Original article
Molecular dynamic and bioinformatic studies of metformin-induced ACE2 phosphorylation in the presence of different SARS-CoV-2 S protein mutations

https://doi.org/10.1016/j.sjbs.2023.103699Get rights and content
Under a Creative Commons license
open access

Abstract

The SARS-CoV-2 infection activates host kinases and causes high phosphorylation in both the host and the virus. There were around 70 phosphorylation sites found in SARS-CoV-2 viral proteins. Besides, almost 15,000 host phosphorylation sites were found in SARS-CoV-2-infected cells. COVID-19 is thought to enter cells via the well-known receptor Angiotensin-Converting Enzyme 2 (ACE2) and the serine protease TMPRSS2. Substantially, the COVID-19 infection doesn’t induce phosphorylation of the ACE2 receptor at Serin-680(s680). Metformin's numerous pleiotropic properties and extensive use in medicine including COVID-19, have inspired experts to call it the “aspirin of the twenty-first century”. Metformin's impact on COVID-19 has been verified in clinical investigations via ACE2 receptor phosphorylation at s680. In the infection of COVID-19, sodium-dependent transporters including the major neutral amino acid (B0AT1) is regulated by ACE2. The structure of B0AT1 complexing with the COVID-19 receptor ACE2 enabled significant progress in the creation of mRNA vaccines. We aimed to study the impact of the interaction of the phosphorylation form of ACE2-s680 with wild-type (WT) and different mutations of SARS-CoV-2 infection such as delta, omicron, and gamma (γ) on their entrance of host cells as well as the regulation of B0AT1by the SARS-CoV-2 receptor ACE2. Interestingly, compared to WT SARS-CoV-2, ACE2 receptor phosphorylation at s680 produces conformational alterations in all types of SARS-CoV-2. Furthermore, our results showed for the first time that this phosphorylation significantly influences ACE2 sites K625, K676, and R678, which are key mediators for ACE2-B0AT1 complex.

Keywords

SARS-CoV-2
COVID-19
ACE2
B0AT1
Metformin
ACE2- phosphorylation at s680

Cited by (0)

Peer review under responsibility of King Saud University.

1

These authors contributed equally to this work.