Clinical Investigation
Impaired fibrinolysis in critically ill COVID-19 patients

https://doi.org/10.1016/j.bja.2020.12.010Get rights and content
Under a Creative Commons license
open access

Abstract

Background

Critically ill coronavirus disease 2019 (COVID-19) patients present with a hypercoagulable state with high rates of macrovascular and microvascular thrombosis, for which hypofibrinolysis might be an important contributing factor.

Methods

We retrospectively analysed 20 critically ill COVID-19 patients at Innsbruck Medical University Hospital whose coagulation function was tested with ClotPro® and compared with that of 60 healthy individuals at Augsburg University Clinic. ClotPro is a viscoelastic whole blood coagulation testing device. It includes the TPA test, which uses tissue factor (TF)-activated whole blood with added recombinant tissue-derived plasminogen activator (r-tPA) to induce fibrinolysis. For this purpose, the lysis time (LT) is measured as the time from when maximum clot firmness (MCF) is reached until MCF falls by 50%. We compared COVID-19 patients with prolonged LT in the TPA test and those with normal LT.

Results

Critically ill COVID-19 patients showed hypercoagulability in ClotPro assays. MCF was higher in the EX test (TF-activated assay), IN test (ellagic acid-activated assay), and FIB test (functional fibrinogen assay) with decreased maximum lysis (ML) in the EX test (hypofibrinolysis) and highly prolonged TPA test LT (decreased fibrinolytic response), as compared with healthy persons. COVID-19 patients with decreased fibrinolytic response showed higher fibrinogen levels, higher thrombocyte count, higher C-reactive protein levels, and decreased ML in the EX test and IN test.

Conclusion

Critically ill COVID-19 patients have impaired fibrinolysis. This hypofibrinolytic state could be at least partially dependent on a decreased fibrinolytic response.

Keywords

coagulation
COVID-19
critically ill
D-dimer
fibrinogen
fibrinolysis
tissue plasminogen activator
viscoelastic test

Cited by (0)