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Abstract

Fractional calculus has been widely used in mathematical modeling of evolutionary systems with memory effect on dy-
namics. In order to illustrate the efficiency of this non-integer order calculus, we employ SEIR models to model the dynamics,
with and without memory, of the spread of Covid-19 in Morocco country.
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1. Introduction

Infectious diseases have always been and continue to be of great concern to humanity since the begin-
ning of its history. Infectious diseases are caused by pathogenic microorganisms, such as bacteria, viruses,
parasites or fungi. Diseases can spread, directly or indirectly, from person to person or from animals to
humans. The World Health Organization (WHO) reports that: Infectious diseases are responsible for a
quarter to a third of all deaths worldwide each year. The vast majority occurring in low-income countries.
Even when infections don’t kill, they reduce the quality of life for hundreds of millions of people and
stunt economic development. Population growth and spread, global climate change, and the emergence
and re-emergence of new and deadly forms of infectious disease have increased the search for robust and
effective ways to guide disease interventions. Over the past two decades, many epidemics have spread,
including the SARS virus (2002) which killed 800 people around the world. In 2003, bird flu killed around
400 people. Then new types of flu appeared, such as the corona virus in the Middle East. In 2010, the
WHO announced that 18,000 people had died from swine flu (H1N1). Other epidemics are also com-
mon, perhaps the most dangerous of which is the Ebola virus, which has spread to a number of african
countries, and as a result, around 8,200 people have died from the virus. On December 31, 2019, the first
suspected case was reported to the WHO, as an emerging corona-virus, known as (COVID-19). It is the
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most dangerous virus in history, because of its ability to spread rapidly in addition to its ability to mutate.
More than hundreds of thousands of people died [12], so it crippled the worldwide economy. In many
sciences, it is possible to conduct experiments to obtain information and test hypotheses. Experiments
with the spread of infectious diseases in human populations are often impossible, immoral and costly. In
most cases, the data is incomplete due to underreporting. This lack of reliable data makes it difficult to
accurately estimate parameters, so that it may only be possible to estimate a range of values for certain
parameters. Since repeatable experiments and precise data are generally not available in epidemiology,
mathematical models and numerical simulations can be used, firstly, to perform the theoretical experi-
ments needed for a variety of parameter values [2] and secondly to answer to important questions such
as:

• Will there be an epidemic? If yes,

• How long will this last?

• How many people will be infected?

• Can the disease be eradicated by some control (isolation, quarantine, vaccination and treatment)?

The construction of a model aims, first of all, to understand the phenomenon studied. concerning
modeling, the first thing to do, when faced with a real phenomenon, is to identify, label the indepen-
dent and dependent variables and make sufficiently simplifying hypotheses, so that the case becomes
mathematically treatable. The knowledge of the processes which govern the model and our mathematical
knowledge are a precious help, which is useful for writing the equations connecting the various variables
between them. The second step, in the modeling, consists in implementing our mathematical knowledge
on the model, in order to derive theoretical results. Then, we put these results back into the real context,
to draw conclusions under the form of explanations or predictions. The final step consists in verifying
the predictions by comparing them with new real data. If the predictions do not match reality well, the
model should be refined or formulated and the cycle started over. However, a mathematical model is not
an ideal representation.of the real situation, but an approximate picture of the phenomenon studied. A
good model is one that simplifies reality sufficiently to provide valid and useful conclusions. After the
modeling process, one proceeds to the resolution of the obtained system. Here, the first step is to find
the equilibrium points or fixed points of the system. Once these points have been obtained, one wonders
about necessary and sufficient conditions of their stability. This is requires the study of the behavior of
the system around these points. In general, we can conclude that epidemic modeling has three main
purposes. Mathematical structure is the first essential part of understanding the spread of the disease.
The second objective is to predict the future course of the epidemic. The third is to understand how we
can control the spread of the epidemic.

The outline of the paper is as follows. Some basic results of fractional calculus are given in the
second Section. Section 3 is dedicated to motivation for using fractional calculus by presenting two
examples. Section 4 is devoted to an epidemic model of the SEIR type. To determine the robustness
of model predictions to parameter values, sensitivity analysis is discussed in Section 5. Further, some
numerical simulations are performed to compare the results of our model with the real data obtained
from worldometers.

2. Basic results of fractional calculus

Definition 2.1. The Riemann-Liouville fractional integral of order α > 0 of a function f ∈ L1(R+) is given
by

Jαf(x) =
1
Γ(α)

∫x
0
(x− t)α−1f(t)dt.

Here Γ(n) =
∫∞

0 t
n−1e−tdt.



M. R. Sidi Ammi, M. Tahiri , Gen. Lett. Math. , 10(2) (2021), 72-78 74

Definition 2.2. Let α > 0, n = [α] + 1, n− 1 < α 6 n, where [α] denotes the integer part of number α.
The Caputo fractional derivative of order α for a function f ∈ Cn+1([a,+∞),R) is defined by

Dαf(u) = Jn−αDnf(u) =
1

Γ(n−α)

∫u
a

f(n)(s)

(t− s)α+1−nds,u > 0.

3. Motivations for using fractional calculus

Fractional calculus adds information to classical calculus with a more precise description of certain
natural phenomena. It can be applied in several fields of knowledge such as mechanics, viscoelasticity,
bioengineering and control theory [3, 4]. In this section, we present two motivations for using fractional
calculus: the Tautochrone problem and the effect of memory in dynamical systems.

3.1. Tautochrone problem
The tautochronous (or isochronic curve) problem is finding a curve s for which an object spends the

same time sliding through the curve for any starting point y0 to 0. The path is considered to be frictionless
and under uniform gravity. In 1823, Abel solved this problem using fractional calculus [1]. The equation
that describes the object’s descent time is given by

τ =
1√
2g

∫y0

0
(y− y0)

− 1
2

(
ds

dy

)
dy, (3.1)

where g is the gravity, y(t) is the height of the object at time t, y0 is the initial height at which the object
was launched, and s is the curve desired given according to y. The curve s can be found using classical
calculus by applying the Laplace transform and the convolution theorem. Abel obtained the same solution
using fractional calculus, in particular, he observed that except for the multiplication by 1

Γ( 1
2 )

, the equation

(3.1) corresponds to the fractional integral of order 1
2 of the function s ′(y). Thus, one can easily obtain the

desired solution if the fractional derivative of the constant τ is known.

3.2. Memory effect: traditional approach
Fractional calculus is a great tool that can be employed to describe real-life phenomena with so-

called memory effect. A classic model of autonomous ordinary differential equations has no memory,
because their solution does not depend on the previous instant. For instance, if f(t; x0) is a solution
of an autonomous first-order ordinary differential equation with an initial condition x0 at t = 0, then
we have the flow property f(t+ s; x0) = f(t; f(s; x0)), which means that the solution does not change by
considering f(s; x0) as initial condition since f(s; x0) belongs to the solution. Thus, given an initial value,
the solution is uniquely determined for any point of domain. In general, this assertion is not true for
fractional differential equations. One way to introduce the memory effect into a mathematical model is to
change the order of the derivative of a classical model so that it is non-integer [6]. Let f be a real function
defined in [0, t], t1, t2 ∈ [0, t] are such that 0 < t1 < t2, and H = (Jαf)(t2) − (Jαf)(t1) for α ∈ R+. From
equalities below, one can observe that the value of H depends on the entire range of f over [0, t2] if α 6= 1,
whereas H depends only on the range of f over [t1, t2] if α = 1:

H = (Jαf)(t2) − (Jαf)(t1)

=
1
Γ(α)

[ ∫t2

0
(t2 − s)

α−1f(s)ds−

∫t1

0
(t1 − s)

α−1f(s)ds

]
=

1
Γ(α)

[ ∫t2

t1

(t2 − s)
α−1f(s)ds+

∫t1

0

[
(t2 − s)

α−1 − (t1 − s)
α−1]f(s)ds]

(3.2)
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Note that if α = 1, then the second integral is canceled:

H =
1
Γ(α)

∫t2

t1

(t2 − s)
α−1f(s)ds =

∫t2

t1

f(s)ds.

In contrast, the second integral remains if α 6= 1. From (3.2) we can see that H depends on what happens
in [0, t1] and [t1, t2]. Thus, for α 6= 1, H depends on the entire range of f over [0, t2]. Therefore, the
fractional integral in the interval [t1, t2] is not uniquely determined; it depends on what happened before
t1 which characterizes the memory effect in the process.

4. Numerical Simulations

In this section we analyze the spread of Covid-19 in Morocco using an epidemic model of the SEIR
type. In [10], authors pointed out that the effect memory should ideally be considered in the analysis of
the epidemiological behavior of diseases due to actions caused by the protective instinct and immunity,
which are influenced by the so-called immune memory of the body. Since we desire to incorporate the
memory effect, we use the fractional version of the SEIR model.

4.1. Proposed COVID-19 model
We propose a new epidemiological compartment fractional model taking into account the effect of

the lockdown of susceptible individuals. The total population of size N is subdivided into the following
epidemiological classes:

• Susceptible class S(t): the number of uninfected individuals at the time t.

• Exposed class E(t): the number of infected individuals at the time t but still in incubation period
(without clinical symptoms).

• Infected class I(t): the number of infected individuals at the time t (with obvious clinical symptoms).

• Recovered class R(t): the number of recovered individuals at the time t.

• Insusceptible class P(t): the number of susceptible individuals who are not exposed to the external
environment at the time t.

Our fractional model takes the following form:

C
0 D

α
t S(t) = Λ−β1(1 − δ)(1 − λ)S(t)I(t) −β2S(t)E(t) − λS(t) − µS(t),

C
0 D

α
t E(t) = β1(1 − δ)(1 − λ)S(t)I(t) +β2S(t)E(t) − ξE(t) − µE(t),

C
0 D

α
t I(t) = ξE(t) − (ρδ+ dδ)I(t) − µI(t),

C
0 D

α
t R(t) = ρδI(t) − µR(t),

C
0 D

α
t P(t) = λS(t) − µP(t),

(4.1)

where the fractional derivative is considered in the sense of Caputo. For biological reasons, we consider
system (4.1) with the following initial conditions:

S(0) > 0, E(0) > 0, I(0) > 0, R(0) > 0, P(0) > 0. (4.2)

Different parameters intervening in the model are presented in the Table 1.
The number of death due to the disease at each instant of time is given by

D(t) := dδI(t).
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Table 1: Values of the model parameters corresponding to the situation of Morocco.
Name Description Value Unit
Λ Birth density of susceptible 6.00× 105 dimensionless
β1 Transmission coefficient due to infected individuals 0.87 day−1

δ Isolation rate of infected 0.17 day−1

λ Protection rate of susceptible 0.04 day−1

β2 Transmission coefficient due to exposed individuals 0.90 day−1

µ Natural death rate 1.00× 10−4 day−1

ξ Rate at which exposed people become infected 0.74 day−1

ρ Recovery rate coefficient 0.81 day−1

d Death rate coefficient due to infected 16.00× 10−3 day−1

4.2. Basic reproduction rate
In this section, we discuss a fundamental idea in epidemiology which is the existence of a threshold

value according to certain parameters depending on the disease and allowing to predict if a disease will
become an epidemic or not. The value

R0 =
ξβ1Λ(1 − δ)(1 − λ)

(ξ+ µ)(λ+ µ)(ρδ+ µ+ dδ)
+

β2Λ

(ξ+ µ)(λ+ µ)

is known as the basic reproduction rate, that is the average number of new cases of infection, caused by
an infected individual during the period of infectivity, in a population entirely made up of susceptible
individuals [11]. In our case, we obtain R0 = 1.2254. This epidemiologically means that the disease will
persist in the population.

5. Sensitivity Analysis

The sensitivity analysis for the basic reproduction number (4.2) tells how each parameter is important
to disease transmission. This information is crucial not only for experimental design, but also to data
assimilation and reduction of complex models [8]. Sensitivity analysis is commonly used to determine the
robustness of model predictions to parameter values, since there are usually errors in collected data and
presumed parameter values. It is used to discover parameters that have a high impact on the threshold R0
and should be targeted by intervention strategies. More accurately, sensitivity indices permit to measure
the relative change in a variable when a parameter changes. For that purpose, we use the normalized
forward sensitivity index of a variable with respect to a given parameter, which is defined as the ratio of
the relative change in the variable to the relative change in the parameter. If such variable is differentiable
with respect to the parameter, then the sensitivity index is defined as follows.

Definition 5.1 (See [5, 9]). The normalized forward sensitivity index of R0, which is differentiable with
respect to a given parameter θ, is defined by

ΥR0
θ =

∂R0

∂θ

θ

R0
.

Note that the sensitivity index may depend on several parameters of the system, but also can be
constant, independent of any parameter. For example, ΥR0

θ = ±1 means that increasing (decreasing)
θ by a given percentage increases (decreases) always R0 by that same percentage. The estimation of
a sensitive parameter should be carefully done, since a small perturbation in such parameter leads to
relevant quantitative changes. On the other hand, the estimation of a parameter with a rather small value
for the sensitivity index does not require as much attention to estimate, because a small perturbation in
that parameter leads to small changes. The results of this analysis are presented in the Table 2.
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Table 2: Sensitivity of R0 evaluated for the parameter values given in Table 1.
Parameter Sensitivity index

Λ 0.990
β1 0.600
δ -0.120
λ -0.920
β2 0.140
µ -0.006
ξ -0.136
ρ -0.590
d -0.012

5.1. Results
In the following discussion, we perform numerical simulations to compare the results of our model

with the real data obtained from worldometers [12]. The system (4.1) is numerically integrated by using
the fractional Euler’s method which can be seen as a generalization of the classical Euler’s method for
the numerical solution of ordinary differential equations [7]. The accuracy of the approximation depends
on the step size of discretization. It is worthwhile to mention that Morocco has a population of about 34
million. As for the initial conditions, the following values have been fixed: S(0) = 33993018, E(0) = 417,
I(0) = 3460, R(0) = 3038,D(0) = 67. We can estimate some parameters’ values of Morocco from November
1st to November 13th (see Table 1). In the Figures 1 and 2, we remark the increase in the number of
infectious cases and death cases. We remark also the fitting effect of the fractional order system (4.1)
notably for (α = 0.5) is better than that of the integer order system. It comes down to the memory effect
which represents precautions taken by susceptible individuals.

Figure 1: Number of infected cases per day, by using a Matlab code.

6. Conclusion

In this work, we showed that our model can be adjusted to real data. Then, we have obtained a good
prediction of the evolution of the disease for α = 0.5. We hope our work motivates new researches to
give significant improvements, especially the suitable choice of the incidence function which models the
transmissibility from asymptomatic individuals.
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Figure 2: Number of death cases per day, by using a Matlab code.
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