Hostname: page-component-8448b6f56d-dnltx Total loading time: 0 Render date: 2024-04-23T14:30:52.328Z Has data issue: false hasContentIssue false

Survey of coronavirus disease 2019 (COVID-19) infection control policies at leading US academic hospitals in the context of the initial pandemic surge of the severe acute respiratory coronavirus virus 2 (SARS-CoV-2) omicron variant

Published online by Cambridge University Press:  16 June 2022

Chanu Rhee*
Affiliation:
Department of Population Medicine, Harvard Medical School/Harvard Pilgrim Health Care Institute, Boston, Massachusetts Division of Infectious Diseases, Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts
Meghan A. Baker
Affiliation:
Department of Population Medicine, Harvard Medical School/Harvard Pilgrim Health Care Institute, Boston, Massachusetts Division of Infectious Diseases, Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts
Michael Klompas
Affiliation:
Department of Population Medicine, Harvard Medical School/Harvard Pilgrim Health Care Institute, Boston, Massachusetts Division of Infectious Diseases, Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts
*
Author for correspondence: Chanu Rhee, E-mail: crhee@bwh.harvard.edu

Abstract

Objective:

To assess coronavirus disease 2019 (COVID-19) infection policies at leading US medical centers in the context of the initial wave of the severe acute respiratory coronavirus virus 2 (SARS-CoV-2) omicron variant.

Design:

Electronic survey study eliciting hospital policies on masking, personal protective equipment, cohorting, airborne-infection isolation rooms (AIIRs), portable HEPA filters, and patient and employee testing.

Setting and participants:

“Hospital epidemiologists from U.S. News top 20 hospitals and 10 hospitals in the CDC Prevention Epicenters program.”  As it is currently written, it implies all 30 hospitals are from the CDC Prevention Epicenters program, but that only applies to 10 hospitals.  Alternatively, we could just say “Hospital epidemiologists from 30 leading US hospitals.”

Methods:

Survey results were reported using descriptive statistics.

Results:

Of 30 hospital epidemiologists surveyed, 23 (77%) completed the survey between February 15 and March 3, 2022. Among the responding hospitals, 18 (78%) used medical masks for universal masking and 5 (22%) used N95 respirators. 16 hospitals (70%) required universal eye protection. 22 hospitals (96%) used N95s for routine COVID-19 care and 1 (4%) reserved N95s for aerosol-generating procedures. 2 responding hospitals (9%) utilized dedicated COVID-19 wards; 8 (35%) used mixed COVID-19 and non–COVID-19 units; and 13 (57%) used both dedicated and mixed units. 4 hospitals (17%) used AIIRs for all COVID-19 patients, 10 (43%) prioritized AIIRs for aerosol-generating procedures, 3 (13%) used alternate risk-stratification criteria (not based on aerosol-generating procedures), and 6 (26%) did not routinely use AIIRs. 9 hospitals (39%) did not use portable HEPA filters, but 14 (61%) used them for various indications, most commonly as substitutes for AIIRs when unavailable or for specific high-risk areas or situations. 21 hospitals (91%) tested asymptomatic patients on admission, but postadmission testing strategies and preferred specimen sites varied substantially. 5 hospitals (22%) required regular testing of unvaccinated employees and 1 hospital (4%) reported mandatory weekly testing even for vaccinated employees during the SARS-CoV-2 omicron surge.

Conclusions:

COVID-19 infection control practices in leading hospitals vary substantially. Clearer public health guidance and transparency around hospital policies may facilitate more consistent national standards.

Type
Original Article
Copyright
© The Author(s), 2022. Published by Cambridge University Press on behalf of The Society for Healthcare Epidemiology of America

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Rhee, C, Baker, MA, Klompas, M. The COVID-19 infection control arms race. Infect Control Hosp Epidemiol 2020;41:13231325.CrossRefGoogle ScholarPubMed
Interim infection prevention and control recommendations for healthcare personnel during the coronavirus disease 2019 (COVID-19) pandemic. Centers for Disease Control and Prevention website. https://www.cdc.gov/coronavirus/2019-ncov/hcp/infection-control-recommendations.html. Updated February 2, 2022. Accessed June 15, 2022.Google Scholar
Harris, PA, Taylor, R, Thielke, R, Payne, J, Gonzalez, N, Conde, JG. Research electronic data capture (REDCap)—a metadata-driven methodology and workflow process for providing translational research informatics support. J Biomed Inform 2009;42:377381.CrossRefGoogle ScholarPubMed
Scientific brief: SARS-COV-2 transmission. Centers for Disease Control and Prevention website. https://www.cdc.gov/coronavirus/2019-ncov/science/science-briefs/sars-cov-2-transmission.html. Updated May 7, 2021. Accessed February 24, 2022.Google Scholar
Klompas, M, Milton, DK, Rhee, C, Baker, MA, Leekha, S. Current insights into respiratory virus transmission and potential implications for infection control programs: a narrative review. Ann Intern Med 2021;174:17101718.CrossRefGoogle ScholarPubMed
Greenhalgh, T, Jimenez, JL, Prather, KA, Tufekci, Z, Fisman, D, Schooley, R. Ten scientific reasons in support of airborne transmission of SARS-CoV-2. Lancet 2021;397:16031605.CrossRefGoogle ScholarPubMed
Braun, KM, Moreno, GK, Buys, A, et al. Viral sequencing reveals US healthcare personnel rarely become infected with SARS-CoV-2 through patient contact. Clin Infect Dis 2021;73:e1329e1336.CrossRefGoogle Scholar
Jinadatha, C, Jones, LD, Choi, H, et al. Transmission of SARS-CoV-2 in inpatient and outpatient settings in a Veterans’ Affairs healthcare system. Open Forum Infect Dis 2021;8:ofab328.CrossRefGoogle Scholar
Klompas, M, Rhee, C, Baker, MA. Universal use of N95 respirators in healthcare settings when community coronavirus disease 2019 rates are high. Clin Infect Dis 2022;74:529531.CrossRefGoogle ScholarPubMed
Klompas, M, Karan, A. Preventing SARS-CoV-2 transmission in healthcare settings in the context of the omicron variant. JAMA 2022;327:619620.CrossRefGoogle Scholar
Baker, MA, Rhee, C, Tucker, R, et al. Rapid control of hospital-based SARS-CoV-2 omicron clusters through daily testing and universal use of N95 respirators. Clin Infect Dis 2022. doi: 10.1093/cid/ciac113.CrossRefGoogle Scholar
Byambasuren, O, Beller, E, Clark, J, Collignon, P, Glasziou, P. The effect of eye protection on SARS-CoV-2 transmission: a systematic review. Antimicrob Resist Infect Control 2021;10:156.CrossRefGoogle ScholarPubMed
Brown, J, Gregson, FKA, Shrimpton, A, et al. A quantitative evaluation of aerosol generation during tracheal intubation and extubation. Anaesthesia 2021;76:174181.CrossRefGoogle ScholarPubMed
Wilson, NM, Marks, GB, Eckhardt, A, et al. The effect of respiratory activity, noninvasive respiratory support and face masks on aerosol generation and its relevance to COVID-19. Anaesthesia 2021;76:14651474.CrossRefGoogle ScholarPubMed
Gaeckle, NT, Lee, J, Park, Y, Kreykes, G, Evans, MD, Hogan, CJ Jr Aerosol generation from the respiratory tract with various modes of oxygen delivery. Am J Respir Crit Care Med 2020;202:11151124.Google ScholarPubMed
Bem, RA, van Mourik, N, Klein-Blommert, R, et al. Risk of aerosol formation during high-flow nasal cannula treatment in critically ill subjects. Respir Care 2021;66:891896.CrossRefGoogle ScholarPubMed
Thuresson, S, Fraenkel, CJ, Sasinovich, S, et al. Airborne SARS-CoV-2 in hospitals— effects of aerosol-generating procedures, HEPA-filtration units, patient viral load, and physical distance. Clin Infect Dis 2022. doi: 10.1093/cid/ciac161.CrossRefGoogle Scholar
Klompas, M, Baker, M, Rhee, C. What is an aerosol-generating procedure? JAMA Surg 2021;156:113114.CrossRefGoogle ScholarPubMed
Klompas, M, Ye, S, Vaidya, V, et al. Association between airborne infection isolation room utilization rates and healthcare worker COVID-19 infections in two academic hospitals. Clin Infect Dis 2021. doi: 10.1093/cid/ciab849.CrossRefGoogle Scholar
Trannel, AM, Kobayashi, T, Dains, A, et al. Coronavirus disease 2019 (COVID-19) incidence after exposures in shared patient rooms in a tertiary-care center in Iowa, July 2020–May 2021. Infect Control Hosp Epidemiol 2021. doi: 10.1017/ice.2021.313.CrossRefGoogle Scholar
Karan, A, Klompas, M, Tucker, R, et al. The risk of SARS-CoV-2 transmission from patients with undiagnosed COVID-19 to roommates in a large academic medical center. Clin Infect Dis 2022;74:10971100.Google Scholar
Conway Morris, A, Sharrocks, K, Bousfield, R, et al. The removal of airborne SARS-CoV-2 and other microbial bioaerosols by air filtration on COVID-19 surge units. Clin Infect Dis 2021.Google Scholar
Garzona-Navas, A, Sajgalik, P, Csecs, I, et al. Mitigation of aerosols generated during exercise testing with a portable high-efficiency particulate air filter with fume hood. Chest 2021;160:13881396.CrossRefGoogle ScholarPubMed
Lindsley, WG, Derk, RC, Coyle, JP, et al. Efficacy of portable air cleaners and masking for reducing indoor exposure to simulated exhaled SARS-CoV-2 aerosols—United States, 2021. Morb Mortal Wkly Rep 2021;70:972976.CrossRefGoogle ScholarPubMed
Rodriguez, M, Palop, ML, Sesena, S, Rodriguez, A. Are the portable air cleaners (PAC) really effective to terminate airborne SARS-CoV-2? Sci Total Environ 2021;785:147300.CrossRefGoogle ScholarPubMed
Thuresson, S, Fraenkel, C, Sasinovich, S, et al. Airborne SARS-CoV-2 in hospitals— effects of aerosol-generating procedures, HEPA-filtration units, patient viral load and physical distance. Clin Infect Dis 2022.Google Scholar
Johansson, MA, Quandelacy, TM, Kada, S, et al. SARS-CoV-2 transmission from people without COVID-19 symptoms. JAMA Netw Open 2021;4:e2035057.CrossRefGoogle ScholarPubMed
Smith, L, Pau, S, Fallon, S, et al. Impact of weekly asymptomatic testing for severe acute respiratory coronavirus virus 2 (SARS-CoV-2) in inpatients at an academic hospital. Infect Control Hosp Epidemiol 2021:1–3.CrossRefGoogle Scholar
Tsang, NNY, So, HC, Ng, KY, Cowling, BJ, Leung, GM, Ip, DKM. Diagnostic performance of different sampling approaches for SARS-CoV-2 RT-PCR testing: a systematic review and meta-analysis. Lancet Infect Dis 2021;21:12331245.CrossRefGoogle ScholarPubMed
Bastos, ML, Perlman-Arrow, S, Menzies, D, Campbell, JR. The sensitivity and costs of testing for SARS-CoV-2 infection with saliva versus nasopharyngeal swabs : a systematic review and meta-analysis. Ann Intern Med 2021;174:501510.CrossRefGoogle ScholarPubMed
Rhee, C, Baker, MA, Kanjilal, S, et al. Prospective clinical assessments of hospitalized patients with positive SARS-CoV-2 PCR tests for necessity of isolation. Open Forum Infect Dis 2021;8:ofab194.CrossRefGoogle ScholarPubMed
Kobayashi, T, Trannel, A, Holley, SA, et al. Coronavirus disease 2019 serial testing among hospitalized patients in a Midwest tertiary medical center, July–September 2020. Clin Infect Dis 2021;73:e3116e3119.CrossRefGoogle Scholar
Rhoads, D, Peaper, DR, She, RC, et al. College of American Pathologists (CAP) Microbiology Committee perspective: caution must be used in interpreting the cycle threshold (Ct) value. Clin Infect Dis 2021;72:e685e686.CrossRefGoogle ScholarPubMed
Shenoy, ES, Weber, DJ. Routine surveillance of asymptomatic healthcare personnel for severe acute respiratory coronavirus virus 2 (SARS-CoV-2): not a prevention strategy. Infect Control Hosp Epidemiol 2021;42:592597.CrossRefGoogle Scholar
Klompas, M, Baker, MA, Rhee, C, et al. A SARS-CoV-2 cluster in an acute-care hospital. Ann Intern Med 2021;174:794802.CrossRefGoogle Scholar
Paltansing, S, Sikkema, RS, de Man, SJ, Koopmans, MPG, Oude Munnink, BB, de Man, P. Transmission of SARS-CoV-2 among healthcare workers and patients in a teaching hospital in the Netherlands confirmed by whole-genome sequencing. J Hosp Infect 2021;110:178183.CrossRefGoogle Scholar
Klompas, M, Baker, MA, Griesbach, D, et al. Transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) from asymptomatic and presymptomatic individuals in healthcare settings despite medical masks and eye protection. Clin Infect Dis 2021;73:16931695.CrossRefGoogle ScholarPubMed
Supplementary material: File

Rhee et al. supplementary material

Rhee et al. supplementary material
Download Rhee et al. supplementary material(File)
File 249.8 KB