Model | Absolute error | Relative error | |
Fractional | 0.98 | 8.9252 | 0.0324 |
Integer | 1 | 10.4541 | 0.0511 |
This paper investigates the novel coronavirus (COVID-19) infection system with a mathematical model presented with the Caputo derivative. We calculate equilibrium points and discuss their stability. We also go through the existence and uniqueness of a nonnegative solution for the system under study. We obtain numerical simulations for different order derivatives using the Fractional Natural Decomposition Method (FNDM) to understand better the dynamical structures of the physical behavior of COVID-19. The novel fractional model outperforms the existing integer-order model with ordinary temporal derivatives according to results from real-world clinical data. This behavior is based on the COVID-19 mathematical model's available features. The mathematical model is composed of real data reported from Morocco.
Citation: |
Table 1.
The absolute and relative errors for
Model | Absolute error | Relative error | |
Fractional | 0.98 | 8.9252 | 0.0324 |
Integer | 1 | 10.4541 | 0.0511 |
Table 2.
The absolute and relative errors for
Model | Absolute error | Relative error | |
Fractional | 0.98 | 8.9243 | 0.0364 |
Integer | 1 | 10.7544 | 0.0401 |
Table 3. Values of the model parameters corresponding to the situation of Morocco
![]() |
[1] |
S. Ahmad, A. Ullah, Q. M. Al-Mdallal, H. Khan, K. Shah and A. Khan, Fractional order mathematical modeling of COVID-19 transmission, Chaos, Solitons and Fractals, 139 (2020), 110256.
doi: 10.1016/j.chaos.2020.110256.![]() ![]() ![]() |
[2] |
I. Ahmed, I. A. Baba, A. Yusuf, P. Kumam and W. Kumam, Analysis of Caputo fractional-order model for COVID-19 with lock-down, Advances in Difference Equations, 1 (2020), 1-14.
doi: 10.1186/s13662-020-02853-0.![]() ![]() |
[3] |
M. Amouch and N. Karim, Modeling the dynamic of COVID-19 with different types of transmissions, Chaos, Solitons and Fractals, 150 (2021), 111188.
doi: 10.1016/j.chaos.2021.111188.![]() ![]() ![]() |
[4] |
G.-A. Anastassiou, Advances on Fractional Inequalities, Springer, 2011.
doi: 10.1007/978-1-4614-0703-4.![]() ![]() ![]() |
[5] |
J. K. K. Asamoah, C. S. Bornaa, B. Seidu and Z. Jin, Mathematical analysis of the effects of controls on transmission dynamics of SARS-CoV-2, Alexandria Engineering Journal, 59 (2020), 5069-5078.
doi: 10.1016/j.aej.2020.09.033.![]() ![]() |
[6] |
J. K. K. Asamoah, F. Nyabadza, Z. Jin, E. Bonyah, M. A. Khan, M. Y. Li and T. Hayat, Backward bifurcation and sensitivity analysis for bacterial meningitis transmission dynamics with a nonlinear recovery rate, Chaos, Solitons and Fractals, 140 (2020), 110237.
doi: 10.1016/j.chaos.2020.110237.![]() ![]() ![]() |
[7] |
J. K. K. Asamoah, M. A. Owusu, Z. Jin, F. T. Oduro, A. Abidemi and E. O. Gyasi, Global stability and cost-effectiveness analysis of COVID-19 considering the impact of the environment: using data from Ghana, Chaos, Solitons and Fractals, 140 (2020), 110103.
doi: 10.1016/j.chaos.2020.110103.![]() ![]() ![]() |
[8] |
J. K. K. Asamoah, Z. Jin, G. Q. Sun, B. Seidu, E. Yankson, A. Abidemi and E. Okyere, Sensitivity assessment and optimal economic evaluation of a new COVID-19 compartmental epidemic model with control interventions, Chaos, Solitons and Fractals, 146 (2021), 110885.
doi: 10.1016/j.chaos.2021.110885.![]() ![]() ![]() |
[9] |
A. Atangana and J. F. Gemez-Aguilar, Decolonisation of fractional calculus rules: breaking commutativity and associativity to capture more natural phenomena, The European Physical Journal Plus, 133 (2018), 1-22.
doi: 10.1140/epjp/i2018-12021-3.![]() ![]() |
[10] |
A. Atangana and J. F. Gemez-Aguilar, Fractional derivatives with no-index law property: application to chaos and statistics, Chaos, Solitons and Fractals, 114 (2018), 516-535.
doi: 10.1016/j.chaos.2018.07.033.![]() ![]() ![]() |
[11] |
A. Atangana, Modelling the spread of COVID-19 with new fractal-fractional operators: can the lock-down save mankind before vaccination?, Chaos, Solitons and Fractals, 136 (2020), 109860.
doi: 10.1016/j.chaos.2020.109860.![]() ![]() ![]() |
[12] |
M. S. Aydogan, D. Baleanu, A. Mousalou and S. Rezapour, On high order fractional integro-differential equations including the Caputo-Fabrizio derivative, Boundary Value Problems, 2018 (2018), 1-15.
doi: 10.1186/s13661-018-1008-9.![]() ![]() ![]() |
[13] |
I. A. Baba and D. Baleanu, Awareness as the most effective measure to mitigate the spread of COVID-19 in Nigeria, Cmc-Comput. Mater. Continua, (2020), 1945-1957.
doi: http://hdl.handle.net/20.500.12416/4548.![]() ![]() |
[14] |
I. A. Baba and B. A. Nasidi, Fractional order epidemic model for the dynamics of novel COVID-19, Alexandria Engineering Journal, 60 (2021), 537-548.
doi: 10.1016/j.aej.2020.09.029.![]() ![]() |
[15] |
M. A. Bahloul, A. Chahid and T. M. Laleg-Kirati, Fractional-order SEIQRDP model for simulating the dynamics of COVID-19 epidemic, IEEE Open Journal of Engineering in Medicine and Biology, 1 (2020), 249-256.
doi: 10.1109/OJEMB.2020.3019758.![]() ![]() |
[16] |
D. Baleanu, S. Etemad and S. Rezapour, A hybrid Caputo fractional modeling for thermostat with hybrid boundary value conditions, Boundary Value Problems, 2020 (2020), 1-16.
doi: 10.1186/s13661-020-01361-0.![]() ![]() ![]() |
[17] |
D. Baleanu, B. Ghanbari, J. H. Asad, A. Jajarmi and H. M. Pirouz, Planar system-masses in an equilateral triangle: numerical study within fractional calculus, CMES-Comp. Model. Eng. Sci., 124 (2020), 953-968.
doi: hdl.handle.net/20.500.12416/4551.![]() ![]() |
[18] |
D. Baleanu, A. Jajarmi, H. Mohammadi and S. Rezapour, A new study on the mathematical modelling of human liver with Caputo-Fabrizio fractional derivative, Chaos, Solitons and Fractals, 134 (2020), 109705.
doi: 10.1016/j.chaos.2020.109705.![]() ![]() ![]() |
[19] |
D. Baleanu, H. Mohammadi and S. Rezapour, A fractional differential equation model for the COVID-19 transmission by using the Caputo-Fabrizio derivative, Advances in Difference Equations, 2020 (2020), 1-27.
doi: 10.1186/s13662-020-02762-2.![]() ![]() ![]() |
[20] |
D. Baleanu, H. Mohammadi and S. Rezapour, Analysis of the model of HIV-1 infection of CD4+ CD4+ T-cell with a new approach of fractional derivative, Advances in Difference Equations, 2020 (2020), 1-17.
doi: 10.1186/s13662-020-02544-w.![]() ![]() ![]() |
[21] |
D. Baleanu, A. Mousalou and S. Rezapour, On the existence of solutions for some infinite coefficient-symmetric Caputo-Fabrizio fractional integro-differential equations, Boundary Value Problems, 2017 (2017), 1-9.
doi: 10.1186/s13661-017-0867-9.![]() ![]() ![]() |
[22] |
D. Baleanu, S. S. Sajjadi, J. H. Asad, A. Jajarmi and E. Estiri, Hyperchaotic behaviors, optimal control, and synchronization of a nonautonomous cardiac conduction system, Advances in Difference Equations, 2021 (2021), 1-24.
doi: 10.1186/s13662-021-03320-0.![]() ![]() ![]() |
[23] |
D. Baleanu, M. H. Abadi, A. Jajarmi, K. Z. Vahid and J. J. Nieto, A new comparative study on the general fractional model of COVID-19 with isolation and quarantine effects, Alexandria Engineering Journal, 61 (2022), 4779-4791.
doi: 10.1016/j.aej.2021.10.030.![]() ![]() |
[24] |
A. Barkia, H. Laamrani, A. Belalia, A. Benmamoun and Y. Khader, Morocco's National Response to the COVID-19 Pandemic: Public Health Challenges and Lessons Learned, JMIR Public Health and Surveillance, 7 (2021), e31930.
doi: 10.2196/31930.![]() ![]() |
[25] |
F. Brauer, The Kermack-McKendrick epidemic model revisited, Mathematical Biosciences, 198 (2005), 119-131.
doi: 10.1016/j.mbs.2005.07.006.![]() ![]() ![]() |
[26] |
H. Bulut, F. B. M. Belgacem, and H. M. Baskonus, (2013, June)., Partial fractional differential equation systems solutions by using adomian decomposition method implementation, In Proceedings of the Fourth International Conference on Mathematical and Computational Applications, 138-146.
![]() |
[27] |
C. Castillo-Chavez and B. Song, Dynamical models of tuberculosis and their applications, Mathematical Biosciences and Engineering, 1 (2004), 361.
doi: 10.3934/mbe.2004.1.361.![]() ![]() ![]() |
[28] |
J. F. W. Chan, S. Yuan, K. H. Kok, K. K. W. To, H. Chu, J. Yang and K. Y. Yuen, A familial cluster of pneumonia associated with the 2019 novel coronavirus indicating person-to-person transmission: a study of a family cluster, The lancet, 395 (2020), 514-523.
doi: 10.1016/S0140-6736(20)30154-9.![]() ![]() |
[29] |
N. Chen, M. Zhou, X. Dong, J. Qu, F. Gong, Y. Han and L. Zhang, Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study, The lancet, 395 (2020), 507-513.
doi: 10.1016/S0140-6736(20)30211-7.![]() ![]() |
[30] |
T. M. Chen, J. Rui, Q. P. Wang, Z. Y. Zhao, J. A. Cui and L. Yin, A mathematical model for simulating the phase-based transmissibility of a novel coronavirus, Infectious Diseases of Poverty, 9 (2020), 1-8.
doi: 10.1186/s40249-020-00640-3.![]() ![]() |
[31] |
COVID-19. Coronavirus pandemic. 2020., https://www.worldometers.info/coronavirus/#repro, Accessed March 26.
![]() |
[32] |
S. Das, Functional fractional calculus for system identification and controls 2008.
doi: 10.1515/auto-2014-1083.![]() ![]() ![]() |
[33] |
O. Diekmann, J. A. P. Heesterbeek and J. A. Metz, On the definition and the computation of the basic reproduction ratio in models for infectious diseases in heterogeneous populations, Journal of Mathematical Biology, 28 (1990), 365-382.
doi: 10.1007/BF00178324.![]() ![]() ![]() |
[34] |
K. Diethelm, The mean value theorems and a Nagumo-type uniqueness theorem for Caputo's fractional calculus, Fractional Calculus and Applied Analysis, 15 (2012), 304-313.
doi: 10.2478/s13540-012-0022-3.![]() ![]() ![]() |
[35] |
A. Din, A. Khan and D. Baleanu, Stationary distribution and extinction of stochastic coronavirus (COVID-19) epidemic model, Chaos, Solitons and Fractals, 139 (2020), 110036.
doi: 10.1016/j.chaos.2020.110036.![]() ![]() ![]() |
[36] |
L. Edelstein-Keshet, Applications of nonlinear difference equations to population biology, Mathematical models in biology, New York: Random House, (1988), 72-111.
![]() ![]() |
[37] |
A. Elsaid, Adomian polynomials: A powerful tool for iterative methods of series solution of nonlinear equations, Journal of Applied Analysis and Computation, 2 (2012), 381-394.
![]() ![]() |
[38] |
M. A. El-Tawil and S. N. Huseen, The q-homotopy analysis method (q-HAM), Int. J. Appl. Math. Mech., 8 (2012), 51-75.
![]() |
[39] |
M. A. El-Tawil and S. N. Huseen, On convergence of the q-homotopy analysis method, Int. J. Contemp. Math. Sci., 8 (2013), 481-497.
doi: 10.12988/ijcms.2013.13048.![]() ![]() ![]() |
[40] |
W. Gao, P. Veeresha, D. G. Prakasha and H. M. Baskonus, Novel dynamic structures of 2019-nCoV with nonlocal operator via powerful computational technique, Biology, 9 (2020), 107.
doi: 10.3390/biology9050107.![]() ![]() |
[41] |
X. Y. Ge, J. L. Li, X. L. Yang, A. A. Chmura, G. Zhu, J. H. Epstein and Z. L. Shi, Isolation and characterisation of a bat SARS-like coronavirus that uses the ACE2 receptor, Nature, 503 (2013), 535-538.
doi: 10.1038/nature12711.![]() ![]() |
[42] |
G. Giordano, F. Blanchini, R. Bruno, P. Colaneri, A. Di Filippo, A. Di Matteo and M. Colaneri, Modelling the COVID-19 epidemic and implementation of population-wide interventions in Italy, Nature Medicine, 26 (2020), 855-860.
doi: 10.1038/s41591-020-0883-7.![]() ![]() |
[43] |
J. F. Gemez-Aguilar, J. J. Rosales-Garcia, J. J. Bernal-Alvarado, T. Cardova-Fraga and R. Guzmon-Cabrera, Fractional mechanical oscillators, Revista mexicana de fisica, 58 (2012), 348-352.
![]() |
[44] |
H. Habenom, D. L. Suthar, D. Baleanu and S. D. Purohit, A numerical simulation on the effect of vaccination and treatments for the fractional hepatitis b model, J. Comput. Nonlinear Dyn., 16 (2021), 1-6.
doi: 10.1115/1.4048475.![]() ![]() |
[45] |
H. Habenom, D. L. Suthar, D. Baleanu and S. D. Purohit, Modeling and analysis on the transmission of covid-19 Pandemic in Ethiopia, Alexandria Engineering Journal, 61 (2022), 5323-5342.
doi: 10.1016/j.aej.2021.10.054.![]() ![]() |
[46] |
I. U. Haq and Z. Ullah, Natural decomposition method and coupled systems of nonlinear fractional order partial differential equations, Results in Nonlinear Analysis, 3 (2020), 35-44.
![]() |
[47] |
H. W. Hethcote, The mathematics of infectious diseases, SIAM Review, 42 (2000), 599-653.
doi: 10.1137/S0036144500371907.![]() ![]() ![]() |
[48] |
D. S. Hui, E. I. Azhar, T. A. Madani, F. Ntoumi, R. Kock, O. Dar and E. Petersen, The continuing 2019-nCoV epidemic threat of novel coronaviruses to global health – The latest 2019 novel coronavirus outbreak in Wuhan, China, International journal of infectious diseases, 91 (2020), 264-266.
doi: 10.1016/j.ijid.2020.01.009.![]() ![]() |
[49] |
https://www.worldometers.info/coronavirus/#countries
![]() |
[50] |
https://www.garda.com/fr/crisis24/alertes-de-securite/319321/morocco-health-ministry-confirms-first-covid-19-case-march-2021
![]() |
[51] |
B. Ivorra, M. R. Ferrendez, M. Vela-Perez and A. M. Ramos, Mathematical modeling of the spread of the coronavirus disease 2019 (COVID-19) taking into account the undetected infections. The case of China, Communications in Nonlinear Science and Numerical Simulation, 88 (2020), 105303.
doi: 10.1016/j.cnsns.2020.105303.![]() ![]() ![]() |
[52] |
H. Jafari and S. Seifi, Solving a system of nonlinear fractional partial differential equations using homotopy analysis method, Communications in Nonlinear Science and Numerical Simulation, 14 (2009), 1962-1969.
doi: 10.1016/j.cnsns.2008.06.019.![]() ![]() ![]() |
[53] |
A. Jajarmi and D. Baleanu, A new iterative method for the numerical solution of high-order nonlinear fractional boundary value problems, Frontiers in Physics, 8 (2020), 220.
doi: 10.3389/fphy.2020.00220.![]() ![]() |
[54] |
A. Jajarmi and D. Baleanu, On the fractional optimal control problems with a general derivative operator, Asian Journal of Control, 23 (2021), 1062-1071.
doi: 10.1002/asjc.2282.![]() ![]() ![]() |
[55] |
A. Jajarmi, D. Baleanu, K. Zarghami Vahid and S. Mobayen, A general fractional formulation and tracking control for immunogenic tumor dynamics, Mathematical Methods in the Applied Sciences, 45 (2022), 667-680.
doi: 10.1002/mma.7804.![]() ![]() ![]() |
[56] |
Z. H. Khan and W. A. Khan, N-transform properties and applications, NUST Journal of Engineering Sciences, 1 (2008), 127-133.
![]() |
[57] |
Y. Khan, An efficient modification of the Laplace decomposition method for nonlinear equations, International Journal of Nonlinear Sciences and Numerical Simulation, 10 (2009), 1373-1376.
doi: 10.1515/IJNSNS.2009.10.11-12.1373.![]() ![]() |
[58] |
M. Khan and M. A. Gondal, New modified Laplace decomposition algorithm for Blasius flow equation, Adv. Res. Sci. Comput., 2 (2010), 35-43.
doi: 10.5296/npa.v2i2.295.![]() ![]() ![]() |
[59] |
T. Khan, Z. S. Qian, R. Ullah, B. Al Alwan, G. Zaman, Q. M. Al-Mdallal, Y. El Khatib and K. Kheder, The transmission dynamics of hepatitis B virus via the fractional-order epidemiological model, Complexity, 2021 (2021), 1-18.
doi: 10.1155/2021/8752161.![]() ![]() |
[60] |
T. Khan, R. Ullah, A. Yousef, G. Zaman, Q. M. Al-Mdallal and Y. Alraey, Modeling and dynamics of the fractional order SARS-CoV-2 epidemiological model, Complexity, 2022 (2022).
doi: 10.1155/2022/3846904.![]() ![]() |
[61] |
A. Khan, P. Rajendran, J. S. S. Sidhu, S. Thanigaiarasu, V. Raja and Q. Al-Mdallal, Convolutional neural network modeling and response surface analysis of compressible flow at sonic and supersonic Mach numbers, Alexandria Engineering Journal, 65 (2023), 997-1029.
doi: 10.1016/j.aej.2022.10.006.![]() ![]() |
[62] |
A. A. Kilbas, O. I. Marichev and S. G. Samko, Fractional integrals and derivatives (theory and applications), 1993.
![]() ![]() |
[63] |
A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and applications of fractional differential equations, Vol. 204, Elsevie, 2006.
![]() ![]() |
[64] |
S. Kumar, A numerical study for the solution of time fractional nonlinear shallow water equation in oceans, Zeitschrift fur Naturforschung A, 68 (2013), 547-553.
doi: 10.5560/zna.2013-0036.![]() ![]() |
[65] |
S. Kumar, A new analytical modelling for fractional telegraph equation via Laplace transform, Applied Mathematical Modelling, 38 (2014), 3154-3163.
doi: 10.1016/j.apm.2013.11.035.![]() ![]() ![]() |
[66] |
S. Kumar, Numerical computation of time-fractional fokker-planck equation arising in solid state physics and circuit theory numerical computation of time-fractional fokker-planck equation arising in solid state physics and circuit theory, Zeitschrift fur Naturforschung A, 68 (2013), 777-784.
doi: 10.5560/zna.2013-0057.![]() ![]() |
[67] |
S. Kumar and M. M. Rashidi, New analytical method for gas dynamics equation arising in shock fronts, Computer Physics Communications, 185 (2014), 1947-1954.
doi: 10.1016/j.cpc.2014.03.025.![]() ![]() ![]() |
[68] |
V. Lakshmikantham, S. Leela and A. A. Martynyuk, Stability analysis of nonlinear systems, New York: M. Dekker, (1989), 249-275.
![]() ![]() |
[69] |
Q. Lin, S. Zhao, D. Gao, Y. Lou, S. Yang, S. S. Musa and D. He, A conceptual model for the coronavirus disease 2019 (COVID-19) outbreak in Wuhan, China with individual reaction and governmental action, International Journal of Infectious Diseases, 93 (2020), 211-216.
doi: 10.1016/j.ijid.2020.02.058.![]() ![]() |
[70] |
D. Loonker and P. K. Banerji, Solution of fractional ordinary differential equations by natural transform, Int. J. Math. Eng. Sci., 12 (2013), 1-7.
![]() |
[71] |
W. M. Liu, H. W. Hethcote and S. A. Levin, Dynamical behavior of epidemiological models with nonlinear incidence rates, Journal of Mathematical Biology, 25 (1987), 359-380.
doi: 10.1007/BF00277162.![]() ![]() ![]() |
[72] |
F. Mainardi, Fractional Calculus and Waves in Linear Viscoelasticity, Imperial College Press, London, 2010.
doi: 10.1142/9781848163300.![]() ![]() ![]() |
[73] |
m.le360.ma/covidmaroc/
![]() |
[74] |
D. Matignon, Stability properties for generalised fractional differential systems, In ESAIM: proceedings, EDP Sciences, 5 (1998), 145-158.
doi: 10.1051/proc:1998004.![]() ![]() ![]() |
[75] |
K. Moaddy, S. Momani and I. Hashim, The non-standard finite difference scheme for linear fractional PDEs in fluid mechanics, Computers Mathematics with Applications, 61 (2011), 1209-1216.
doi: 10.1016/j.camwa.2010.12.072.![]() ![]() ![]() |
[76] |
A. R. J. Mumbu and A. K. Hugo, Mathematical modelling on COVID-19 transmission impacts with preventive measures: a case study of Tanzania, Journal of Biological Dynamics, 14 (2020), 748-766.
doi: 10.1080/17513758.2020.1823494.![]() ![]() ![]() |
[77] |
S. S. Musa, S. Qureshi, S. Zhao, A. Yusuf, U. T. Mustapha and D. He, Mathematical modeling of COVID-19 epidemic with effect of awareness programs, Infectious Disease Modelling, 6 (2021), 448-460.
doi: 10.1016/j.idm.2021.01.012.![]() ![]() |
[78] |
P. A. Naik, M. Yavuz, S. Qureshi, J. Zu and S. Townley, Modeling and analysis of COVID-19 epidemics with treatment in fractional derivatives using real data from Pakistan, The European Physical Journal Plus, 135 (2020), 1-42.
doi: 10.1140/epjp/s13360-020-00819-5.![]() ![]() |
[79] |
S. Noeiaghdam, S. Micula and J. J. Nieto, A Novel Technique to Control the Accuracy of a Nonlinear Fractional Order Model of COVID-19: Application of the CESTAC Method and the CADNA Library, Mathematics, 9 (2021), 1321.
doi: 10.3390/math9121321.![]() ![]() |
[80] |
Z. Odibat, Computing eigenelements of boundary value problems with fractional derivatives, Appl. Math. Comput., 215 (2009), 3017-3028.
doi: 10.1016/j.amc.2009.09.049.![]() ![]() ![]() |
[81] |
D. Okuonghae and A. Omame, Analysis of a mathematical model for COVID-19 population dynamics in Lagos, Nigeria, Chaos, Solitons and Fractals, 139 (2020), 110032.
doi: 10.1016/j.chaos.2020.110032.![]() ![]() ![]() |
[82] |
K. Oldham and J. Spanier, The fractional calculus theory and applications of differentiation and integration to arbitrary order, Elsevier, 1974.
![]() ![]() |
[83] |
R. Pakhira, U. Ghosh and S. Sarkar, Study of memory effects in an inventory model using fractional calculus, Applied Mathematical Sciences, 12 (2018), 797-824.
doi: 10.12988/ams.2018.8578.![]() ![]() ![]() |
[84] |
O. J. Peter, A. S. Shaikh, M. O. Ibrahim, K. S. Nisar, D. Baleanu, I. Khan and A. I. Abioye, Analysis and dynamics of fractional order mathematical model of COVID-19 in nigeria using atangana-baleanu operator, Computers, Materials, Continua, (2021), 1823-1848.
doi: hdl.handle.net/20.500.12416/5132.![]() ![]() |
[85] |
I. Petr, Fractional-order nonlinear systems: modeling, analysis and simulation, Springer Science and Business Media, 2011.
![]() |
[86] |
C. M. Pinto and A. R. Carvalho, A latency fractional order model for HIV dynamics, Journal of Computational and Applied Mathematics, 312 (2017), 240-256.
doi: 10.1016/j.cam.2016.05.019.![]() ![]() ![]() |
[87] |
I. Podlubny, Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications, Elsevier, 1998.
![]() ![]() |
[88] |
I. Podlubnv, Fractional Differential Equations, Academic Press, San Diego, Boston, 1999.
![]() ![]() |
[89] |
Policy responses to COVID-19., The International Monetary Fund, 2021. https://www.imf.org/en/Topics/imf-and-covid19/Policy-Responses-to-COVID-19.
![]() |
[90] |
E. B. Postnikov, Estimation of COVID-19 dynamics "on a back-of-envelope": Does the simplest SIR model provide quantitative parameters and predictions?, Chaos, Solitons and Fractals, 135 (2020), 109841.
doi: 10.1016/j.chaos.2020.109841.![]() ![]() ![]() |
[91] |
S. Qureshi, M. M. Chang and A. A. Shaikh, Analysis of series RL and RC circuits with time-invariant source using truncated M, atangana beta and conformable derivatives, Journal of Ocean Engineering and Science, 6 (2021), 217-227.
doi: 10.1016/j.joes.2020.11.006.![]() ![]() |
[92] |
S. Z. Rida, A. A. M. Arafa and Y. A. Gaber, Solution of the fractional epidemic model by LADM, J. Fract. Calc. Appl., 7 (2016), 189-195.
doi: 10.21608/jfca.2016.308382.![]() ![]() |
[93] |
X. Rong, L. Yang, H. Chu and M. Fan, Effect of delay in diagnosis on transmission of COVID-19, Math. Biosci. Eng., 17 (2020), 2725-2740.
doi: 10.3934/mbe.2020149.![]() ![]() ![]() |
[94] |
M. S. Rawashdeh and S. Maitama, Solving coupled system of nonlinear PDE's using the natural decomposition method, International Journal of Pure and Applied Mathematics, 92 (2014), 757-776.
![]() ![]() |
[95] |
D. L. Salud and O. P. Alerta, Epidemiol ogica nuevo coronavirus (2019-ncov), https://www.paho.org/hq/index.php?option = com_docmanview = downloadcategory_slug = coronavirus-alertas-epidemiologicasalias = 51351-16-de-enero-de-2020-nuevo-coronavirus-ncov-alerta-epidemiologica-1Itemid = 270lang = es, accessed on January 16.
![]() |
[96] |
D. L. Salud and O. P. Actualizaci, On epidemiol ogica nuevo coronavirus (2019-ncov), https://www.paho.org/hq/index.php?option = com_docmanview = downloadcategory_slug = coronavirus-alertas-epidemiologicasalias = 51355-20-de-enero-de-2020-nuevo-coronavirus-ncov-actualizacion-epidemiologica\-1Itemid = 270lang = es, accessed on January 20.
![]() |
[97] |
S. S. Sajjadi, D. Baleanu, A. Jajarmi and H. M. Pirouz, A new adaptive synchronisation and hyperchaos control of a biological snap oscillator, Chaos, Solitons and Fractals, 138 (2020), 109919.
doi: 10.1016/j.chaos.2020.109919.![]() ![]() ![]() |
[98] |
N. R. Sasmita, M. Ikhwan, S. Suyanto and V. Chongsuvivatwong, Optimal control on a mathematical model to pattern the progression of coronavirus disease 2019 (COVID-19) in Indonesia, Global Health Research and Policy, 5 (2020), 1-12.
doi: 10.1186/s41256-020-00163-2.![]() ![]() |
[99] |
K. Shah, A. Ali and R. A. Khan, Numerical solutions of Fractional Order System of Bagley-Torvik Equation Using Operational Matrices, Sindh University Research Journal-SURJ, (Science Series), 47 (2015).
![]() |
[100] |
O. Sharomi, C. N. Podder, A. B. Gumel and B. Song, Mathematical analysis of the transmission dynamics of HIV/TB coinfection in the presence of treatment, Mathematical Biosciences and Engineering, 5 (2008), 145.
doi: 10.3934/mbe.2008.5.145.![]() ![]() ![]() |
[101] |
T. N. Sindhu, A. Shafiq and Q. M. Al-Mdallal, Exponentiated transformation of Gumbel Type-II distribution for modeling COVID-19 data, Alexandria Engineering Journal, 60 (2021), 671-689.
doi: 10.1016/j.aej.2020.09.060.![]() ![]() |
[102] |
H. M. Srivastava, Diabetes and its resulting complications: Mathematical modeling via fractional calculus, Public Health Open Access, 4 (2020), 1-5.
![]() |
[103] |
H. M. Srivastava, K. M. Saad and M. M. Khader, An efficient spectral collocation method for the dynamic simulation of the fractional epidemiological model of the Ebola virus, Chaos, Solitons and Fractals, 140 (2020), 110174.
doi: 10.1016/j.chaos.2020.110174.![]() ![]() ![]() |
[104] |
H. M. Srivastava and K. M. Saad, Numerical simulation of the fractal-fractional Ebola virus, Fractal and Fractional, 4 (2020), 49.
doi: 10.3390/fractalfract4040049.![]() ![]() |
[105] |
M. Stojanovic, Numerical method for solving diffusion-wave phenomena, J. Comput. Appl. Math., 235 (2011), 3121-3137.
doi: 10.1016/j.cam.2010.12.010.![]() ![]() ![]() |
[106] |
H. Sun, Y. Zhang, D. Baleanu, W. Chen and Y. Chen, A new collection of real world applications of fractional calculus in science and engineering, Communications in Nonlinear Science and Numerical Simulation, 64 (2018), 213-231.
doi: 10.1016/j.cnsns.2018.04.019.![]() ![]() |
[107] |
N. H. Tuan, H. Mohammadi and S. Rezapour, A mathematical model for COVID-19 transmission by using the Caputo fractional derivative, Chaos, Solitons and Fractals, 140 (2020), 110107.
doi: 10.1016/j.chaos.2020.110107.![]() ![]() ![]() |
[108] |
M. ur Rahman, M. Arfan, K. Shah and J. F. Gemez-Aguilar, Investigating a nonlinear dynamical model of COVID-19 disease under fuzzy caputo, random and ABC fractional order derivative, Chaos, Solitons and Fractals, 140 (2020), 110232.
doi: 10.1016/j.chaos.2020.110232.![]() ![]() ![]() |
[109] |
P. Van den Driessche and J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Mathematical Biosciences, 180 (2002), 29-48.
doi: 10.1016/S0025-5564(02)00108-6.![]() ![]() ![]() |
[110] |
P. Veeresha, D. G. Prakasha and H. M. Baskonus, New numerical surfaces to the mathematical model of Cancer chemotherapy effect in Caputo fractional derivatives, Chaos: An Interdisciplinary Journal of Nonlinear Science, 29 (2019).
doi: 10.1063/1.5074099.![]() ![]() ![]() |
[111] |
L. F. Wang, Z. Shi, S. Zhang, H. Field, P. Daszak and B. T. Eaton, Review of bats and SARS, Emerging Infectious Diseases, 12 (2006), 1834.
doi: 10.3201/eid1212.060401.![]() ![]() |
[112] |
J. L. Wang and H. F. Li, Memory-dependent derivative versus fractional derivative (I): Difference in temporal modeling, Journal of Computational and Applied Mathematics, 384 (2021), 112923.
doi: 10.1016/j.cam.2020.112923.![]() ![]() ![]() |
[113] |
Z. Zhang, A. Zeb, O. F. Egbelowo and V. S. Erturk, Dynamics of a fractional order mathematical model for COVID-19 epidemic, Advances in Difference Equations, 2020 (2020), 1-16.
doi: 10.1186/s13662-020-02873-w.![]() ![]() ![]() |
Flowchart of model 4
Daily evolution of the number of COVID-19 cases, recovered and deaths in Morocco from March 1, 2021 to August 1, 2021
Plots of Susceptible for different values of
Plots of infected people with severe symptoms for different values of
Plots of Recovered people for different values of