Promising Indicators in Probiotic-recommendations in COVID-19 and its Accompanying Diseases

Authors

  • Vardan Tsaturyan Department of Military Therapy Yerevan State Medical University, Yerevan, Armenia; International Association for Human and Animals Health Improvement, Yerevan, Armenia https://orcid.org/0000-0003-4311-0747
  • Almagul Kushugulova Centre for Life Science, National laboratory Astana, Nazarbayev University, Nur-Sultan, Kazakhstan https://orcid.org/0000-0001-9479-0899
  • Susanna Mirzabekyan Department of Food Safety and Biotechnology, Armenian National Agrarian University, Yerevan, Armenia
  • Ketevan Sidamonidze Lugar Center for Public Health Research, Tbilisi, Georgia
  • David Tsereteli Department of Communicable Diseases, National Centre for Disease Control and Public Health, Tbilisi, Georgia https://orcid.org/0000-0001-5862-3727
  • Tamas Torok Lawrence Berkeley National Laboratory, Berkeley, California, United States
  • Astghik Pepoyan Department of Food Safety and Biotechnology, Armenian National Agrarian University, Yerevan, Armenia https://orcid.org/0000-0002-1935-5341

DOI:

https://doi.org/10.3889/oamjms.2022.7989

Keywords:

COVID-19, Probiotic-specificity, Oxidative stress, Immunobiotic, Gut microbiota

Abstract

Scientific data suggests the possible beneficial role of probiotics in treatments for COVID-19, but the species/strains-specificity and disease-specificity of probiotics need high attention in choosing the appropriate probiotic in diseases, in particularly in the COVID-19. We hope this review will raise awareness of the COVID-19 probiotic recommendations, highlighting the latest scientific information about virus/hydrogen peroxide/probiotics and the importance of finding out of a specific “criterion” for the probiotics’ recommendation in this disease.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Plum Analytics Artifact Widget Block

References

Hussain A, Bhowmik B, do Vale Moreira NC. COVID-19 and diabetes: Knowledge in progress. Diabetes Res Clin Pract. 2020;162:108142. https://doi.org/10.1016/j.diabres.2020.108142 PMid:32278764 DOI: https://doi.org/10.1016/j.diabres.2020.108142

Guan WJ, Liang WH, Zhao Y, Liang HR, Chen ZS, Li YM, et al. Comorbidity and its impact on 1590 patients with COVID-19 in China: A nationwide analysis. Eur Respir J. 2020;55(5):2000547. https://doi.org/10.1183/13993003.00547-2020 PMid:32217650 DOI: https://doi.org/10.1183/13993003.01227-2020

Wang S, Ma P, Zhang S, Song S, Wang Z, Ma Y, et al. Fasting blood glucose at admission is an independent predictor for 28-day mortality in patients with COVID-19 without previous diagnosis of diabetes: A multi-centre retrospective study. Diabetologia. 2020;63(10):2102-11. https://doi.org/10.1007/s00125-020-05209-1 PMid:32647915 DOI: https://doi.org/10.1007/s00125-020-05209-1

Schiffrin EL, Flack JM, Ito S, Muntner P, Webb RC. Hypertension and COVID-19. Am J Hypertens. 2020;33(5):373-74. https://doi.org/10.1093/ajh/hpaa057 PMid:32251498 DOI: https://doi.org/10.1093/ajh/hpaa057

Metzler B, Siostrzonek P, Binder RK, Bauer A, Johannes Reinstadler S. Decline of acute coronary syndrome admissions in Austria since the outbreak of COVID-19: The pandemic response causes cardiac collateral damage. Eur Heart J. 2020;41(19):1852-53. https://doi.org/10.1093/eurheartj/ehaa314 PMid:32297932 DOI: https://doi.org/10.1093/eurheartj/ehaa314

Misra DP, Agarwal V, Gasparyan AY, Zimba O. Rheumatologists’ perspective on coronavirus disease 19 (COVID-19) and potential therapeutic targets. Clin Rheumatol. 2020;39(7):2055-62. https://doi.org/10.1007/s10067-020-05073-9 PMid:32277367 DOI: https://doi.org/10.1007/s10067-020-05073-9

Tsaturyan VV, Kushugulova A, Sidamonidze K, Tsereteli D, Pepoyan AZ. Gut Microbiota Composition and Disease Severity in Patients with COVID-19: Armenian Population. Topical Issues of Biological Safety in Modern Conditions. Online Meeting, Almaty 22-23 September; 2021. p. 6-7. https://doi.org/10.13140/RG.2.2.28336.48642

Mao L, Jin H, Wang M. Neurologic manifestations of hospitalized patients with coronavirus disease 2019 in Wuhan, China. JAMA Neurol. 2020;77(6):683-90. https://doi.org/10.1001/jamaneurol.2020.1127 PMid:32275288 DOI: https://doi.org/10.1001/jamaneurol.2020.1127

Manji H, Carr AS, Brownlee WJ, Lunn MP. Neurology in the time of Covid-19. J Neurol Neurosurg Psychiatry. 2020;91(6):568-70. https://doi.org/10.1136/jnnp-2020-323414 PMid:32312872 DOI: https://doi.org/10.1136/jnnp-2020-323414

Pluznick J. Gut microbes and host physiology: What happens when you host billions of guests? Front Endocrinol (Lausanne). 2014;5:91. https://doi.org/10.3389/fendo.2014.00091 PMid:24982653 DOI: https://doi.org/10.3389/fendo.2014.00091

Pepoyan AZ, Tsaturyan VV, Badalyan M, Weeks R, Kamiya S, Chikindas ML. Blood protein polymorphisms and the gut bacteria: Impact of probiotic Lactobacillus acidophilus Narine on Salmonella carriage in Sheep. Benef Microbes. 2020;11:183-9. https://doi.org/10.3920/BM2019.0138 PMid:32028777 DOI: https://doi.org/10.3920/BM2019.0138

Pepoyan A, Harutyunyan N, Grigoryan A, Balayan M, Tsaturyan V, Manvelyan A, et al. Some clinical blood characteristics of patients with familial Mediterranean fever disease from an Armenian cohort. Klin Lab Diagn. 2015;60(6):46-8.

Kazemian N, Mahmoudi M, Halperin F, Wu JC, Pakpour S. Gut microbiota and cardiovascular disease: Opportunities and challenges. Microbiome. 2020;8(1):36. https://doi.org/10.1186/s40168-020-00821 PMid:32169105 DOI: https://doi.org/10.1186/s40168-020-00821-0

Rhodes JM, Subramanian S, Laird E, Griffin G, Kenny RA. Perspective: Vitamin D deficiency and COVID-19 severity plausibly linked by latitude, ethnicity, impacts on cytokines, ACE2 and thrombosis. J Intern Med. 2021 289(1):97-115. https://doi.org/10.1111/joim.13149 PMid:32613681 DOI: https://doi.org/10.1111/joim.13149

Oh SJ, Lee JK, Shin OS. Aging and the immune system: The impact of immunosenescence on viral infection, immunity and vaccine immunogenicity. Immune Netw. 2019;19(6):e37. https://doi.org/10.4110/in.2019.19.e37 PMid:31921467 DOI: https://doi.org/10.4110/in.2019.19.e37

Knoll MD, Wonodi C. Oxford-AstraZeneca COVID-19 vaccine efficacy. Lancet. 2020;397(10269):72-74. https://doi.org/10.1016/S0140-6736(20)32623-4 PMid:33306990 DOI: https://doi.org/10.1016/S0140-6736(20)32623-4

Baud D, Agri VD, Gibson GR, Reid G, Giannoni E. Using probiotics to flatten the Curve of coronavirus disease COVID-2019 pandemic. Front Public Health. 2020;8:186. https://doi.org/10.3389/fpubh.2020.00186 PMid:32574290 DOI: https://doi.org/10.3389/fpubh.2020.00186

Villena J, Kitazawa H. The modulation of mucosal antiviral immunity by immunobiotics: Could they offer any benefit in the SARS-CoV-2 pandemic? Front Physiol. 2020;11:699. https://doi.org/10.3389/fphys.2020.00699 PMid:32670091 DOI: https://doi.org/10.3389/fphys.2020.00699

McFarland LV, Evans CT, Goldstein E. Strain-specificity and disease-specificity of probiotic efficacy: A systematic review and meta-analysis. Front Med. 2018;5:124. https://doi.org/10.3389/fmed.2018.00124 PMid:29868585 DOI: https://doi.org/10.3389/fmed.2018.00124

Pepoyan AZ, Manvelyan AM, Balayan MH, McCabe G, Tsaturyan VV, Melnikov VG, et al. The effectiveness of potential probiotics Lactobacillus rhamnosus Vahe and Lactobacillus delbrueckii IAHAHI in irradiated rats depends on the nutritional stage of the host. Probiotics Antimicrob Proteins. 2020;12(4):1439-50. https://doi.org/10.1007/s12602-020-09662-7 PMid:32462507 DOI: https://doi.org/10.1007/s12602-020-09662-7

Armitage R, Nellums LB. COVID-19 and the consequences of isolating the elderly. Lancet. 2020;5(5):e256. https://doi.org/10.1016/s2468-2667(20)30061-x PMid:32199471 DOI: https://doi.org/10.1016/S2468-2667(20)30061-X

Tsaturyan V, Pepoyan A. Probiotics for COVID-19: Bacterocin, Host Microbe Interaction and Molecular Docking. International BioThreat Reduction Symposium (IBTRS) 28 June-2 July 2021. Kyiv, Ukraine; 2021. p. 61. https://doi.org/10.13140/RG.2.2.19134.82242

Pepoyan A, Balayan M, Malkasyan L, Manvelyan A, Bezhanyan T, Paronikyan R, et al. Effects of probiotic Lactobacillus acidophilus strain INMIA 9602 Er 317/402 and putative probiotic lactobacilli on DNA damages in small intestine of Wistar rats in vivo. Probiotics Antimicrob Proteins. 2020;11:905-9. https://doi.org/10.1007/s12602-018-9491-y DOI: https://doi.org/10.1007/s12602-018-9491-y

Kossumov A, Mussabay K, Pepoyan A, Tsaturyan V, Sidamonidze K, Tsereteli D, et al. Digestive system and SARSCOV-2: New era of microbiome study and gastrointestinal tract manifestations during the Covid-19 pandemic. Open Access Maced J Med Sci. 2021;9(F):676-82. https://doi.org/10.3889/oamjms.2021.7470. DOI: https://doi.org/10.3889/oamjms.2021.7470

Lewis Z, Sidamonidze K, Tsaturyan V, Tsereteli D, Khachidze N, Pepoyan A, et al. The fecal microbial community of breast-fed infants from Armenia and Georgia. Sci Rep. 2017;7:40932. https://doi.org/10.1038/srep40932 PMid:28150690 DOI: https://doi.org/10.1038/srep40932

Ussar S, Fujisaka S, Kahn C. Interactions between host genetics and gut microbiome in diabetes and metabolic syndrome. Molecul Metab 2016;5:795-803. https://doi.org/10.1016/j.molmet.2016.07.004 PMid:27617202 DOI: https://doi.org/10.1016/j.molmet.2016.07.004

Pepoyan A, Balayan M, Manvelyan A, Galstyan L, Pepoyan S, Petrosyan S, et al. Probiotic Lactobacillus acidophilus strain INMIA 9602 Er 317/402 administration reduces the numbers of Candida albicans and abundance of Enterobacteria in the gut microbiota of familial mediterranean fever patients. Front Immunol. 2018;9:1426. https://doi.org/10.3389/fimmu.2018.01426 PMid:29997616 DOI: https://doi.org/10.3389/fimmu.2018.01426

Clemmensen C, Müller TD, Woods SC, Berthoud HR, Seeley RJ, Tschöp MH. Gut-brain cross-talk in metabolic control. Cell. 2017;168:758-74. https://doi.org/10.1016/j.cell.2017.01.025 PMid:28235194 DOI: https://doi.org/10.1016/j.cell.2017.01.025

Villena J, Kitazawa H. Editorial: Immunobiotics interactions of beneficial microbes with the immune system. Front Immunol. 2017;8:1580. https://doi.org/10.3389/fimmu.2017.01580 PMid:29250061 DOI: https://doi.org/10.3389/fimmu.2017.01580

Imaoka A, Shima T, Kato K, Mizuno S, Uehara T, Matsumoto S, et al. Anti-inflammatory activity of probiotic Bifidobacterium: Enhancement of IL-10 production in peripheral blood mononuclear cells from ulcerative colitis patients and inhibition of IL-8 secretion in HT-29 cells. World J Gastroenterol 2008;14(16):2511-6. https://doi.org/10.3748/wjg.14.2511 PMid:18442197 DOI: https://doi.org/10.3748/wjg.14.2511

Cosseau C, Devine DA, Dullaghan E, Gardy JL, Chikatamarla A, Gellatly S, et al. The commensal Streptococcus salivarius K12 downregulates the innate immune responses of human epithelial cells and promotes host-microbe homeostasis. Infect Immun. 2008;76(9):4163-75. https://doi.org/10.1128/IAI.00188-08 PMid:18625732 DOI: https://doi.org/10.1128/IAI.00188-08

Galstyan L, Tsaturyan V, Pepoyan A. Efficiency of pre and probiotic therapy for the management of periodic disease and hypoxic ischemic encephalopathy of newborns: NLRP3 inflammasome. PARMA (in Armenian) 2008;57:49-51.

Vaarala O. Immunological effects of probiotics with special reference to lactobacilli. Clin Exp Allergy. 2003;33:1634-40. https://doi.org/10.1111/j.1365-2222.2003.01835.x PMid:14656348 DOI: https://doi.org/10.1111/j.1365-2222.2003.01835.x

Mack D, Michail S, Wei S, McDougall L, Hollingsworth M. Probiotics inhibit enteropathogenic E. coli adherence in vitro by inducing intestinal Mucin gene expression. Am J Physiol. 1999;276:941-50. https://doi.org/10.1152/ajpgi.1999.276.4.G941 PMid:10198338 DOI: https://doi.org/10.1152/ajpgi.1999.276.4.G941

Mack D, Ahrne S, Hyde L, Wei S, Hollingsworth M. Extracellular MUC3 mucin secretion follows adherence of Lactobacillus strains to intestinal epithelial cells in vitro. Gut. 2003;52(6):827-33. https://doi.org/10.1136/gut.52.6.827 PMid:12740338 DOI: https://doi.org/10.1136/gut.52.6.827

Michail S, Abernathy F. Lactobacillus plantarum inhibits the intestinal epithelial migration of neutrophils induced by enteropathogenic Escherichia coli. J Pediatr Gastroenterol Nutr. 2003;36():385-91. https://doi.org/10.1097/00005176-200303000-00017 PMid:12604980 DOI: https://doi.org/10.1097/00005176-200303000-00017

Pepoyan A, Trchounian A. Biophysics, molecular and cellular biology of probiotic activity by bacteria. In: Trchounian A, editors. Bacterial Membranes. Ultrastructre, Bioelectrochemistry, Bioenergetics and Biophysics. Kerala, India: Trivandrum, Signpost; 2020. p. 275-87.

Bu H, Wang X, Zhu Y, Williams R, Hsueh W, Zheng X, et al. Lysozyme-modified probiotic components protect rats against polymicrobial sepsis: Role of macrophages and cathelicidinrelated innate immunity. J. Immunol. 2006;177:8767-76. https://doi.org/10.4049/jimmunol.177.12.8767 DOI: https://doi.org/10.4049/jimmunol.177.12.8767

Gill H, Rutherfurd K, Cross M, Gopal P. Enhancement of immunity in the elderly by dietary supplementation with the probiotic Bifidobacterium lactis HN019. Am J Clin Nutr. 2001;74:833-9. https://doi.org/10.1093/ajcn/74.6.833 PMid:11722966 DOI: https://doi.org/10.1093/ajcn/74.6.833

Petrie JR, Guzik TJ, Touyz RM. Diabetes, hypertension, and cardiovascular disease: Clinical insights and vascular mechanisms. Can J Cardiol. 2018;34(5):575-84. https://doi.org/10.1016/j.cjca.2017.12.005 PMid:29459239 DOI: https://doi.org/10.1016/j.cjca.2017.12.005

Sultan S, Sultan M. COVID-19 cytokine storm and novel. Med Hypotheses. 2020;144:109875. https://doi.org/10.1016/j.mehy.2020.109875 PMid:18442197 DOI: https://doi.org/10.1016/j.mehy.2020.109875

Guervilly C, Burtey S, Sabatier F, Cauchois RL, Lano G, Abdili E, et al. Circulating endothelial cells as a marker of endothelial injury in severe COVID-19. J Infect Dis. 2020;222(11):1789-93. https://doi.org/10.1093/infdis/jiaa528 PMid:32812049 DOI: https://doi.org/10.1093/infdis/jiaa528

Liguori I, Russo G, Curcio F, Bulli G, Aran L, Della-Morte D, et al. Oxidative stress, aging, and diseases. Clin Interv Aging. 2018;13:757-72. https://doi.org/10.2147/CIA.S158513 PMid:29731617 DOI: https://doi.org/10.2147/CIA.S158513

Matough FA, Budin SB, Hamid ZA, Alwahaibi N, Mohamed J. The role of oxidative stress and antioxidants in diabetic complications. Sultan Qaboos Univ Med J. 2012;12(1):5-18. https://doi.org/10.12816/0003082 PMid:22375253 DOI: https://doi.org/10.12816/0003082

Rodrigo R, González J, Paoletto F. The role of oxidative stress in the pathophysiology of hypertension. Hypertens Res. 2011;34(4):431-40. https://doi.org/10.1038/hr.2010.264 PMid:21228777 DOI: https://doi.org/10.1038/hr.2010.264

Vichova T, Motovska Z. Oxidative stress: Predictive marker for coronary artery disease. Exp Clin Cardiol. 2013;18(2):e88-91. PMid:23940453

Quiñonez-Flores CM, González-Chávez SA, Del Río Nájera D, Pacheco-Tena C. Oxidative stress: Predictive marker for coronary artery disease. Exp Clin Cardiol. Biomed Res Int. 2016;2016:6097417. https://doi.org/10.1155/2016/6097417 DOI: https://doi.org/10.1155/2016/6097417

Saha SK, Lee SB, Won J, Choi HY, Kim K, Yang GM, et al. Correlation between oxidative stress, nutrition, and cancer initiation. Int J Mol Sci. 2018;18(7):1544. https://doi.org/10.3390/ijms18071544 DOI: https://doi.org/10.3390/ijms18071544

Patel M. Targeting oxidative stress in central nervous system disorders. Trends Pharmacol Sci. 2016;37(9):768-78. https://doi.org/10.1016/j.tips.2016.06.007 PMid:27491897 DOI: https://doi.org/10.1016/j.tips.2016.06.007

Abbaspour N, Hurrell R, Kelishadi R. Review on iron and its importance for human health. J Res Med Sci. 2014;19(2):164-74. PMid:24778671

Wang B, Apanasets O, Nordgren M, Fransen M. Dissecting peroxisome-mediated signaling pathways: A new and exciting research field. In: Brocard C, Hartig A, editors. Molecular Machines Involved in Peroxisome Biogenesis and Maintenance. 1st ed. Wien, Austria: Springer; 2014. p. 255-73. DOI: https://doi.org/10.1007/978-3-7091-1788-0_11

Fransen M. Peroxisome dynamics: Molecular players, mechanisms, and (Dys) functions. Int Sch Res Notices. 2012;2012:714192. https://doi.org/10.5402/2012/714192 DOI: https://doi.org/10.5402/2012/714192

Lismont C, Revenco I, Fransen M. Peroxisomal hydrogen peroxide metabolism and signaling in health and disease. Int J Mol Sci. 2015;20(15):3673. https://doi.org/10.3390/ijms20153673 PMid:31357514 DOI: https://doi.org/10.3390/ijms20153673

Di Meo S, Reed TT, Venditti P, Victor VM. Role of ROS and RNS Sources in physiological and pathological conditions. Oxid Med Cell Longev. 2016;2016:1245049. https://doi.org/10.1155/2016/1245049 PMid:27478531 DOI: https://doi.org/10.1155/2016/1245049

Di Meo S, Venditti P. Evolution of the knowledge of free radicals and other oxidants. Oxid Med Cell Longev. 2020;2020:9829176. https://doi.org/10.1155/2020/9829176 PMid:32411336 DOI: https://doi.org/10.1155/2020/9829176

Sies H. Hydrogen peroxide as a central redox signaling molecule in physiological oxidative stress: Oxidative eustress. Redox Biol. 2017;11:613-9. https://doi.org/10.1016/j.redox.2016.12.035 PMid:28110218 DOI: https://doi.org/10.1016/j.redox.2016.12.035

Auten RL, Davis JM. Oxygen toxicity and reactive oxygen species: The devil is in the details. Pediatr Res. 2009;66(2):121-7. https://doi.org/10.1203/PDR.0b013e3181a9eafb PMid:19390491 DOI: https://doi.org/10.1203/PDR.0b013e3181a9eafb

Feelisch M, Akaike T, Griffiths K, Ida T, Prysyazhna O, Goodwin JJ, et al. Long-lasting blood pressure lowering effects of nitrite are NO-independent and mediated by hydrogen peroxide, persulfides, and oxidation of protein kinase G1α redox signalling. Cardiovasc Res. 2020;116(1):51-62. https://doi.org/10.1093/cvr/cvz202 PMid:31372656 DOI: https://doi.org/10.1093/cvr/cvz202

Doskey CM, Buranasudja V, Wagner BA, Wilkes JG, Du J, Cullen JJ, et al. Tumor cells have decreased ability to metabolize H2O2: Implications for pharmacological ascorbate in cancer therapy. Redox Boil. 2016;10:274-84. https://doi.org/10.1016/j.redox.2016.10.010 PMid:27833040 DOI: https://doi.org/10.1016/j.redox.2016.10.010

Hertzberger R, Arents J, Dekker HL, Pridmore RD, Gysler C, Kleerebezem M, et al. H 2O2 production in species of the Lactobacillus acidophilus group: A central role for a novel NADH-dependent flavin reductase. Appl Environ Microbiol. 2014;80:2229-39. https://doi.org/10.1128/AEM.04272-13 DOI: https://doi.org/10.1128/AEM.04272-13

Singh AK, Hertzberger RY, Knaus UG. Hydrogen peroxide production by lactobacilli promotes epithelial restitution during colitis. Redox Boil. 2018;16:11-20. https://doi.org/10.1016/j.redox.2018.02.003 PMid:29471162 DOI: https://doi.org/10.1016/j.redox.2018.02.003

Klebanoff SJ, Hillier SL, Eschenbach DA, Walterdorph AM. Control of the microbial flora of the vagina by hydrogen peroxide-generating lactobacilli. J Infect Dis. 1991;164:94-100. https://doi.org/10.1093/infdis/164.1.94 PMid:1647428 DOI: https://doi.org/10.1093/infdis/164.1.94

Seki M, Iida K, Saito M, Nakayama H, Yoshida S. Hydrogen peroxide production in Streptococcus pyogenes: Involvement of lactate oxidase and coupling with aerobic utilization of lactate. J Bacteriol. 2018;186(7):2046-51. https://doi.org/10.1128/JB.186.7.2046-2051 PMid:15028688 DOI: https://doi.org/10.1128/JB.186.7.2046-2051.2004

Erttman S, Gekara N. Hydrogen peroxide release by bacteria suppresses inflammasome-dependent innate immunity. Nat Commun. 2019;10(1):3493. https://doi.org/10.1038/s41467-019-11169-x PMid:31375698 DOI: https://doi.org/10.1038/s41467-019-11169-x

Newcomb WW, Brown JC. Internal catalase protects herpes simplex virus from inactivation by hydrogen peroxide. J Virol. 2012;86:11931-4. https://doi.org/10.1128/JVI.01349-12 PMid:22915822 DOI: https://doi.org/10.1128/JVI.01349-12

Chan SW. Hydrogen peroxide induces la cytoplasmic shuttling and increases hepatitis C virus internal ribosome entry sitedependent translation. J Gen Virol. 2016;97:2301-15. https://doi.org/10.1099/jgv.0.000556 PMid:27436793 DOI: https://doi.org/10.1099/jgv.0.000556

Ansar M, Ivanciuc T, Garofalo RP, Casola A. Increased lung catalase activity confers protection against experimental RSV infection. Sci Rep. 2020;10:3653. https://doi.org/10.1038/s41598-020-60443-2 DOI: https://doi.org/10.1038/s41598-020-60443-2

Balkus JE, Mitchell C, Agnew K, Liu C, Fiedler T, Cohn SE, et al. Detection of hydrogen peroxide-producing Lactobacillus species in the vagina: A comparison of culture and quantitative PCR among HIV-1 seropositive women. BMC Infect Dis. 2012;12:188. https://doi.org/10.1186/1471-2334-12-188 PMid:22889380 DOI: https://doi.org/10.1186/1471-2334-12-188

Krüger H, Bauer G. Lactobacilli enhance reactive oxygen species-dependent apoptosis-inducing signaling. Redox Biol. 2017;11:715-24. https://doi.org/10.1016/j.redox.2017.01.015 PMid:28193594 DOI: https://doi.org/10.1016/j.redox.2017.01.015

Balayan M, Manvelyan A, Marutyan S, Isajanyan M, Tsaturyan V, Pepoyan A, et al. Impact of Lactobacillus acidophilus INMIA 9602 Er-2 and Escherichia coli M-17 on some clinical blood characteristics of familial Mediterranean fever disease patients from the Armenian cohort. Int J Probiotics Prebiotics. 2015;10:91-5.

Bagherpour G, Ghasemi H, Zand B, Zarei N, Roohvand F, Ardakani EM, et al. Oral administration of recombinant Saccharomyces boulardii expressing ovalbumin-CPE fusion protein induces antibody response in mice. Front Microbiol. 2018;9:723. https://doi.org/10.3389/fmicb.2018.00723 PMid:29706942 DOI: https://doi.org/10.3389/fmicb.2018.00723

Pepoyan AZ, Balayan MH, Manvelyan AM, Mamikonyan V, Isajanyan M, Tsaturyan VV, et al. Lactobacillus acidophilus INMIA 9602 Er-2 strain 317/402 probiotic regulates growth of commensal Escherichia coli in gut microbiota of familial Mediterranean fever disease subjects. Lett Appl Microbiol. 2017;64:254-60. https://doi.org/10.1111/lam.12722 PMid:28140472 DOI: https://doi.org/10.1111/lam.12722

Pepoyan A, Balayan M, Manvelyan A, Pepoyan S, Malkhasyan L, Bezhanyan T, et al. Radioprotective effects of lactobacilli with antagonistic activities against human pathogens. Biophys J. 2018;114:665a. https://doi.org/10.1016/j.bpj.2017.11.3586 DOI: https://doi.org/10.1016/j.bpj.2017.11.3586

Pepoyan AZ, Pepoyan ES, Galstyan L, Harutyunyan NA, Tsaturyan VV, Torok T, et al. The effect of immunobiotic/psychobiotic Lactobacillus acidophilus strain INMIA 9602 Er

/402 narine on gut prevotella in familial Mediterranean fever: Gender-associated effects. Probiotics Antimicrob Prot 2021;13:1306-15. https://doi.org/10.1007/s12602-021-09779-3 PMid:34132998 DOI: https://doi.org/10.1007/s12602-021-09779-3

Kanauchi O, Andoh A, AbuBakar S, Yamamoto N. Probiotics and paraprobiotics in viral infection: Clinical application and effects on the innate and acquired immune systems. Curr Pharm Des. 2018;24:710-7. https://doi.org/10.2174/1381612824666180116163411 PMid:29345577 DOI: https://doi.org/10.2174/1381612824666180116163411

Eguchi K, Fujitani N, Nakagawa H, Miyazaki T. Prevention of respiratory syncytial virus infection with probiotic lactic acid bacterium Lactobacillus gasseri SBT2055. Sci Rep. 2019;18:4812. https://doi.org/10.1038/s41598-019-39602-7 DOI: https://doi.org/10.1038/s41598-019-39602-7

Carter B, Collins JT, Barlow-Pay F, Rickard F, Bruce E, Verduri A, et al. Nosocomial COVID-19 infection: Examining the risk of mortality. The COPE-nosocomial study (COVID in older people). J Hosp Infect. 2020;106(2):376-84. https://doi.org/10.1016/j.jhin.2020.07.013 PMid:32702463 DOI: https://doi.org/10.1016/j.jhin.2020.07.013

Pepoyan AZ, Balayan MA, Arutyunyan NA, Grigoryan AG, Tsaturyan VV, Manvelyan AM, et al. Antibiotic resistance of Escherichia coli of the intestinal microbiota in patients with familial Mediterranean Fever Klin Med (Mosk). 2015;93:37-9. PMid:26596057

Touitou I, Pepoyan A. Concurrence of Crohn’s and familial Mediterranean fever diseases for Armenian cohort. Inflamm Bowel Dis. 2008;14:S39. https://doi.org/10.1097/00054725-200812003-00128 DOI: https://doi.org/10.1097/00054725-200812001-00128

Zheng D, Liwinski T, Elinav E. Inflammasome activation and regulation: Toward a better understanding of complex mechanisms. Cell Discov. 2020;6:36. https://doi.org/10.1038/s41421-020-0167-x PMid:32550001 DOI: https://doi.org/10.1038/s41421-020-0167-x

Telles CR, Roy A, Ajmal MR, Mustafa SK, Ahmad MA, de la Serna JM, et al. The impact of COVID-19 management policies tailored to airborne SARS-CoV-2 transmission: Policy analysis. JMIR Public Health Surveill. 2021;7(4):e20699. https://doi.org/10.2196/20699 PMid:33729168 DOI: https://doi.org/10.2196/20699

Khalid MS, Aljohani MM, Alomrani NA, Oyouni AA, Alzahrani O, Ahmad OA, et al. COVID-19 and immune function “a significant” zinc. Orient J Chem 2020;36:1026-36. DOI: https://doi.org/10.13005/ojc/360604

Khalid MS, Ahmad MA, Baranova V, Deineko Z, Lyashenko V, Oyouni AA. Using wavelet analysis to assess the impact of COVID-19 on changes in the price of basic energy resources. Int J Emerg Trends Eng Res. 2020;8(7):2907-12. DOI: https://doi.org/10.30534/ijeter/2020/04872020

Downloads

Published

2022-01-17

How to Cite

1.
Tsaturyan V, Kushugulova A, Mirzabekyan S, Sidamonidze K, Tsereteli D, Torok T, Pepoyan A. Promising Indicators in Probiotic-recommendations in COVID-19 and its Accompanying Diseases. Open Access Maced J Med Sci [Internet]. 2022 Jan. 17 [cited 2024 Apr. 18];10(B):625-31. Available from: https://oamjms.eu/index.php/mjms/article/view/7989

Issue

Section

Infective Diseases

Categories

Most read articles by the same author(s)