countries implemented a combination of up to 14 days of self-quarantine upon arrival plus PCR testing in the early stages of the COVID-19 pandemic in 2020.

Aim

To assess the effectiveness of quarantine and testing of international travellers to reduce risk of onward SARS-CoV-2 transmission into a destination country in the pre-COVID-19 vaccination era.

Methods

We used a simulation model of air travellers arriving in the United Kingdom from the European Union or the United States, incorporating timing of infection stages while varying quarantine duration and timing and number of PCR tests.

Results

Quarantine upon arrival with a PCR test on day 7 plus a 1-day delay for results can reduce the number of infectious arriving travellers released into the community by a median 94% (95% uncertainty interval (UI): 89–98) compared with a no quarantine/no test scenario. This reduction is similar to that achieved by a 14-day quarantine period (median > 99%; 95% UI: 98–100). Even shorter quarantine periods can prevent a substantial amount of transmission; all strategies in which travellers spend at least 5 days (mean incubation period) in quarantine and have at least one negative test before release are highly effective (median reduction 89%; 95% UI: 83–95)).

Conclusion

The effect of different screening strategies impacts asymptomatic and symptomatic individuals differently. The choice of an optimal quarantine and testing strategy for unvaccinated air travellers may vary based on the number of possible imported infections relative to domestic incidence.

Loading

Article metrics loading...

/content/10.2807/1560-7917.ES.2021.26.39.2001440
2021-09-30
2024-04-24
http://instance.metastore.ingenta.com/content/10.2807/1560-7917.ES.2021.26.39.2001440
Loading
Loading full text...

Full text loading...

/deliver/fulltext/eurosurveillance/26/39/eurosurv-26-39-5.html?itemId=/content/10.2807/1560-7917.ES.2021.26.39.2001440&mimeType=html&fmt=ahah

References

  1. Chinazzi M, Davis JT, Ajelli M, Gioannini C, Litvinova M, Merler S, et al. The effect of travel restrictions on the spread of the 2019 novel coronavirus (COVID-19) outbreak. Science. 2020;368(6489):395-400.  https://doi.org/10.1126/science.aba9757  PMID: 32144116 
  2. Han E, Tan MMJ, Turk E, Sridhar D, Leung GM, Shibuya K, et al. Lessons learnt from easing COVID-19 restrictions: an analysis of countries and regions in Asia Pacific and Europe. Lancet. 2020;396(10261):1525-34.  https://doi.org/10.1016/S0140-6736(20)32007-9  PMID: 32979936 
  3. Department of Health and Social Care and Department for Transport. Coronavirus (COVID-19): how to self-isolate when you travel to the UK. London: United Kingdom Government. [Accessed: 20 Jul 2020]. Available from: https://www.gov.uk/government/publications/coronavirus-covid-19-how-to-self-isolate-when-you-travel-to-the-uk/coronavirus-covid-19-how-to-self-isolate-when-you-travel-to-the-uk
  4. Li Q, Guan X, Wu P, Wang X, Zhou L, Tong Y, et al. Early transmission dynamics in Wuhan, China, of novel coronavirus-infected pneumonia. N Engl J Med. 2020;382(13):1199-207.  https://doi.org/10.1056/NEJMoa2001316  PMID: 31995857 
  5. World Health Organisation (WHO). Operational considerations for case management of COVID-19 in health facility and community. Report No.: WHO/2019-nCoV/HCF_operations/2020.1. Geneva: WHO; 2020. Available from: https://www.who.int/publications/i/item/10665-331492
  6. Brooks SK, Webster RK, Smith LE, Woodland L, Wessely S, Greenberg N, et al. The psychological impact of quarantine and how to reduce it: rapid review of the evidence. Lancet. 2020;395(10227):912-20.  https://doi.org/10.1016/S0140-6736(20)30460-8  PMID: 32112714 
  7. Pfefferbaum B, North CS. Mental health and the covid-19 pandemic. N Engl J Med. 2020;383(6):510-2.  https://doi.org/10.1056/NEJMp2008017  PMID: 32283003 
  8. Webster RK, Brooks SK, Smith LE, Woodland L, Wessely S, Rubin GJ. How to improve adherence with quarantine: rapid review of the evidence. Public Health. 2020;182:163-9.  https://doi.org/10.1016/j.puhe.2020.03.007  PMID: 32334182 
  9. United States Food and Drug Administration (FDA). Quest SARS-CoV-2 rRT-PCR (Quest Diagnostics Infectious Disease, Inc.) - Manufacturer Instructions/Package Insert. Silver Spring: FDA. [Accessed: 16 Jul 2020]. Available from: https://www.fda.gov/media/136231/
  10. Nikkei Staff Writers. Japan set to lift quarantines for business travelers in summer. Nikkei Asian Review. [Accessed: 6 Jul 2020]. Available from: https://asia.nikkei.com/Business/Travel-Leisure/Japan-set-to-lift-quarantines-for-business-travelers-in-summer
  11. Civil Aviation Authority. Airport data. 2019 07 | London: Civil Aviation Authority. [Accessed: 20 Jul 2020]. Available from: https://www.caa.co.uk/Data-and-analysis/UK-aviation-market/Airports/Datasets/UK-Airport-data/Airport-data-2019-07
  12. Civil Aviation Authority. Airport data. 2020 05. London: Civil Aviation Authority. [Accessed: 4 Jul 2020]. Available from: https://www.caa.co.uk/Data-and-analysis/UK-aviation-market/Airports/Datasets/UK-Airport-data/Airport-data-2020-05
  13. Russell TW, Golding N, Hellewell J, Abbott S, Wright L, Pearson CAB, et al. Reconstructing the early global dynamics of under-ascertained COVID-19 cases and infections. BMC Med. 2020;18(1):332.  https://doi.org/10.1186/s12916-020-01790-9  PMID: 33087179 
  14. Russell TW, Wu JT, Clifford S, Edmunds WJ, Kucharski AJ, Jit M, et al. Effect of internationally imported cases on internal spread of COVID-19: a mathematical modelling study. Lancet Public Health. 2021;6(1):e12-20.  https://doi.org/10.1016/S2468-2667(20)30263-2  PMID: 33301722 
  15. Buitrago-Garcia D, Egli-Gany D, Counotte MJ, Hossmann S, Imeri H, Ipekci AM, et al. Occurrence and transmission potential of asymptomatic and presymptomatic SARS-CoV-2 infections: A living systematic review and meta-analysis. PLoS Med. 2020;17(9):e1003346.  https://doi.org/10.1371/journal.pmed.1003346  PMID: 32960881 
  16. United Kingdom Government. Coronavirus (COVID-19): getting tested. London: gov.uk. [Accessed: 12 Jun 2020]. Available from: https://www.gov.uk/guidance/coronavirus-covid-19-getting-tested
  17. Quilty BJ, Clifford S, Flasche S, Eggo RM, CMMID nCoV working group. Effectiveness of airport screening at detecting travellers infected with novel coronavirus (2019-nCoV). Euro Surveill. 2020;25(5):2000080.  https://doi.org/10.2807/1560-7917.ES.2020.25.5.2000080  PMID: 32046816 
  18. Gostic K, Gomez AC, Mummah RO, Kucharski AJ, Lloyd-Smith JO. Estimated effectiveness of symptom and risk screening to prevent the spread of COVID-19. eLife. 2020;9:e55570.  https://doi.org/10.7554/eLife.55570  PMID: 32091395 
  19. Gostic K. Estimated effectiveness of symptom and risk screening to prevent the spread of COVID-19. San Francisco: Github. [Accessed: 16 Jul 2020]. Available from: https://kgostic.github.io/traveller_screening
  20. International Air Transport Association (IATA). Criteria for COVID-19 testing in the air travel process. Geneva: IATA. [Accessed: 4 Jul 2020]. Available from: https://www.iata.org/en/pressroom/pr/2020-06-16-02/
  21. Xinhua Global Service. [Beijing Railway Department: Implementing ticket purchase restrictions for high-risk groups and leaving Beijing with a negative certificate of nucleic acid test within 7 days]. Xinhuanet. [Accessed: 6 Jul 2020]. Chinese. Available from: http://www.xinhuanet.com/politics/2020-06/23/c_1126152337.htm
  22. National Health Service (NHS). Main symptoms of coronavirus (COVID-19). London: NHS. [Accessed: 20 Jul 2020]. Available from: https://www.nhs.uk/conditions/coronavirus-covid-19/symptoms/main-symptoms
  23. Kucirka LM, Lauer SA, Laeyendecker O, Boon D, Lessler J. Variation in false-negative rate of reverse transcriptase polymerase chain reaction-based SARS-CoV-2 tests by time since exposure. Ann Intern Med. 2020;173(4):262-7.  https://doi.org/10.7326/M20-1495  PMID: 32422057 
  24. Grassly N, Pons Salort M, Parker E, White P, Ainslie K, Baguelin M, et al. Report 16: Role of testing in COVID-19 control. London: Imperial College London; 2020. Available from: https://spiral.imperial.ac.uk:8443/handle/10044/1/78439
  25. Van Vinh Chau N, Lam VT, Dung NT, Yen LM, Minh NNQ, Hung LM, et al. The natural history and transmission potential of asymptomatic SARS-CoV-2 infection. Clin Infect Dis. 2020;71(10):2679.  https://doi.org/10.1093/cid/ciaa711  PMID: 32497212 
  26. Lauer SA, Grantz KH, Bi Q, Jones FK, Zheng Q, Meredith HR, et al. The incubation period of coronavirus disease 2019 (COVID-19) from publicly reported confirmed cases: estimation and application. Ann Intern Med. 2020;172(9):577-82.  https://doi.org/10.7326/M20-0504  PMID: 32150748 
  27. Davies NG, Klepac P, Liu Y, Prem K, Jit M, CMMID COVID-19 working group, Eggo RM. Age-dependent effects in the transmission and control of COVID-19 epidemics. Nat Med. 2020;26(8):1205-11.  https://doi.org/10.1038/s41591-020-0962-9  PMID: 32546824 
  28. He X, Lau EHY, Wu P, Deng X, Wang J, Hao X, et al. Temporal dynamics in viral shedding and transmissibility of COVID-19. Nat Med. 2020;26(5):672-5.  https://doi.org/10.1038/s41591-020-0869-5  PMID: 32296168 
  29. Ashcroft P, Huisman JS, Lehtinen S, Bouman JA, Althaus CL, Regoes RR, et al. COVID-19 infectivity profile correction. Swiss Med Wkly. 2020;150:w20336. PMID: 32757177 
  30. Wölfel R, Corman VM, Guggemos W, Seilmaier M, Zange S, Müller MA, et al. Virological assessment of hospitalized patients with COVID-2019. Nature. 2020;581(7809):465-9.  https://doi.org/10.1038/s41586-020-2196-x  PMID: 32235945 
  31. Byrne AW, McEvoy D, Collins AB, Hunt K, Casey M, Barber A, et al. Inferred duration of infectious period of SARS-CoV-2: rapid scoping review and analysis of available evidence for asymptomatic and symptomatic COVID-19 cases. BMJ Open. 2020;10(8):e039856.  https://doi.org/10.1136/bmjopen-2020-039856  PMID: 32759252 
  32. R Core Team. R: A Language and Environment for Statistical Computing. Vienna: R Foundation for Statistical Computing; 2020. Available from: https://www.R-project.org
  33. Russell TW, Wu JT, Clifford S, Edmunds WJ, Kucharski AJ, Jit M, Centre for the Mathematical Modelling of Infectious Diseases COVID-19 working group. Effect of internationally imported cases on internal spread of COVID-19: a mathematical modelling study. Lancet Public Health. 2021;6(1):e12-20.  https://doi.org/10.1016/S2468-2667(20)30263-2  PMID: 33301722 
  34. Baker MG, Kvalsvig A, Verrall AJ. New Zealand’s COVID-19 elimination strategy. Med J Aust. 2020;213(5):198-200.e1.  https://doi.org/10.5694/mja2.50735  PMID: 32789868 
  35. Cevik M, Tate M, Lloyd O, Maraolo AE, Schafers J, Ho A. SARS-CoV-2, SARS-CoV, and MERS-CoV viral load dynamics, duration of viral shedding, and infectiousness: a systematic review and meta-analysis. Lancet Microbe. 2021;2(1):e13-22.  https://doi.org/10.1016/S2666-5247(20)30172-5  PMID: 33521734 
  36. Kissler SM, Fauver JR, Mack C, Olesen SW, Tai C, Shiue KY, et al. Viral dynamics of acute SARS-CoV-2 infection and applications to diagnostic and public health strategies. PLoS Biol. 2021;19(7):e3001333.  https://doi.org/10.1371/journal.pbio.3001333  PMID: 34252080 
  37. Quilty BJ, Clifford S, Hellewell J, Russell TW, Kucharski AJ, Flasche S, et al. Quarantine and testing strategies in contact tracing for SARS-CoV-2: a modelling study. Lancet Public Health. 2021;6(3):e175-83.  https://doi.org/10.1016/S2468-2667(20)30308-X  PMID: 33484644 
  38. Hellewell J, Abbott S, Gimma A, Bosse NI, Jarvis CI, Russell TW, et al. Feasibility of controlling COVID-19 outbreaks by isolation of cases and contacts. Lancet Glob Health. 2020;8(4):e488-96.  https://doi.org/10.1016/S2214-109X(20)30074-7  PMID: 32119825 
  39. Clifford S, Pearson CAB, Klepac P, Van Zandvoort K, Quilty BJ, Eggo RM, et al. Effectiveness of interventions targeting air travellers for delaying local outbreaks of SARS-CoV-2. J Travel Med. 2020;27(5):taaa068.  https://doi.org/10.1093/jtm/taaa068  PMID: 32384159 
  40. Pya N, Wood SN. Shape constrained additive models. Stat Comput. 2015;25(3):543-59.  https://doi.org/10.1007/s11222-013-9448-7 
  41. Devroye L. General Principles in Random Variate Generation. Non-Uniform Random Variate Generation. Springer: New York, NY; 1986.  https://doi.org/10.1007/978-1-4613-8643-8_2 
/content/10.2807/1560-7917.ES.2021.26.39.2001440
Loading

Data & Media loading...

Supplementary data

Submit comment
Close
Comment moderation successfully completed
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error