Synthesis 2023; 55(04): 657-662
DOI: 10.1055/a-1941-1437
paper

Convenient Synthesis of Ellagic Acid from Methyl Gallate and SARS-CoV-2 3CLpro Antiviral Activity

Francesc Navarro
a   Laboratori de Química Farmacèutica, Facultat de Farmàcia, Universitat de Barcelona, Av. Joan XXIII, 27-31, 08028 Barcelona, Spain
,
Salha Hamri
a   Laboratori de Química Farmacèutica, Facultat de Farmàcia, Universitat de Barcelona, Av. Joan XXIII, 27-31, 08028 Barcelona, Spain
,
Rosa Reches
a   Laboratori de Química Farmacèutica, Facultat de Farmàcia, Universitat de Barcelona, Av. Joan XXIII, 27-31, 08028 Barcelona, Spain
,
Miquel Viñas
a   Laboratori de Química Farmacèutica, Facultat de Farmàcia, Universitat de Barcelona, Av. Joan XXIII, 27-31, 08028 Barcelona, Spain
,
Daniel Jahani
a   Laboratori de Química Farmacèutica, Facultat de Farmàcia, Universitat de Barcelona, Av. Joan XXIII, 27-31, 08028 Barcelona, Spain
,
Jaume Ginard
a   Laboratori de Química Farmacèutica, Facultat de Farmàcia, Universitat de Barcelona, Av. Joan XXIII, 27-31, 08028 Barcelona, Spain
,
Josep Vilardell
a   Laboratori de Química Farmacèutica, Facultat de Farmàcia, Universitat de Barcelona, Av. Joan XXIII, 27-31, 08028 Barcelona, Spain
,
Olga Abián
b   Dpt. Bioquímica/IUI BIFI, Mariano-Esquillor, Edificio I+D Campus Río Ebro, Universidad de Zaragoza, 50018 Zaragoza, Spain
,
a   Laboratori de Química Farmacèutica, Facultat de Farmàcia, Universitat de Barcelona, Av. Joan XXIII, 27-31, 08028 Barcelona, Spain
› Author Affiliations
Financial support from Servier Laboratories is gratefully acknowledged.


Abstract

A practical synthesis of ellagic acid has been achieved from methyl gallate by a proposed synthetic route of five steps, consisting of ketal protection, regioselective bromination, bis-lactonization, C–C bond formation between the aromatic rings of the galloyl groups, and ketal deprotection, in 38% overall yield. Ellagic acid showed a slight inhibitory activity against SARS-CoV-2 3CLpro.

Supporting Information



Publication History

Received: 28 July 2022

Accepted after revision: 12 September 2022

Accepted Manuscript online:
12 September 2022

Article published online:
18 October 2022

© 2022. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 2 Gil MI, Tomás-Barberán FA, Hess-Pierce B, Holcroft DM, Kader AA. J. Agric. Food Chem. 2000; 48: 4581
    • 3a Yang CS, Landau JM, Huang MT, Newmark HL. Annu. Rev. Nutr. 2001; 21: 381
    • 3b Middleton E, Kandaswami C, Theoharides TC. Pharmacol. Rev. 2000; 52: 673
    • 3c Hongkai W, Yingxia Z, Zhongjing T, Meiling K, Chengshi D, Dongfeng M, Jing M. Molecules 2017; 22: 2175
    • 3d Trombino S, Ferrarelli T, Pellegrino M, Ricchio E, Mauro L, Ando S, Picci N, Cassano R. Anticancer Res. 2013; 33: 4847
    • 3e Zobir HM, Hasan AA. S, Zulkarnain Z, Nazrul HM. Int. J. Nanomed. 2011; 6: 1373
    • 3f Adams LS, Zhang Y, Seeram NP, Heber D, Chen S. Cancer Prev. Res. 2010; 3: 108
    • 4a Zhang Y, Dewitt DL, Murugesan S, Nair MG. Chem. Biodiversity 2004; 1: 426
    • 4b Karlsson S, Nånberg E, Fjaeraa C, Wijkander J. Br. J. Nutr. 2010; 103: 1102
    • 4c Rogerio AP, Fontanari C, Borducchi E, Keller AC, Russo M, Soares EG, Albuquerque DA, Faccioli LH. Eur. J. Pharmacol. 2008; 580: 262
  • 5 Vargas S, Ndjoko Ioset K, Hay A.-E, Ioset J.-R, Wittlin S, Hostettmann K. J. Pharm. Biomed. Anal. 2011; 56: 880
  • 6 Kaplan M, Hayeck T, Raz A, Coleman R, Dornfield L, Vayan J. J. Nutr. 2001; 131: 2081
    • 7a Seeram NP, Adams LS, Henning SM, Niu Y, Zhang Y, Nair MG, Heber D. J. Nutr. Biochem. 2005; 16: 360
    • 7b Cozza G, Bonvini P, Zorzi E, Poletto G, Pagano MA, Sarno S, Donella-Deana A, Zagotto G, Rosolen A, Pinna LA, Meggio F, Moro S. J. Med. Chem. 2006; 49: 2363
  • 8 Narayanan BA, Geoffrey O, Willingham MC, Re GG, Nixon DW. Cancer Lett. 1999; 136: 215
    • 9a Labrecque L, Lamy S, Chapus A, Mihoubi S, Durocher Y. Carcinogenesis 2005; 26: 821
    • 9b Wood AW, Huang M.-T, Chang RL, Newmark HL, Lehr RE, Yagi H, Sayer JM, Jerina DM, Conney AH. Proc. Natl. Acad. Sci. U. S. A. 1982; 79: 5513
    • 9c Ross HA, McDougall GJ, Stewart D. Phytochemistry 2007; 68: 218
  • 10 Beck LC. A Manual of Chemistry . Webster and Skinners; Albany, USA: 1831: 395-397
  • 11 Grasser G. Synthetic Tannins: Their Synthesis, Industrial Production and Application. Kessinger Publishing LLC; Montana, USA: 2010. ISBN 1163834637
  • 12 Jurd L. J. Am. Chem. Soc. 1959; 81: 4606
  • 13 Mishra NC, Gold BJ. J. Labelled Compd. Radiopharm. 1990; 28: 927
  • 14 Zeng W, Heur Y.-H, Kinstle TH, Stoner GD. J. Labelled Compd. Radiopharm. 1991; 29: 657
  • 15 Chowdhury SA, Dean PM, Vijayaraghavan R, MacFarlane DR. Aust. J. Chem. 2011; 64: 1624
  • 16 Ren Y, Wei M, Still PC, Yuan S, Deng Y, Chen X, Himmeldirk K, Kinghorn AD, Yu J. ACS Med. Chem. Lett. 2012; 3: 631
  • 17 Gong H, Zeng H, Zhou F, Li C.-L. Angew. Chem. Int. Ed. 2015; 54: 5718
  • 18 Abe H, Nagai T, Imai H, Horino Y. Chem. Pharm. Bull. 2017; 65: 1078
  • 19 Heur YH, Zeng W, Stoner GD, Nemeth GA, Hilton B. J. Nat. Prod. 1992; 55: 1402
  • 20 Li X.-C, Elsahly HN, Hufford CD, Clark AM. Magn. Reson. Chem. 1999; 37: 856
  • 21 Abian O, Ortega-Alarcon D, Jimenez-Alesanco A, Ceballos-Laita L, Vega S, Reyburn HT, Rizzuti B, Velazquez-Campoy A. Int. J. Biol. Macromol. 2020; 164: 1693
  • 22 David AB, Diamant E, Dor E, Barnea A, Natan N, Levin L, Chapman S, Mimran LC, Epstein E, Zichel R, Torgeman A. Molecules 2021; 26: 3213
  • 23 Kane CJ, Menna JH, Yeh Y.-C. Biosci. Rep. 1988; 8: 85