Covid-19 interference in male fertility

Authors

DOI:

https://doi.org/10.33448/rsd-v11i15.37211

Keywords:

Male Fertility; Covid-19; Viral infection.

Abstract

The present work aims to study the impact of the infection by the Coronavirus on the continuity of life and on the perpetuation of the species, considering that the generation of a healthy embryo is extremely important, especially in the present scenario in which the birth rate is increasingly being reduced, it is the need for an investigation increases, as there are already several changes found in recent studies that estimate that Covid-19 may generate more serious complications and, with this, the possibility of compromising reproductive health, causing even more lack of control of the birth. Through a literature review, the interferences and possible impairment of fertility are verified in the work, considering that it was developed from reliable bases such as Nature, Pubmed and Scielo, the analysis makes it possible to perceive that many of the fertility parameters are altered after patient infected. Finally, for the study carried out, information about the factors that interfere with fertility were used, using studies applying In vitro, In vivo tests, and analysis of literature review that present research related to infection.

References

Azevedo, I., & Figueroa, P. U. (2020). Commentary: Should surgeons challenge the unknown sequela of the coronavirus disease 2019 (Covid-19) virus?. JTCVS techniques, 4, 366–367. https://doi.org/10.1016/j.xjtc.2020.09.027

Best, J. C., Kuchakulla, M., Khodamoradi, K., Lima, T., Frech, F. S., Achua, J., Rosete, O., Mora, B., Arora, H., Ibrahim, E., & Ramasamy, R. (2021). Evaluation of SARS-CoV-2 in Human Semen and Effect on Total Sperm Number: A Prospective Observational Study. The world journal of men's health, 39(3), 489–495. https://doi.org/10.5534/wjmh.200192

Bongaarts J. (2015). Global fertility and population trends. Seminars in reproductive medicine, 33(1), 5–10. https://doi.org/10.1055/s-0034-1395272

Carneiro, F., Teixeira, T. A., Bernardes, F. S., Pereira, M. S., Milani, G., Duarte-Neto, A. N., Kallas, E. G., Saldiva, P., Chammas, M. C., & Hallak, J. (2021). Radiological patterns of incidental epididymitis in mild-to-moderate Covid-19 patients revealed by colour Doppler ultrasound. Andrologia, 53(4), e13973. https://doi.org/10.1111/and.13973

Collins, A. B., Zhao, L., Zhu, Z., Givens, N. T., Bai, Q., Wakefield, M. R., & Fang, Y. (2022). Impact of Covid-19 on male fertility. Urology.

Cooper, T. G. (2010). Semen analysis. In Andrology (pp. 125-138). Springer, Berlin, Heidelberg.

Correa, Y. R. M., Núñez, D. A. O., Marín, I. H., Tovar, J. M., & Ruíz, A. A. (2005). Detención de la espermatogénesis. Ginecol Obstet Mex, 73, 500-8.

Costa, G. M., Lacerda, S. M., Figueiredo, A. F., Wnuk, N. T., Brener, M. R., Campolina-Silva, G. H., ... & Furtado, M. H. (2022). SARS-CoV-2 infects, replicates, elevates angiotensin II and activates immune cells in human testes. medRxiv.

de Carvalho, R. C., Groner, M. F., Camillo, J., Ferreira, P. R. A., & Fraietta, R. (2020). The interference of Covid-19 in the male reproductive system: Important questions and the future of assisted reproduction techniques. Clinics, 75, e2183. https://doi.org/10.6061/clinics/2020/e2183

Ebner, B., Volz, Y., Mumm, J. N., Stief, C. G., & Magistro, G. (2022). The Covid-19 pandemic—what have urologists learned?. Nature Reviews Urology, 19(6), 344-356.

Edenfield, R. C., & Easley, C. A., 4th (2022). Implications of testicular ACE2 and the renin-angiotensin system for SARS-CoV-2 on testis function. Nature reviews. Urology, 19(2), 116–127. https://doi.org/10.1038/s41585-021-00542-5

Gallup Jr, G. G., Finn, M. M., & Sammis, B. (2009). On the origin of descended scrotal testicles: the activation hypothesis. Evolutionary psychology, 7(4), 147470490900700402.

Guan, W. J., Ni, Z. Y., Hu, Y., Liang, W. H., Ou, C. Q., & He, J. X. (2019). & Zhong, NS (2020). Clinical characteristics of coronavirus disease, 1708-1720.

https://doi.org/10.1016/j.aju.2017.10.005

Intasqui, P., Antoniassi, M. P., Camargo, M., Nichi, M., Carvalho, V. M., Cardozo, K. H. M., ... & Bertolla, R. P. (2015). Differences in the seminal plasma proteome are associated with oxidative stress levels in men with normal semen parameters. Fertility and Sterility, 104(2), 292-301.

Lima, C. M. A. D. O. (2020). Informações sobre o novo coronavírus (Covid-19). Radiologia Brasileira, 53, V-VI.

Marion Boulicault, Meg Perret, Jonathan Galka, Alex Borsa, Annika Gompers, Meredith Reiches, Sarah Richardson. (2021) The future of sperm: a biovariability framework for understanding global sperm count trends. Human Fertility 0:0, pages 1-15.

Moreira, C. (2015). Espermatogénese. Revista de Ciência Elementar, 3(2).

Neto, F. T. L., Bach, P. V., Najari, B. B., Li, P. S., & Goldstein, M. (2016, November). Spermatogenesis in humans and its affecting factors. In Seminars in cell & developmental biology (Vol. 59, pp. 10-26). Academic Press.

Pasqualotto, E. B., Ferreira, R. V., Fonseca, G. P., Zago, B. E., Garbin Júnior, C., & Pasqualotto, F. F. (2006). A análise seminal deve ser requisitada para homens com histórico de fertilidade prévia?. Revista Brasileira de Ginecologia e Obstetrícia, 28, 652-657.

Pasqualotto, E. B., Ferreira, R. V., Fonseca, G. P., Zago, B. E., Garbin Júnior, C., & Pasqualotto, F. F. (2006). A análise seminal deve ser requisitada para homens com histórico de fertilidade prévia?. Revista Brasileira de Ginecologia e Obstetrícia, 28, 652-657.

Pasqualotto, F. F. (2007). Investigação e reprodução assistida no tratamento da infertilidade masculina. Revista Brasileira de Ginecologia e Obstetrícia, 29, 103-112.

Patel, A. S., Leong, J. Y., & Ramasamy, R. (2018). Prediction of male infertility by the World Health Organization laboratory manual for assessment of semen analysis: a systematic review. Arab journal of urology, 16(1), 96-102.

Rato, L., Alves, M. G., Socorro, S., Duarte, A. I., Cavaco, J. E., & Oliveira, P. F. (2012). Metabolic regulation is important for spermatogenesis. Nature Reviews Urology, 9(6), 330-338.

Ruan, Y., Hu, B., Liu, Z., Liu, K., Jiang, H., Li, H., ... & Wang, T. (2021). No detection of SARS‐CoV‐2 from urine, expressed prostatic secretions, and semen in 74 recovered Covid‐19 male patients: a perspective and urogenital evaluation. Andrology, 9(1), 99-106.

Santos Thiago M et al (2022). Comum em diferentes tipos de células, a proteína ACE2 pode ter maior afinidade com o Sars-CoV-2, independentemente da variante do vírus. Comunicação Social e Divulgação Científica do Instituto de Ciências Biológicas da UFMG [Internet]. [Citado em 2022 mai 03].

Teixeira, T. A., Oliveira, Y. C., Bernardes, F. S., Kallas, E. G., Duarte-Neto, A. N., Esteves, S. C., ... & Hallak, J. (2021). Viral infections and implications for male reproductive health. Asian Journal of Andrology, 23(4), 335.

Wang, Z., & Xu, X. (2020). scRNA-seq Profiling of Human Testes Reveals the Presence of the ACE2 Receptor, A Target for SARS-CoV-2 Infection in Spermatogonia, Leydig and Sertoli Cells. Cells, 9(4), 920. https://doi.org/10.3390/cells9040920

Zhu, Z., Li, C., Yang, S., Tian, R., Wang, J., Yuan, Q., ... & Li, Z. (2016). Dynamics of the transcriptome during human spermatogenesis: predicting the potential key genes regulating male gametes generation. Scientific reports, 6(1), 1-15.

Published

13/11/2022

How to Cite

DIAS, S. A. .; FAZENDA, J. M. .; RAMOS, L. de P. . Covid-19 interference in male fertility. Research, Society and Development, [S. l.], v. 11, n. 15, p. e169111537211, 2022. DOI: 10.33448/rsd-v11i15.37211. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/37211. Acesso em: 20 apr. 2024.

Issue

Section

Health Sciences