Factors Associated with Participation in Elementary School–Based SARS-CoV-2 Testing — Salt Lake County, Utah, December 2020–January 2021

On April 7, 2021, this report was posted online as an MMWR Early Release.

Nathaniel M. Lewis, PhD1,2,3; Rebecca B. Hershow, PhD1,2; Victoria T. Chu, MD1,2; Karen Wu, DVM1,2; Alison T. Milne, DEd4; Nathan LaCross, PhD3; Mary Hill, MPH5; Ilene Risk, MPA5; Adam L. Hersh, MD, PhD6; Hannah L. Kirking, MD1; Jacqueline E. Tate, PhD1; Snigdha Vallabhaneni, MD1; Angela C. Dunn, MD3 (View author affiliations)

View suggested citation
Article Metrics
Altmetric:
Citations:
Views:

Views equals page views plus PDF downloads

Related Materials

During December 3, 2020–January 31, 2021, CDC, in collaboration with the University of Utah Health and Economic Recovery Outreach Project,* Utah Department of Health (UDOH), Salt Lake County Health Department, and one Salt Lake county school district, offered free, in-school, real-time reverse transcription–polymerase chain reaction (RT-PCR) saliva testing as part of a transmission investigation of SARS-CoV-2, the virus that causes COVID-19, in elementary school settings. School contacts of persons with laboratory-confirmed SARS-CoV-2 infection, including close contacts, were eligible to participate (1). Investigators approached parents or guardians of student contacts by telephone, and during January, using school phone lines to offer in-school specimen collection; the testing procedures were explained in the preferred language of the parent or guardian. Consent for participants was obtained via an electronic form sent by e-mail. Analyses examined participation (i.e., completing in-school specimen collection for SARS-CoV-2 testing) in relation to factors§ that were programmatically important or could influence likelihood of SARS-CoV-2 testing, including race, ethnicity, and SARS-CoV-2 incidence in the community (2). Crude prevalence ratios (PRs) were calculated using univariate log-binomial regression. This activity was reviewed by CDC and was conducted consistent with federal law and CDC policy.**

Among 856 unique student contacts at 20 elementary schools, 594 who were exposed to 33 index patients at 13 elementary schools were analyzed (Table).†† Among 594 student contacts, 438 (74%) participated (range = 59%–82% across schools), parents or guardians of 100 (17%) students refused, and 56 (9%) could not be reached (Table). Student testing outside of the investigation was not evaluated. Among 436 participants with available information,§§ parents or guardians of 230 (53%) consented to participation after the first contact attempt, an additional 134 (31%) after two attempts, and a further 72 (17%) after three attempts.

Compared with non-Hispanic White students, participation in the testing program was higher among students identifying as Hispanic/Latino White (PR = 1.21) and among members of a racial minority group¶¶ (PR = 1.19). Participation was higher in January (PR = 1.12) than in December. Compared with students living in ZIP codes with lower SARS-CoV-2 incidence than the median in all residential ZIP codes of students included in the analysis (11,461 cases per 100,000 persons), participation was higher among those living in ZIP codes with incidences higher than the median (PR = 1.12). No differences were found based on grade level, close contact with the index patient, having a family member ever receive a positive SARS-CoV-2 test result, cumulative school incidence, number of recent school cases, number of days from exposure to first contact or to testing, ZIP code–level deprivation score (a composite measure of socioeconomic disadvantage) (3), or ZIP code–level mask compliance, estimated as the percentage of adult residents who reported always wearing a mask in public.

In Utah’s socioeconomically disadvantaged areas, which have large proportions of uninsured and racial and ethnic minority residents, SARS-CoV-2 incidence is elevated, but testing rates are similar to those in other areas; this discrepancy could reflect a lack of access to testing (2). The sociodemographic differences in participation rates observed in this investigation could also suggest a higher level of concern about COVID-19 school safety among racial and ethnic minority parents (4) or less concern or better access to other testing resources among non-Hispanic White households. In-school specimen collection could therefore be a useful strategy for facilitating SARS-CoV-2 testing among those at higher risk for infection, who might also have limited access to testing. Higher participation in January compared with December could reflect the absence of potential holiday disincentives to testing or the investigation team’s use of school phone lines for recruitment in January.

As schools consider reopening, in-school specimen collection for SARS-CoV-2 testing could help reach potentially underserved populations to reduce community transmission (5,6). Explaining testing procedures in a parent’s or guardian’s preferred language, as was done in this situation, might also be important for promoting participation. One limitation is that testing was conducted among persons with a known SARS-CoV-2 exposure; in-school specimen collection without known exposures might result in different participation rates. A second limitation is that testing history among participants was not known; therefore, the degree to which access to testing in the community influenced participation is unknown. However, the high participation rate for RT-PCR saliva testing suggests potential scalability to other school testing strategies, including screening testing (7,8). School districts should continue universal mask use, physically distancing ≥3 ft (or as much as possible), and quarantining close contacts of persons with COVID-19 (8).

Corresponding author: Nathaniel M. Lewis, cdceisnml@utah.gov.


1CDC COVID-19 Response Team; 2Epidemic Intelligence Service, CDC; 3Utah Department of Health; 4Granite School District, Utah; 5Salt Lake County Health Department, Salt Lake City, Utah; 6Department of Pediatrics, Division of Infectious Diseases, University of Utah, Salt Lake City, Utah.

All authors have completed and submitted the International Committee of Medical Journal Editors form for disclosure of potential conflicts of interest. Mary Hill, Ilene Risk, and Nathan LaCross report grant support from the Federal Government Coronavirus Aid, Relief, and Economic Security Act during the course of the study. No other potential conflicts of interest were disclosed.


* https://eccles.utah.edu/utah-hero/external icon

To detect any potential school-associated transmission beyond close contacts of cases and to assess broader acceptability of in-school specimen collection school contacts were defined in this investigation as students or staff members in contact with the index patient for a cumulative total of ≥15 minutes during a 24-hour period in a classroom, cafeteria, school bus, or recess space during the index patient’s infectious period. Close school contacts were defined as persons within 6 ft of the index patient for a cumulative total of ≥15 minutes over a 24-hour period. Infectious period was estimated as 2 days before to 10 days after symptom onset (if symptomatic) or first positive specimen collection date (if asymptomatic). https://www.cdc.gov/coronavirus/2019-ncov/php/contact-tracing/contact-tracing-plan/investigating-covid-19-case.html

§ Student demographics and school-level characteristics were obtained from the school district. Incidence by each student’s ZIP code of residence was obtained from UDOH. ZIP code–level deprivation and mask compliance, estimated as the percentage of the adult population reporting that they always wear a mask in public settings, were obtained from the Utah Behavioral Risk Factor Surveillance System. https://ibis.health.utah.gov/ibisph-view/query/selection/brfss/BRFSSSelection.htmlexternal icon

Prevalence ratio estimates that did not include 1.0 were considered statistically significant at p<0.05.

** 45 C.F.R. part 46, 21 C.F.R. part 56; 42 U.S.C. Sect. 241(d); 5 U.S.C. Sect. 552a; 44 U.S.C. Sect. 3501 et seq.

†† Students were excluded if testing was offered on days off or during online learning days, potentially requiring additional transportation (253), or if they attended a private school (nine).

§§ The number of times the family was contacted was missing for two participating students.

¶¶ Includes non-Hispanic and Hispanic Asian, non-Hispanic and Hispanic Black/African American, non-Hispanic Native Hawaiian or Other Pacific Islander, non-Hispanic and Hispanic American Indian or Alaska Native, and non-Hispanic and Hispanic Multiracial. Among 96 students that identified as being from a racial minority group, 11 (11%) also identified as Hispanic or Latino.

References

  1. Hershow RB, Wu K, Lewis NM, et al. Low SARS-CoV-2 transmission in elementary schools—Salt Lake County, Utah, December 3, 2020–January 31, 2021. MMWR Morb Mortal Wkly Rep 2021;70:442–8. https://doi.org/10.15585/mmwr.mm7012e3external icon PMID:33764967external icon
  2. Lewis NM, Friedrichs M, Wagstaff S, et al. Disparities in COVID-19 incidence, hospitalizations, and testing, by area-level deprivation—Utah, March 3–July 9, 2020. MMWR Morb Mortal Wkly Rep 2020;69:1369–73. https://doi.org/10.15585/mmwr.mm6938a4external icon PMID:32970656external icon
  3. Utah Department of Health. Health Improvement Index (HII). Salt Lake City, UT: Utah Department of Health; 2020. https://ruralhealth.health.utah.gov/2019/03/13/health-improvement-index-hii/external icon
  4. Gilbert LK, Strine TW, Szucs LE, et al. Racial and ethnic differences in parental attitudes and concerns about school reopening during the COVID-19 pandemic—United States, July 2020. MMWR Morb Mortal Wkly Rep 2020;69:1848–52. https://doi.org/10.15585/mmwr.mm6949a2external icon PMID:33301437external icon
  5. Levinson M, Cevik M, Lipsitch M. Reopening primary schools during the pandemic. N Engl J Med 2020;383:981–5. https://doi.org/10.1056/NEJMms2024920external icon PMID:32726550external icon
  6. Manabe YC, Sharfstein JS, Armstrong K. The need for more and better testing for COVID-19. JAMA 2020;324:2153–4. https://doi.org/10.1001/jama.2020.21694external icon PMID:33185688external icon
  7. CDC. COVID-19: interim considerations for testing for K–12 school administrators and public health officials. Atlanta, GA: US Department of Health and Human Services, CDC; 2021. Accessed March 21, 2021. https://www.cdc.gov/coronavirus/2019-ncov/community/schools-childcare/k-12-testing.html
  8. CDC. COVID-19: operational strategy for K–12 schools through phased mitigation. Atlanta, GA: US Department of Health and Human Services, CDC; 2021. Accessed March 21, 2021. https://www.cdc.gov/coronavirus/2019-ncov/community/schools-childcare/operation-strategy.html
TABLE. Characteristics associated with participation in school SARS-CoV-2 testing among student contacts (N = 594) — 13 elementary schools, Salt Lake County, Utah, December 2020–January 2021*Return to your place in the text
Characteristic No. (%) Prevalence ratio (95% CI)
Total Participants
(N = 594) (n = 438)
Student characteristic
Race/Ethnicity
White, non-Hispanic 285 190 (66.7) Ref
White, Hispanic/Latino 213 172 (80.8) 1.21 (1.09–1.35)
Racial minority 96 76 (79.2) 1.19 (1.04–1.35)
Grade in school
Kindergarten–grade 2 258 197 (76.4) Ref
Grades 3–4 162 118 (72.8) 0.95 (0.85–1.07)
Grades 5–6§ 174 123 (70.7) 0.93 (0.82–1.04)
Identified as a close contact to index patient
No 428 314 (73.4) Ref
Yes 166 124 (74.7) 1.02 (0.92–1.13)
Family member (including nonhousehold) ever received positive SARS-CoV-2 test result
No 534 389 (72.8) Ref
Yes 60 49 (81.7) 1.12 (0.98–1.28)
School/Investigation characteristic
Cumulative SARS-CoV-2 incidence rate by school
≤51 cases per 1,000 persons** 305 216 (70.8) Ref
>51 cases per 1,000 persons 289 222 (76.8) 1.08 (0.99–1.19)
No. of school cases during 14 days before testing date
1–4 402 300 (74.6) Ref
>4 192 138 (71.9) 0.96 (0.87–1.07)
Days from last school exposure to first time contacted††
2–4 142 106 (74.6) Ref
5–7 331 245 (74.0) 0.99 (0.88–1.11)
8–12 118 85 (72.0) 0.97 (0.83–1.12)
Days from last school exposure to test date
6–7 316 231 (73.1) Ref
8–10 278 207 (74.5) 1.02 (0.93–1.12)
Month of testing
December 227 156 (68.7) Ref
January 367 282 (76.8) 1.12 (1.01–1.24)
ZIP code–level characteristic††
Cumulative SARS-CoV-2 incidence rate by ZIP code since March 2020
≤11,461 cases per 100,000 persons§§ 301 210 (69.8) Ref
>11,461 cases per 100,000 persons 292 228 (78.1) 1.12 (1.02–1.23)
Deprivation level¶¶
Very low to average 315 226 (71.7) Ref
High to very high 278 212 (76.3) 1.06 (0.97–1.17)
Masking compliance rate by ZIP code since May 2020
≥81.6%*** 299 230 (76.9) Ref
<81.6% 294 208 (70.7) 0.92 (0.84–1.01)

Abbreviations: CI = confidence interval; Ref = Reference group.
* Log-binomial regression was conducted to calculate crude prevalence ratios and 95% CIs to identify correlates of participation. Prevalence ratio estimates that did not include 1.0 were considered statistically significant at p<0.05. Participation was defined as completing in-school specimen collection for reverse transcription–polymerase chain reaction SARS-CoV-2 testing.
Includes non-Hispanic and Hispanic Asian, non-Hispanic and Hispanic Black/African American, non-Hispanic Native Hawaiian or Other Pacific Islander, non-Hispanic and Hispanic American Indian or Alaska Native, and non-Hispanic and Hispanic Multiracial. Among 96 students who identified as members of a racial minority group, 11 (11%) also identified as Hispanic or Latino.
§ All students in this category were in grades 5 or 6 except for two students who were in grade 7 or higher because they were identified as school contacts of the same index patient.
Close school contacts were defined as persons within 6 ft of the index patient for a cumulative total of ≥15 minutes over a 24-hour period.
** Median SARS-CoV-2 incidence rate across schools included in the analysis.
†† Missing data: ZIP code was missing for one nonparticipating student; days between last exposure date and first time family was contacted was missing for three students.
§§ Median SARS-CoV-2 incidence rate across students’ ZIP codes included in the analysis.
¶¶ This is a composite index calculated using nine indicators from the Utah Behavioral Risk Factor Surveillance System: 1) median family income; 2) income disparity (a logarithmic ratio of households with <$10,000 income to ≥$50,000 income); 3) percentage of home ownership; 4) percentage of unemployment; 5) percentage of families below poverty threshold; 6) percentage of single-parent households with children aged <18 years; 7) percentage of population aged ≥25 years with <9 years of education; 8) percentage of population aged ≥25 years with at least a high school diploma; and 9) percentage of population at <150% of the poverty threshold. The index is divided into quintiles (very low, low, average, high, and very high).
*** Median masking compliance rate among residential ZIP codes of students included in the analysis.


Suggested citation for this article: Lewis NM, Hershow RB, Chu VT, et al. Factors Associated with Participation in Elementary School–Based SARS-CoV-2 Testing — Salt Lake County, Utah, December 2020–January 2021. MMWR Morb Mortal Wkly Rep 2021;70:557-559. DOI: http://dx.doi.org/10.15585/mmwr.mm7015e1external icon.

MMWR and Morbidity and Mortality Weekly Report are service marks of the U.S. Department of Health and Human Services.
Use of trade names and commercial sources is for identification only and does not imply endorsement by the U.S. Department of Health and Human Services.
References to non-CDC sites on the Internet are provided as a service to MMWR readers and do not constitute or imply endorsement of these organizations or their programs by CDC or the U.S. Department of Health and Human Services. CDC is not responsible for the content of pages found at these sites. URL addresses listed in MMWR were current as of the date of publication.

All HTML versions of MMWR articles are generated from final proofs through an automated process. This conversion might result in character translation or format errors in the HTML version. Users are referred to the electronic PDF version (https://www.cdc.gov/mmwr) and/or the original MMWR paper copy for printable versions of official text, figures, and tables.

Questions or messages regarding errors in formatting should be addressed to mmwrq@cdc.gov.

View Page In:pdf icon PDF [88K]
Page last reviewed: April 15, 2021