Generic placeholder image

Endocrine, Metabolic & Immune Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5303
ISSN (Online): 2212-3873

Perspective

Targeting Citrate Carrier (CIC) in Inflammatory Macrophages as a Novel Metabolic Approach in COVID-19 Patients: A Perspective

Author(s): Mahsa Eshkevar Vakili, Zahra Saleh, Dieter Kabelitz* and Kurosh Kalantar*

Volume 22, Issue 12, 2022

Published on: 01 April, 2022

Page: [1149 - 1153] Pages: 5

DOI: 10.2174/1871530321666210909165757

Abstract

Coronavirus disease-19 (COVID-19) can be a fatal disease and is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV2). SARS-CoV2 is an enveloped virus that belongs to the Beta coronavirus subfamily. After entering into the target cells, this virus replicates rapidly and leads to cellular damage and uncontrolled pulmonary inflammation. Huge amounts of inflammatory cytokines and chemokines are produced by infected lung cells and are associated with monocyte recruitment and accumulation of inflammatory macrophages at the site of infection. Mitochondrial citrate carrier (CIC) expression increases in these macrophages, which results in elevated levels of cytosolic citrate and the production of inflammatory mediators. In this perspective article, we discuss the role of mitochondrial CIC in the metabolism of inflammatory macrophages and we propose that inhibition of this carrier might be a novel therapeutic approach for COVID-19 patients.

Keywords: COVID-19, macrophages, targeting citrate carrier, metabolisms, inflammatory mediators, cytokines.

Graphical Abstract
[1]
Rothan, H.A.; Byrareddy, S.N. The epidemiology and pathogenesis of coronavirus disease (COVID-19) outbreak. J. Autoimmun., 2020, 109, 102433.
[http://dx.doi.org/10.1016/j.jaut.2020.102433] [PMID: 32113704]
[2]
Ahn, D.G.; Shin, H.J.; Kim, M.H.; Lee, S.; Kim, H.S.; Myoung, J.; Kim, B.T.; Kim, S.J. Current status of epidemiology, diagnosis, therapeutics, and vaccines for novel coronavirus disease 2019 (COVID-19). J. Microbiol. Biotechnol., 2020, 30(3), 313-324.
[http://dx.doi.org/10.4014/jmb.2003.03011] [PMID: 32238757]
[3]
Muniyappa, R.; Gubbi, S. COVID-19 pandemic, coronaviruses, and diabetes mellitus. Am. J. Physiol. Endocrinol. Metab., 2020, 318(5), E736-E741.
[http://dx.doi.org/10.1152/ajpendo.00124.2020] [PMID: 32228322]
[4]
Jin, Y.; Yang, H.; Ji, W.; Wu, W.; Chen, S.; Zhang, W.; Duan, G. Virology, epidemiology, pathogenesis, and control of COVID-19. Viruses, 2020, 12(4), 372.
[http://dx.doi.org/10.3390/v12040372] [PMID: 32230900]
[5]
Li, H.; Liu, S.M.; Yu, X.H.; Tang, S.L.; Tang, C.K. Coronavirus disease 2019 (COVID-19): Current status and future perspectives. Int. J. Antimicrob. Agents, 2020, 55(5), 105951.
[http://dx.doi.org/10.1016/j.ijantimicag.2020.105951] [PMID: 32234466]
[6]
Giwa, A.; Desai, A. Novel coronavirus COVID-19: An overview for emergency clinicians. Emerg. Med. Pract., 2020, 22(2)(Suppl. 2), 1-21.
[PMID: 31978294]
[7]
Magrone, T.; Magrone, M.; Jirillo, E. Focus on receptors for coronaviruses with special reference to angiotensin-converting enzyme 2 as a potential drug target-a perspective. Endocr. Metab. Immune Disord. Drug Targets, 2020, 20(6), 807-811.
[http://dx.doi.org/10.2174/1871530320666200427112902] [PMID: 32338224]
[8]
Xu, H.; Zhong, L.; Deng, J.; Peng, J.; Dan, H.; Zeng, X.; Li, T.; Chen, Q. High expression of ACE2 receptor of 2019-nCoV on the epithelial cells of oral mucosa. Int. J. Oral Sci., 2020, 12(1), 8.
[http://dx.doi.org/10.1038/s41368-020-0074-x] [PMID: 32094336]
[9]
Jafarzadeh, A.; Chauhan, P.; Saha, B.; Jafarzadeh, S.; Nemati, M. Contribution of monocytes and macrophages to the local tissue inflammation and cytokine storm in COVID-19: Lessons from SARS and MERS, and potential therapeutic interventions. Life Sci., 2020, 257, 118102.
[http://dx.doi.org/10.1016/j.lfs.2020.118102] [PMID: 32687918]
[10]
Booz, G.W.; Altara, R.; Eid, A.H.; Wehbe, Z.; Fares, S.; Zaraket, H.; Habeichi, N.J.; Zouein, F.A. Macrophage responses associated with COVID-19: A pharmacological perspective. Eur. J. Pharmacol., 2020, 887, 173547.
[http://dx.doi.org/10.1016/j.ejphar.2020.173547] [PMID: 32919938]
[11]
Sukkar, S.G.; Bassetti, M. Induction of ketosis as a potential therapeutic option to limit hyperglycemia and prevent cytokine storm in COVID-19. Nutrition, 2020, 79-80, 110967.
[http://dx.doi.org/10.1016/j.nut.2020.110967] [PMID: 32942131]
[12]
Merad, M.; Martin, J.C. Pathological inflammation in patients with COVID-19: A key role for monocytes and macrophages. Nat. Rev. Immunol., 2020, 20(6), 355-362.
[http://dx.doi.org/10.1038/s41577-020-0331-4] [PMID: 32376901]
[13]
Xi, X.; Guo, Y.; Zhu, M.; Wei, Y.; Li, G.; Du, B.; Wang, Y. Higher expression of monocyte chemotactic protein 1 in mild COVID-19 patients might be correlated with inhibition of type I IFN signaling. Virol. J., 2021, 18(1), 12.
[http://dx.doi.org/10.1186/s12985-020-01478-9] [PMID: 33413449]
[14]
Batista-Gonzalez, A.; Vidal, R.; Criollo, A.; Carreño, L.J. New insights on the role of lipid metabolism in the metabolic reprogramming of macrophages. Front. Immunol., 2020, 10(10), 2993.
[http://dx.doi.org/10.3389/fimmu.2019.02993] [PMID: 31998297]
[15]
Koo, S.J.; Garg, N.J. Metabolic programming of macrophage functions and pathogens control. Redox Biol., 2019, 24, 101198.
[http://dx.doi.org/10.1016/j.redox.2019.101198] [PMID: 31048245]
[16]
Van den Bossche, J.; O’Neill, L.A.; Menon, D. Macrophage immunometabolism: Where are we (going)? Trends Immunol., 2017, 38(6), 395-406.
[http://dx.doi.org/10.1016/j.it.2017.03.001] [PMID: 28396078]
[17]
Williams, N.C.; O’Neill, L.A.J. A role for the krebs cycle intermediate citrate in metabolic reprogramming in innate immunity and inflamma-tion. Front. Immunol., 2018, 9, 141.
[http://dx.doi.org/10.3389/fimmu.2018.00141] [PMID: 29459863]
[18]
Takeuch, O.; Akira, S. Epigenetic control of macrophage polarization. Eur. J. Immunol., 2011, 41(9), 2490-2493.
[http://dx.doi.org/10.1002/eji.201141792] [PMID: 21952803]
[19]
Tan, M.; Mosaoa, R.; Graham, G.T.; Kasprzyk-Pawelec, A.; Gadre, S.; Parasido, E.; Catalina-Rodriguez, O.; Foley, P.; Giaccone, G.; Cheema, A.; Kallakury, B.; Albanese, C.; Yi, C.; Avantaggiati, M.L. Inhibition of the mitochondrial citrate carrier, Slc25a1, reverts steatosis, glucose intolerance, and inflammation in preclinical models of NAFLD/NASH. Cell Death Differ., 2020, 27(7), 2143-2157.
[http://dx.doi.org/10.1038/s41418-020-0491-6] [PMID: 31959914]
[20]
Iacobazzi, V.; Infantino, V.; Castegna, A.; Menga, A.; Palmieri, E.M.; Convertini, P.; Palmieri, F. Mitochondrial carriers in inflammation induced by bacterial endotoxin and cytokines. Biol. Chem., 2017, 398(3), 303-317.
[http://dx.doi.org/10.1515/hsz-2016-0260] [PMID: 27727142]
[21]
Palmieri, F. The mitochondrial transporter family (SLC25): Physiological and pathological implications. Pflugers Arch., 2004, 447(5), 689-709.
[http://dx.doi.org/10.1007/s00424-003-1099-7] [PMID: 14598172]
[22]
Peng, R.; Zhang, M.; Wang, H.; Lin, J.; Wang, H.; Wang, F.; Liu, L.; Zhao, Q.; Liu, J. Advances into understanding the vital role of the Mitochondrial Citrate Carrier (CIC) in metabolic diseases. Pharmacol. Res., 2020, 161, 105132.
[http://dx.doi.org/10.1016/j.phrs.2020.105132] [PMID: 32814170]
[23]
Palmieri, E.M.; Spera, I.; Menga, A.; Infantino, V.; Porcelli, V.; Iacobazzi, V.; Pierri, C.L.; Hooper, D.C.; Palmieri, F.; Castegna, A. Acetylation of human mitochondrial citrate carrier modulates mitochondrial citrate/malate exchange activity to sustain NADPH production during macrophage activation. Biochim. Biophys. Acta, 2015, 1847(8), 729-738.
[http://dx.doi.org/10.1016/j.bbabio.2015.04.009] [PMID: 25917893]
[24]
Infantino, V.; Convertini, P.; Cucci, L.; Panaro, M.A.; Di Noia, M.A.; Calvello, R.; Palmieri, F.; Iacobazzi, V. The mitochondrial citrate carrier: A new player in inflammation. Biochem. J., 2011, 438(3), 433-436.
[http://dx.doi.org/10.1042/BJ20111275] [PMID: 21787310]
[25]
Mansouri, K.; Rastegari-Pouyani, M.; Ghanbri-Movahed, M.; Safarzadeh, M.; Kiani, S.; Ghanbari-Movahed, Z. Can a metabolism-targeted therapeutic intervention successfully subjugate SARS-COV2? A scientific rational. Biomed. Pharmacother., 2020, 131, 110694.
[http://dx.doi.org/10.1016/j.biopha.2020.110694] [PMID: 32920511]
[26]
Catalina-Rodriguez, O.; Kolukula, V.K.; Tomita, Y.; Preet, A.; Palmieri, F.; Wellstein, A.; Byers, S.; Giaccia, A.J.; Glasgow, E.; Albanese, C.; Avantaggiati, M.L. The mitochondrial citrate transporter, CIC, is essential for mitochondrial homeostasis. Oncotarget, 2012, 3(10), 1220-1235.
[http://dx.doi.org/10.18632/oncotarget.714] [PMID: 23100451]
[27]
Gnoni, G.V.; Priore, P.; Geelen, M.J.; Siculella, L. The mitochondrial citrate carrier: Metabolic role and regulation of its activity and expression. IUBMB Life, 2009, 61(10), 987-994.
[http://dx.doi.org/10.1002/iub.249] [PMID: 19787704]
[28]
Santarsiero, A.; Onzo, A.; Pascale, R.; Acquavia, M.A.; Coviello, M.; Convertini, P.; Todisco, S.; Marsico, M.; Pifano, C.; Iannece, P.; Gaeta, C.; D’Angelo, S.; Padula, M.C.; Bianco, G.; Infantino, V.; Martelli, G. Pistacia lentiscus Hydrosol: untargeted metabolomic analysis and anti-inflammatory activity mediated by NF-κB and the citrate pathway. Oxid. Med. Cell. Longev., 2020, 2020, 4264815.
[http://dx.doi.org/10.1155/2020/4264815] [PMID: 33204395]
[29]
Koenig, L.M.; Boehmer, D.F.R.; Metzger, P.; Schnurr, M.; Endres, S.; Rothenfusser, S. Blocking inflammation on the way: Rationale for CXCR2 antagonists for the treatment of COVID-19. J. Exp. Med., 2020, 217(9), e20201342.
[http://dx.doi.org/10.1084/jem.20201342] [PMID: 32678432]
[30]
Mastellos, D.C.; Pires da Silva, B.G.P.; Fonseca, B.A.L.; Fonseca, N.P.; Auxiliadora-Martins, M.; Mastaglio, S.; Ruggeri, A.; Sironi, M.; Radermacher, P.; Chrysanthopoulou, A.; Skendros, P.; Ritis, K.; Manfra, I.; Iacobelli, S.; Huber-Lang, M.; Nilsson, B.; Yancopoulou, D.; Connolly, E.S.; Garlanda, C.; Ciceri, F.; Risitano, A.M.; Calado, R.T.; Lambris, J.D. Complement C3 vs C5 inhibition in severe COVID-19: Early clinical findings reveal differential biological efficacy. Clin. Immunol., 2020, 220, 108598.
[http://dx.doi.org/10.1016/j.clim.2020.108598] [PMID: 32961333]
[31]
Alijotas-Reig, J.; Esteve-Valverde, E.; Belizna, C.; Selva-O’Callaghan, A.; Pardos-Gea, J.; Quintana, A.; Mekinian, A.; Anunciacion-Llunell, A.; Miró-Mur, F. Immunomodulatory therapy for the management of severe COVID-19. Beyond the anti-viral therapy: A comprehensive review. Autoimmun. Rev., 2020, 19(7), 102569.
[http://dx.doi.org/10.1016/j.autrev.2020.102569] [PMID: 32376394]
[32]
Roschewski, M.; Lionakis, M.S.; Sharman, J.P.; Roswarski, J.; Goy, A.; Monticelli, M.A.; Roshon, M.; Wrzesinski, S.H.; Desai, J.V.; Zara-kas, M.A.; Collen, J.; Rose, K.; Hamdy, A.; Izumi, R.; Wright, G.W.; Chung, K.K.; Baselga, J.; Staudt, L.M.; Wilson, W.H. Inhibition of Bruton tyrosine kinase in patients with severe COVID-19. Sci. Immunol., 2020, 5(48), eabd0110.
[http://dx.doi.org/10.1126/sciimmunol.abd0110] [PMID: 32503877]
[33]
Yeleswaram, S.; Smith, P.; Burn, T.; Covington, M.; Juvekar, A.; Li, Y.; Squier, P.; Langmuir, P. Inhibition of cytokine signaling by ruxolitinib and implications for COVID-19 treatment. Clin. Immunol., 2020, 218, 108517.
[http://dx.doi.org/10.1016/j.clim.2020.108517] [PMID: 32585295]
[34]
Satarker, S.; Tom, A.A.; Shaji, R.A.; Alosious, A.; Luvis, M.; Nampoothiri, M. JAK-STAT pathway inhibition and their implications in COVID-19 therapy. Postgrad. Med., 2021, 133(5), 489-507.
[http://dx.doi.org/10.1080/00325481.2020.1855921] [PMID: 33245005]
[35]
Huang, Q.; Wu, X.; Zheng, X.; Luo, S.; Xu, S.; Weng, J. Targeting inflammation and cytokine storm in COVID-19. Pharmacol. Res., 2020, 159, 105051.
[http://dx.doi.org/10.1016/j.phrs.2020.105051] [PMID: 32603772]
[36]
Ramaiah, M.J. mTOR inhibition and p53 activation, microRNAs: The possible therapy against pandemic COVID-19. Gene Rep., 2020, 20, 100765.
[http://dx.doi.org/10.1016/j.genrep.2020.100765] [PMID: 32835132]
[37]
Palma, G.; Pasqua, T.; Silvestri, G.; Rocca, C.; Gualtieri, P.; Barbieri, A.; De Bartolo, A.; De Lorenzo, A.; Angelone, T.; Avolio, E.; Botti, G. PI3Kδ inhibition as a potential therapeutic target in COVID-19. Front. Immunol., 2020, 11, 2094.
[http://dx.doi.org/10.3389/fimmu.2020.02094] [PMID: 32973818]
[38]
Needham, L.A.; Davidson, A.H.; Bawden, L.J.; Belfield, A.; Bone, E.A.; Brotherton, D.H.; Bryant, S.; Charlton, M.H.; Clark, V.L.; Davies, S.J.; Donald, A.; Day, F.A.; Krige, D.; Legris, V.; McDermott, J.; McGovern, Y.; Owen, J.; Patel, S.R.; Pintat, S.; Testar, R.J.; Wells, G.M.A.; Moffat, D.; Drummond, A.H. Drug targeting to monocytes and macrophages using esterase-sensitive chemical motifs. J. Pharmacol. Exp. Ther., 2011, 339(1), 132-142.
[http://dx.doi.org/10.1124/jpet.111.183640] [PMID: 21778281]
[39]
Tang, J.; Baxter, S.; Menon, A.; Alaarg, A.; Sanchez-Gaytan, B.L.; Fay, F.; Zhao, Y.; Ouimet, M.; Braza, M.S.; Longo, V.A.; Abdel-Atti, D.; Duivenvoorden, R.; Calcagno, C.; Storm, G.; Tsimikas, S.; Moore, K.J.; Swirski, F.K.; Nahrendorf, M.; Fisher, E.A.; Pérez-Medina, C.; Fayad, Z.A.; Reiner, T.; Mulder, W.J. Immune cell screening of a nanoparticle library improves atherosclerosis therapy. Proc. Natl. Acad. Sci. USA, 2016, 113(44), E6731-E6740.
[http://dx.doi.org/10.1073/pnas.1609629113] [PMID: 27791119]

© 2024 Bentham Science Publishers | Privacy Policy