Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter August 13, 2021

The effect of SARS-CoV-2 on the nervous system: a review of neurological impacts caused by human coronaviruses

  • Colin Day , Carson Studders , Kim Arklie , Asees Kaur , Kyra Teetzen , Rebecca Kirsch , Laila Abelseth , Ian Fraser , Emily Abelseth and Stephanie M. Willerth ORCID logo EMAIL logo

Abstract

The COVID-19 pandemic has affected millions of people worldwide. While coronaviruses typically have low rates of neurotropic effects, the massive transmission of SARS-CoV-2 suggests that a substantial population will suffer from potential SARS-CoV-2-related neurological disorders. The rapid and recent emergence of SARS-CoV-2 means little research exists on its potential neurological effects. Here we analyze the effects of similar viruses to provide insight into the potential effects of SARS-CoV-2 on the nervous system and beyond. Seven coronavirus strains (HCoV-OC43, HCoV-HKU1, HCoV-229E, HCoV-NL63, SARS-CoV, MERS-CoV, SARS-CoV-2) can infect humans. Many of these strains cause neurological effects, such as headaches, dizziness, strokes, seizures, and critical illness polyneuropathy/myopathy. Certain studies have also linked coronaviruses with multiple sclerosis and extensive central nervous system injuries. Reviewing these studies provides insight into the anticipated effects for patients with SARS-CoV-2. This review will first describe the effects of other coronaviruses that have caused severe disease (SARS-CoV, MERS-CoV) on the nervous system, as well as their proposed origins, non-neurological effects, and neurological infection mechanisms. It will then discuss what is known about SARS-CoV-2 in these areas with reference to the aforementioned viruses, with the goal of providing a holistic picture of SARS-CoV-2.


Corresponding author: Stephanie M. Willerth, Department of Mechanical Engineering, University of Victoria, Victoria, BC, Canada V8W 2Y2; Centre for Biomedical Research, University of Victoria, Victoria, BC, Canada V8W 2Y2; and Division of Medical Sciences, University of Victoria, Victoria, BC, Canada V8W 2Y2, E-mail:

Funding source: TechNation

Award Identifier / Grant number: Wage Subsidy Program

Funding source: Canada Research Chairs

Award Identifier / Grant number: Tier II Chair in Biomedical Engineering

Award Identifier / Grant number: Discovery Grant

Funding source: Innovate BC

Award Identifier / Grant number: Co-op wage subsidy program

Acknowledgments

We would like to acknowledge Daniel Wallis for his critical reading of this manuscript.

  1. Author contributions: AK, CS, CD, KA, KT, RK, IF, LA contributed to the writing of the initial draft. IF, LA, EA, SMW, CD, RK, AK, CS edited and formatted the draft for submission.

  2. Research funding: This work was funded through the support of TECHNATION and Innovate BC student funding programs. Dr. Willerth receives support from the Canada Research Chairs program and the NSERC Discovery Grant Program.

  3. Conflict of interest statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

References

Abdelnour, L., Eltahir Abdalla, M., and Babiker, S. (2020). COVID 19 infection presenting as motor peripheral neuropathy. J. Formos. Med. Assoc. 119: 1119–1120, https://doi.org/10.1016/j.jfma.2020.04.024.Search in Google Scholar

Abdulamir, A.S., Hafidh, R., and Hafidh, R.R. (2020). Phytochemicals anticancer molecular mechanism view project the possible immunological pathways for the variable immunopathogenesis of COVID-19 infections among healthy adults, elderly and children. Electron. J. Gen. Med. 2020: 2516–3507.10.29333/ejgm/7850Search in Google Scholar

Al-Hameed, F.M. (2017). Spontaneous intracranial hemorrhage in a patient with Middle East respiratory syndrome corona virus. Saudi Med. J. 38: 196–200, https://doi.org/10.15537/smj.2017.2.16255.Search in Google Scholar

Algahtani, H., Subahi, A., and Shirah, B. (2016). Neurological complications of Middle East respiratory syndrome coronavirus: a report of two cases and review of the literature. Case Rep. Neurol. Med.: 1–6, https://doi.org/10.1155/2016/3502683.Search in Google Scholar

Anand, P., Al-Faraj, A., Sader, E., Dashkoff, J., Abdennadher, M., Murugesan, R., Cervantes-Arslanian, A.M., and Daneshmand, A. (2020). Seizure as the presenting symptom of COVID-19: a retrospective case series. Epilepsy Behav. 112: 1–5, https://doi.org/10.1016/j.yebeh.2020.107335.Search in Google Scholar

Andersen, K.G., Rambaut, A., Lipkin, W.I., Holmes, E.C., and Garry, R.F. (2020). The proximal origin of SARS-CoV-2. Nat. Med. 26: 450–452, https://doi.org/10.1038/s41591-020-0820-9.Search in Google Scholar

Antonio, G.E., Wong, K.T., Hui, D.S.C., Lee, N., Yuen, E.H.Y., Wu, A., Chung, S.S.C., Sung, J.J.Y., and Ahuja, A.T. (2003). Imaging of severe acute respiratory syndrome in Hong Kong. Am. J. Roentgenol. 181: 11–17, https://doi.org/10.2214/ajr.181.1.1810011.Search in Google Scholar

Arabi, Y.M., Harthi, A., Hussein, J., Bouchama, A., Johani, S., Hajeer, A.H., Saeed, B.T., Wahbi, A., Saedy, A., AlDabbagh, T., et al. (2015). Severe neurologic syndrome associated with Middle East respiratory syndrome corona virus (MERS-CoV). Infection 43: 495–501, https://doi.org/10.1007/s15010-015-0720-y.Search in Google Scholar

Arbour, N., Day, R., Newcombe, J., and Talbot, P.J. (2000). Neuroinvasion by human respiratory coronaviruses. J. Virol. 74: 8913–8921, https://doi.org/10.1128/jvi.74.19.8913-8921.2000.Search in Google Scholar

Baig, A.M., Khaleeq, A., Ali, U., and Syeda, H. (2020). Evidence of the COVID-19 virus targeting the CNS: tissue distribution, host-virus interaction, and proposed neurotropic mechanisms. ACS Chem. Neurosci. 11: 995–998, https://doi.org/10.1021/acschemneuro.0c00122.Search in Google Scholar

Bénézit, F., Turnier, P. Le, Declerck, C., Paillé, C., Revest, M., Dubée, V., Tattevin, P., Arvieux, C., Baldeyrou, M., Chapplain, J.M., et al. (2020). Utility of hyposmia and hypogeusia for the diagnosis of COVID-19. Lancet Infect. Dis. 20: 1014–1015, https://doi.org/10.1016/s1473-3099(20)30297-8.Search in Google Scholar

Booth, C.M., Matukas, L.M., Tomlinson, G.A., Rachlis, A.R., Rose, D.B., Dwosh, H.A., Walmsley, S.L., Mazzulli, T., Avendano, M., Derkach, P., et al. (2003). Clinical features and short-term outcomes of 144 patients with SARS in the greater Toronto area. J. Am. Med. Assoc. 289: 2801–2809, https://doi.org/10.1001/jama.289.21.joc30885.Search in Google Scholar

CDC (2003a). Preliminary clinical description of severe acute respiratory syndrome. Morbidity and Mortality Weekly.Search in Google Scholar

CDC (2003b). Preliminary clinical description of severe acute respiratory syndrome. Morbidity and Mortality Weekly.Search in Google Scholar

CDC (2004). Frequently asked questions about SARS.Search in Google Scholar

Chen, T., Wu, D., Chen, H., Yan, W., Yang, D., Chen, G., Ma, K., Xu, D., Yu, H., Wang, H., et al. (2020). Clinical characteristics of 113 deceased patients with coronavirus disease 2019: retrospective study. BMJ 368, https://doi.org/10.1136/bmj.m1091.Search in Google Scholar

Dubé, M., Coupanec, A. Le, Wong, A.H.M., Rini, J.M., Desforges, M., and Talbot, P.J. (2018). Axonal transport enables neuron-to-neuron propagation of human coronavirus OC43. J. Virol. 92: 1–21, https://doi.org/10.1128/JVI.00404-18.Search in Google Scholar

Elfiky, A.A. (2020). SARS-CoV-2 spike-heat shock protein A5 (GRP78) recognition may be related to the immersed human coronaviruses. Front. Pharmacol. 11: 42–44, https://doi.org/10.3389/fphar.2020.577467.Search in Google Scholar

Ellul, M.A., Benjamin, L., Singh, B., Lant, S., Michael, B.D., Easton, A., Kneen, R., Defres, S., Sejvar, J., and Solomon, T. (2020). Neurological associations of COVID-19. Lancet Neurol. 19: 767–783, https://doi.org/10.1016/s1474-4422(20)30221-0.Search in Google Scholar

Emami, A., Fadakar, N., Akbari, A., Lotfi, M., Farazdaghi, M., Javanmardi, F., Rezaei, T., and Asadi-Pooya, A.A. (2020). Seizure in patients with COVID-19. Neurol. Sci. 41: 3057–3061, https://doi.org/10.1007/s10072-020-04731-9.Search in Google Scholar PubMed PubMed Central

Esposito, S. and Longo, M.R. (2017). Guillain–Barré syndrome. Autoimmun. Rev. 16: 96–101, https://doi.org/10.1016/j.autrev.2016.09.022.Search in Google Scholar PubMed

Felice, F.G. De, Tovar-Moll, F., Moll, J., Munoz, D.P., and Ferreira, S.T. (2020). Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and the central nervous system. Trends Neurosci. 43: 355–357, https://doi.org/10.1016/j.tins.2020.04.004.Search in Google Scholar PubMed PubMed Central

Francone, M., Iafrate, F., Masci, G.M., Coco, S., Cilia, F., Manganaro, L., Panebianco, V., Andreoli, C., Colaiacomo, M.C., Zingaropoli, M.A., et al. (2020). Chest CT score in COVID-19 patients: correlation with disease severity and short-term prognosis. Eur. Radiol. 30: 6808–6817, https://doi.org/10.1007/s00330-020-07033-y.Search in Google Scholar PubMed PubMed Central

Fung, S.-Y., Yuen, K.-S., Ye, Z.-W., Chan, C.-P., and Jin, D.-Y.A. (2020). Tug-of-War between severe acute respiratory syndrome coronavirus 2 and host antiviral defence: lessons from other pathogenic viruses. Emerg. Microbes Infect. 9: 558–570, https://doi.org/10.1080/22221751.2020.1736644.Search in Google Scholar PubMed PubMed Central

Giacomelli, A., Pezzati, L., Conti, F., Bernacchia, D., Siano, M., Oreni, L., Rusconi, S., Gervasoni, C., Ridolfo, A.L., Rizzardini, G., et al. (2020). Self-reported olfactory and taste disorders in patients with severe acute respiratory coronavirus 2 infection: a cross-sectional study. Clin. Infect. Dis. 71: 889–890, https://doi.org/10.1093/cid/ciaa330.Search in Google Scholar

Goldberg, M.F., Goldberg, M.F., Cerejo, R., and Tayal, A.H. (2020). Cerebrovascular disease in COVID-19. Am. J. Neuroradiol. 41: 1170–1172, https://doi.org/10.3174/ajnr.a6588.Search in Google Scholar

Gutiérrez-Ortiz, C., Méndez-Guerrero, A., Rodrigo-Rey, S., San Pedro-Murillo, E., Bermejo-Guerrero, L., Gordo-Mañas, R., Aragón-Gómez, F.de, and Benito-León, J. (2020). Miller Fisher syndrome and polyneuritis cranialis in COVID-19. Neurology 95: e601–5, https://doi.org/10.1212/wnl.0000000000009619.Search in Google Scholar

Hartung, H.P. and Aktas, O. (2020). COVID-19 and management of neuroimmunological disorders. Nat. Rev. Neurol. 16: 347–348, https://doi.org/10.1038/s41582-020-0368-9.Search in Google Scholar

Helms, J., Kremer, S., Merdji, H., Clere-Jehl, R., Schenck, M., Kummerlen, C., Collange, O., Boulay, C., Fafi-Kremer, S., Ohana, M., et al. (2020). Neurologic features in severe SARS-CoV-2 infection. N. Engl. J. Med. 382: 2268–2270, https://doi.org/10.1056/nejmc2008597.Search in Google Scholar

Hosking, M.P. and Lane, T.E. (2010). The pathogenesis of murine coronavirus infection of the central nervous system. Crit. Rev. Immunol. 30: 119–130, https://doi.org/10.1615/critrevimmunol.v30.i2.20.Search in Google Scholar

Huang, C., Wang, Y., Li, X., Ren, L., Zhao, J., Hu, Y., Zhang, L., Fan, G., Xu, J., Gu, X., et al. (2020). Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 395: 497–506, https://doi.org/10.1016/s0140-6736(20)30183-5.Search in Google Scholar

Hung, E.C.W., Chim, S.S.C., Chan, P.K.S., Tong, Y.K., Ng, E.K.O., Chiu, R.W.K., Leung, C.-B., Sung, J.J.Y., Tam, J.S., and Lo, Y.M.D. (2003). Detection of SARS coronavirus RNA in the cerebrospinal fluid of a patient with severe acute respiratory syndrome. Clin. Chem. 49: 2107–2108, https://doi.org/10.1373/clinchem.2003.025437.Search in Google Scholar PubMed PubMed Central

J Alsaadi, E.A. and Jones, I.M. (2019). Membrane binding proteins of coronaviruses. Future Virol. 14: 275–286, https://doi.org/10.2217/fvl-2018-0144.Search in Google Scholar PubMed PubMed Central

Jarrahi, A., Ahluwalia, M., Khodadadi, H., Silva Lopes Salles, E. Da, Kolhe, R., Hess, D.C., Vale, F., Kumar, M., Baban, B., Vaibhav, K., et al. (2020). Neurological consequences of COVID-19: what have we learned and where do we go from here? J. Neuroinflammation 17, https://doi.org/10.1186/s12974-020-01957-4.Search in Google Scholar PubMed PubMed Central

Jiang, Y., Xu, J., Zhou, C., Wu, Z., Zhong, S., Liu, J., Luo, W., Chen, T., Qin, Q., and Deng, P. (2005). Characterization of cytokine/chemokine profiles of severe acute respiratory syndrome. Am. J. Respir. Crit. Care Med. 171: 850–857, https://doi.org/10.1164/rccm.200407-857oc.Search in Google Scholar

Kanberg, N., Ashton, N.J., Andersson, L.-M., Yilmaz, A., Lindh, M., Nilsson, S., Price, R.W., Blennow, K., Zetterberg, H., and Gisslén, M. (2020). Neurochemical evidence of astrocytic and neuronal injury commonly found in COVID-19. Neurology 95: e1754–59, https://doi.org/10.1212/wnl.0000000000010111.Search in Google Scholar

Khachfe, H.H., Chahrour, M., Sammouri, J., Salhab, H.A., Makki, B.E., and Fares, M.Y. (2020). An epidemiological study on COVID-19: a rapidly spreading disease. Cureus 12: e7313, https://doi.org/10.7759/cureus.7313.Search in Google Scholar PubMed PubMed Central

Kim, J.E., Heo, J.H., Kim, H.O., Song, S.H., Park, S.S., Park, T.H., Ahn, J.Y., Kim, M.K., and Choi, J.P. (2017). Neurological complications during treatment of Middle East respiratory syndrome. J. Clin. Neurol. 13: 227–233, https://doi.org/10.3988/jcn.2017.13.3.227.Search in Google Scholar PubMed PubMed Central

Koralnik, I.J. and Tyler, K.L. (2020). COVID‐19: a global threat to the nervous system. Ann. Neurol. 88: 1–11, https://doi.org/10.1002/ana.25807.Search in Google Scholar PubMed PubMed Central

Lau, K., Yu, W., Chu, C., Lau, S., and Sheng, B. (2004). Possible central nervous system infection by SARS coronavirus. Emerg. Infect. Dis. 10: 2–4, https://doi.org/10.3201/eid1002.030638.Search in Google Scholar PubMed PubMed Central

Lau, S.K.P., Lee, P., Tsang, A.K.L., Yip, C.C.Y., Tse, H., Lee, R.A., So, L.-Y., Lau, Y.-L., Chan, K.-H., Woo, P.C.Y., et al. (2011). Molecular epidemiology of human coronavirus OC43 reveals evolution of different genotypes over time and recent emergence of a novel genotype due to natural recombination. J. Virol. 85: 11325–11337, https://doi.org/10.1128/jvi.05512-11.Search in Google Scholar PubMed PubMed Central

Lau, S.K.P., Woo, P.C.Y., Li, K.S.M., Huang, Y., Tsoi, H.W., Wong, B.H.L., Wong, S.S.Y., Leung, S.Y., Chan, K.H., and Yuen, K.Y. (2005). Severe acute respiratory syndrome coronavirus-like virus in Chinese horseshoe bats. Proc. Natl. Acad. Sci. U.S.A. 102: 14040–14045, https://doi.org/10.1073/pnas.0506735102.Search in Google Scholar PubMed PubMed Central

Lee, N., Hui, D., Wu, A., Chan, P., Cameron, P., Joynt, G.M., Ahuja, A., Yung, M.Y., Sc, B., Leung, C.B., et al. (2003). A major outbreak of severe acute respiratory syndrome in Hong Kong. N. Engl. J. Med. 348: 1986–1994, https://doi.org/10.1056/nejmoa030685.Search in Google Scholar PubMed

Leung, T.W., Wong, K.S., Hui, A.C., To, K.F., Lai, S.T., Ng, W.F., and Ng, H.K. (2005). Myopathic changes associated with severe acute respiratory syndrome: a postmortem case series. Arch. Neurol. 62: 1113–1117, https://doi.org/10.1001/archneur.62.7.1113.Search in Google Scholar PubMed

Li, Y.‐C., Bai, W., and Hashikawa, T. (2020). The neuroinvasive potential of SARS‐CoV2 may play a role in the respiratory failure of COVID‐19 patients. J. Med. Virol. 92: 552–555, https://doi.org/10.1002/jmv.25728.Search in Google Scholar

Li, Y., Li, H., Fan, R., Wen, B., Zhang, J., Cao, X., Wang, C., Song, Z., Li, S., Li, X., et al. (2017). Coronavirus infections in the central nervous system and respiratory tract show distinct features in hospitalized children. Intervirology 59: 163–169, https://doi.org/10.1159/000453066.Search in Google Scholar

Lu, L., Xiong, W., Liu, D., Liu, J., Yang, D., Li, N., Mu, J., Guo, J., Li, W., Wang, G., et al. (2020). New onset acute symptomatic seizure and risk factors in coronavirus disease 2019: a retrospective multicenter study. Epilepsia 61: e49–53, https://doi.org/10.1111/epi.16524.Search in Google Scholar

Mannan Baig, A. (2020). Updates on what ACS reported: emerging evidences of COVID-19 with nervous system involvement. ACS Chem. Neurosci. 11: 1204–1205, https://doi.org/10.1021/acschemneuro.0c00181.Search in Google Scholar

Mao, L., Jin, H., Wang, M., Hu, Y., Chen, S., He, Q., Chang, J., Hong, C., Zhou, Y., Wang, D., et al. (2020). Neurologic manifestations of hospitalized patients with coronavirus disease 2019 in Wuhan, China. JAMA Neurol 77: 683–690, https://doi.org/10.1001/jamaneurol.2020.1127.Search in Google Scholar

Matschke, J., Lütgehetmann, M., Hagel, C., Sperhake, J.P., Schröder, A.S., Edler, C., Mushumba, H., Fitzek, A., Allweiss, L., Dandri, M., et al. (2020). Neuropathology of patients with COVID-19 in Germany: a post-mortem case series. Lancet Neurol. 19: 919–929, https://doi.org/10.1016/s1474-4422(20)30308-2.Search in Google Scholar

Memish, Z.A., Al-Tawfiq, J.A., Makhdoom, H.Q., Assiri, A., Alhakeem, R.F., Albarrak, A., Alsubaie, S., Al-Rabeeah, A.A., Hajomar, W.H., Hussain, R., et al. (2014). Respiratory tract samples, viral load, and genome fraction yield in patients with Middle East respiratory syndrome. J. Infect. Dis. 210: 1590–1594, https://doi.org/10.1093/infdis/jiu292.Search in Google Scholar PubMed PubMed Central

Mohd, H.A., Al-Tawfiq, J.A., and Memish, Z.A. (2016). Middle East respiratory syndrome coronavirus (MERS-CoV) origin and animal reservoir. Virol. J. 13, https://doi.org/10.1186/s12985-016-0544-0.Search in Google Scholar PubMed PubMed Central

Mueller, A.L., Mcnamara, M.S., and Sinclair, D.A. (2020). Why does COVID-19 disproportionately affect older people ? Aging (Albany, NY) 12: 9959–9981, https://doi.org/10.18632/aging.103344.Search in Google Scholar PubMed PubMed Central

Nauen, D.W., Hooper, J.E., Stewart, C.M., and Solomon, I.H. (2021). Assessing brain capillaries in coronavirus disease 2019. JAMA Neurol. 78: 760–762, https://doi.org/10.1001/jamaneurol.2021.0225.Search in Google Scholar PubMed PubMed Central

Netland, J., Meyerholz, D.K., Moore, S., Cassell, M., and Perlman, S. (2008). Severe acute respiratory syndrome coronavirus infection causes neuronal death in the absence of encephalitis in mice transgenic for human ACE2. J. Virol. 82: 7264–7275, https://doi.org/10.1128/jvi.00737-08.Search in Google Scholar

Ng Kee Kwong, K.C., Mehta, P.R., Shukla, G., and Mehta, A.R. (2020). COVID-19, SARS and MERS: a neurological perspective. J. Clin. Neurosci. 77: 13–16, https://doi.org/10.1016/j.jocn.2020.04.124.Search in Google Scholar PubMed PubMed Central

Nouchi, A., Chastang, J., Miyara, M., Lejeune, J., Soares, A., Ibanez, G., Saadoun, D., Morélot-Panzini, C., Similowski, T., Amoura, Z., et al. (2021). Prevalence of hyposmia and hypogeusia in 390 COVID-19 hospitalized patients and outpatients: a cross-sectional study. Eur. J. Clin. Microbiol. Infect. Dis. 40: 691–697, https://doi.org/10.1007/s10096-020-04056-7.Search in Google Scholar PubMed PubMed Central

Perlman, S., Evans, G., and Afifi, A. (1990). Effect of olfactory bulb ablation on spread of a neurotropic coronavirus into the mouse brain. J. Exp. Med. 172: 1127–1132, https://doi.org/10.1084/jem.172.4.1127.Search in Google Scholar PubMed PubMed Central

Poyiadji, N., Shahin, G., Noujaim, D., Stone, M., Patel, S., and Griffith, B. (2020). COVID-19–associated acute hemorrhagic necrotizing encephalopathy: CT and MRI features. Radiology 296: E119–E120, https://doi.org/10.1148/radiol.2020201187.Search in Google Scholar PubMed PubMed Central

Puelles, V.G., Lütgehetmann, M., Lindenmeyer, M.T., Sperhake, J.P., Wong, M.N., Allweiss, L., Chilla, S., Heinemann, A., Wanner, N., Liu, S., et al. (2020). Multiorgan and renal tropism of SARS-CoV-2. N. Engl. J. Med. 383: 590–592, https://doi.org/10.1056/nejmc2011400.Search in Google Scholar

Rafiq, D., Batool, A., and Bazaz, M.A. (2020). Three months of COVID-19: a systematic review and meta-analysis. Rev. Med. Virol. 30: e2113, https://doi.org/10.1002/rmv.2113.Search in Google Scholar PubMed PubMed Central

Repici, A., Maselli, R., Colombo, M., Gabbiadini, R., Spadaccini, M., Anderloni, A., Carrara, S., Fugazza, A., Leo, M. Di, Galtieri, P.A., et al. (2020). Coronavirus (COVID-19) outbreak: what the department of endoscopy should know. Gastrointest. Endosc. 92: 192–197, https://doi.org/10.1016/j.gie.2020.03.019.Search in Google Scholar PubMed PubMed Central

Saad, M., Omrani, A.S., Baig, K., Bahloul, A., Elzein, F., Matin, M.A., Selim, M.A.A., Mutairi, M. Al, Nakhli, D. Al, Aidaroos, A.Y. Al, et al. (2014). Clinical aspects and outcomes of 70 patients with Middle East respiratory syndrome coronavirus infection: a single-center experience in Saudi Arabia. Int. J. Infect. Dis. 29: 301–306, https://doi.org/10.1016/j.ijid.2014.09.003.Search in Google Scholar PubMed PubMed Central

Sepehrinezhad, A., Shahbazi, A., Sajad, and Negah, S. (2020). COVID-19 virus may have neuroinvasive potential and cause neurological complications: a perspective review. J. Neurovirol. 26: 324–329, https://doi.org/10.1007/s13365-020-00851-2.Search in Google Scholar PubMed PubMed Central

Singh, A.K., Bhushan, B., Maurya, A., Mishra, G., Santosh, Singh, K., Awasthi, R., Pradesh, U., Noida, U., and Pradesh, I. (2020). Novel coronavirus disease 2019 (COVID-19) and neurodegenerative disorders. Dermatol. Ther. 33: e13591, https://doi.org/10.1111/dth.13591.Search in Google Scholar

Solomon, I.H., Normandin, E., Bhattacharyya, S., Mukerji, S.S., Keller, K., Ali, A.S., Adams, G., Hornick, J.L., Padera, R.F., and Sabeti, P. (2020). Neuropathological features of Covid-19. N. Engl. J. Med. 383: 989–992, https://doi.org/10.1056/nejmc2019373.Search in Google Scholar

Song, E., Zhang, C., Israelow, B., Lu-Culligan, A., Prado, A.V., Skriabine, S., Lu, P., Weizman, O. El, Liu, F., Dai, Y., et al. (2021). Neuroinvasion of SARS-CoV-2 in human and mouse brain. J. Exp. Med. 218: e20202135, https://doi.org/10.1084/jem.20202135.Search in Google Scholar

Sood, I., Kasundra, G., Bhargava, A., Bhushan, B., and Shubhakaran, K. (2015). Polyneuritis cranialis with generalized hyperreflexia as a presenting manifestation of thyrotoxicosis. Ann. Indian Acad. Neurol. 18: 240, https://doi.org/10.4103/0972-2327.150625.Search in Google Scholar

Teman, N.R., Thomas, J., Bryner, B.S., Haas, C.F., Haft, J.W., Park, P.K., Lowell, M.J., and Napolitano, L.M. (2015). Inhaled nitric oxide to improve oxygenation for safe critical care transport of adults with severe hypoxemia. Am. J. Crit. Care 24: 110–117, https://doi.org/10.4037/ajcc2015570.Search in Google Scholar

Umapathi, T., Kor, A.C., Venketasubramanian, N., Lim, C.C.T., Pang, B.C., Yeo, T.T., Lee, C.C., Lim, P.L., Ponnudurai, K., Chuah, K.L., et al. (2004). Large artery ischaemic stroke in severe acute respiratory syndrome (SARS). J. Neurol. 251: 1227–1231, https://doi.org/10.1007/s00415-004-0519-8.Search in Google Scholar

Varatharaj, A., Thomas, N., Ellul, M.A., Davies, N.W.S., Pollak, T.A., Tenorio, E.L., Sultan, M., Easton, A., Breen, G., Zandi, M., et al. (2020). Neurological and neuropsychiatric complications of COVID-19 in 153 patients: a UK-wide surveillance study. Lancet Psychiatry 7, https://doi.org/10.1016/S2215-0366(20)30287-X.Search in Google Scholar

Wang, X., Fang, J., Zhu, Y., Chen, L., Ding, F., Zhou, R., Ge, L., Wang, F., Chen, Q., Zhang, Y., et al. (2020). Clinical characteristics of non-critically ill patients with novel coronavirus infection (COVID-19) in a Fangcang Hospital. Clin. Microbiol. Infect. 6: 1063–1068, https://doi.org/10.1016/j.cmi.2020.03.032.Search in Google Scholar PubMed PubMed Central

Whittaker, A., Anson, M., and Harky, A. (2020). Neurological manifestations of COVID-19: a systematic review and current update. Acta Neurol. Scand. 142: 14–22, https://doi.org/10.1111/ane.13266.Search in Google Scholar PubMed PubMed Central

WHO (2020a). Coronavirus disease (COVID-19) situation report 141.Search in Google Scholar

WHO (2020b). COVID-19 weekly epidemiological update (dec 27 2020).Search in Google Scholar

WHO (2020c). MERS situation update.Search in Google Scholar

WHO (2020d). Novel coronavirus (2019-NCoV) situation report – 7.Search in Google Scholar

WHO (2020e). Novel coronavirus (2019-NCoV) situation report – 9.Search in Google Scholar

WHO (2020f). Novel coronavirus (2019-NCoV) situtation report 1.Search in Google Scholar

Wu, C., Liu, Y., Yang, Y., Zhang, P., Zhong, W., Wang, Y., Wang, Q., Xu, Y., Li, M., Li, X., et al. (2020). Structural basis for the recognition of SARS-CoV-2 by full-length human ACE2. Science 3: 1–8, https://doi.org/10.1126/science.abb2762.Search in Google Scholar PubMed PubMed Central

Wu, Y., Xu, X., Chen, Z., Duan, J., Hashimoto, K., Yang, L., Liu, C., and Yang, C. (2020). Nervous system involvement after infection with COVID-19 and other coronaviruses. Brain Behav. Immun. 87: 18–22, https://doi.org/10.1016/j.bbi.2020.03.031.Search in Google Scholar PubMed PubMed Central

Xu, H., Zhong, L., Deng, J., Peng, J., Dan, H., Zeng, X., Li, T., and Chen, Q. (2020). High expression of ACE2 receptor of 2019-NCoV on the epithelial cells of oral mucosa. Int. J. Oral Sci. 12: 1–5, https://doi.org/10.1038/s41368-020-0074-x.Search in Google Scholar PubMed PubMed Central

Xu, J., Zhong, S., Liu, J., Li, L., Li, Y., Wu, X., Li, Z., Deng, P., Zhang, J., Zhong, N., et al. (2005). Detection of severe acute respiratory syndrome coronavirus in the brain: potential role of the chemokine mig in pathogenesis. Clin. Infect. Dis. 41: 1089–1096, https://doi.org/10.1086/444461.Search in Google Scholar PubMed PubMed Central

Yamashita, M., Yamate, M., Li, G.M., and Ikuta, K. (2005). Susceptibility of human and rat neural cell lines to infection by SARS-coronavirus. Biochem. Biophys. Res. Commun. 334: 79–85, https://doi.org/10.1016/j.bbrc.2005.06.061.Search in Google Scholar PubMed PubMed Central

Ye, M., Ren, Y., and Lv, T. (2020). Encephalitis as a clinical manifestation of COVID-19. Brain Behav. Immun., https://doi.org/10.1016/j.bbi.2020.04.017.Search in Google Scholar PubMed PubMed Central

Yuki, N. and Hartung, H.P. (2012). Guillain-Barré syndrome. N. Engl. J. Med. 366: 2294–2304, https://doi.org/10.1056/nejmra1114525.Search in Google Scholar PubMed

Zaki, A.M., Boheemen, S.van, Bestebroer, T.M., Osterhaus, A.D.M.E., and Fouchier, R.A.M. (2012). Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia. N. Engl. J. Med. 367: 1814–1820, https://doi.org/10.1056/nejmoa1211721.Search in Google Scholar PubMed

Zegarra-Valdivia, J.A. and Chino-Vilca, B.N. (2020). Neurological component in coronaviruses induced disease: review of the literature related to SARS-CoV, MERS-CoV, and SARS-CoV-2. Neurol. Res. Int. 2020: 2020, https://doi.org/10.1155/2020/6587875.Search in Google Scholar

Zhu, Z., Lian, X., Su, X., Wu, W., Marraro, G.A., and Zeng, Y. (2020). From SARS and MERS to COVID-19: a brief summary and comparison of severe acute respiratory infections caused by three highly pathogenic human coronaviruses. Respir. Res. 21: 224, https://doi.org/10.1186/s12931-020-01479-w.Search in Google Scholar PubMed PubMed Central

Zimmermann, P. and Curtis, N. (2020). Coronavirus infections in children including COVID-19: an overview of the epidemiology, clinical features, diagnosis, treatment and prevention options in children. Pediatr. Infect. Dis. J. 39: 355–368, https://doi.org/10.1097/inf.0000000000002660.Search in Google Scholar

Received: 2021-03-15
Accepted: 2021-07-02
Published Online: 2021-08-13
Published in Print: 2022-04-26

© 2021 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 29.3.2024 from https://www.degruyter.com/document/doi/10.1515/revneuro-2021-0041/html
Scroll to top button