Generic placeholder image

Combinatorial Chemistry & High Throughput Screening

Editor-in-Chief

ISSN (Print): 1386-2073
ISSN (Online): 1875-5402

Mini-Review Article

Insights into the Structural Complexities of SARS-CoV-2 for Therapeutic and Vaccine Development

Author(s): Manaf AlMatar*, Aizi Nor Mazila Ramli, Osman Albarri and Choong Xin Yi

Volume 26, Issue 11, 2023

Published on: 30 December, 2022

Page: [1945 - 1959] Pages: 15

DOI: 10.2174/1386207326666221108095705

Price: $65

Abstract

SARS-CoV-2 is a disease that endangers both human life and the economy. There was an 11- month period of relative evolutionary standstill following the appearance of SARS-CoV-2 in late 2019. However, the emergence of clusters of mutations known as' variants of concern 'with variable viral properties such as transmissibility and antigenicity defined the evolution of SARS-CoV-2. Several efforts have been made in recent months to understand the atomic level properties of SARS-CoV-2. A review of the literature on SARS-CoV-2 mutations is offered in this paper. The critical activities performed by different domains of the SARS-CoV-2 genome throughout the virus's entry into the host and overall viral life cycle are discussed in detail. These structural traits may potentially pave the way for the development of a vaccine and medication to combat the SARS-CoV-2 sickness.

Keywords: SARS-COV-2, mutation, drug, vaccine, COVID-19, structural component.

Graphical Abstract
[1]
Zhu, Z.; Lian, X.; Su, X.; Wu, W.; Marraro, G.A.; Zeng, Y. From SARS and MERS to COVID-19: A brief summary and comparison of severe acute respiratory infections caused by three highly pathogenic human coronaviruses. Respir. Res., 2020, 21(1), 224.
[http://dx.doi.org/10.1186/s12931-020-01479-w] [PMID: 32854739]
[2]
da Silva Torres, M.K.; Bichara, C.D.A.; de Almeida, M.N.S.; Vallinoto, M.C.; Queiroz, M.A.F.; Vallinoto, I.M.V.C.; dos Santos, E.J.M.; de Carvalho, C.A.M.; Vallinoto, A.C.R. The complexity of SARS-CoV-2 infection and the COVID-19 pandemic. Front. Microbiol., 2022, 13, 789882.
[http://dx.doi.org/10.3389/fmicb.2022.789882] [PMID: 35222327]
[3]
Huang, Y.; Yang, C.; Xu, X.; Xu, W.; Liu, S. Structural and functional properties of SARS-CoV-2 spike protein: potential antivirus drug development for COVID-19. Acta Pharmacol. Sin., 2020, 41(9), 1141-1149.
[http://dx.doi.org/10.1038/s41401-020-0485-4] [PMID: 32747721]
[4]
Chan, J.F.W.; Kok, K.H.; Zhu, Z.; Chu, H.; To, K.K.W.; Yuan, S.; Yuen, K.Y. Genomic characterization of the 2019 novel human-pathogenic coronavirus isolated from a patient with atypical pneumonia after visiting Wuhan. Emerg. Microbes Infect., 2020, 9(1), 221-236.
[http://dx.doi.org/10.1080/22221751.2020.1719902] [PMID: 31987001]
[5]
Kuhn, J.H.; Bao, Y.; Bavari, S.; Becker, S.; Bradfute, S.; Brister, J.R.; Bukreyev, A.A.; Chandran, K.; Davey, R.A.; Dolnik, O. Virus nomenclature below the species level: A standardized nomenclature for natural variants of viruses assigned to the family Filoviridae. Arch. Virol., 2013, 158(6), 1425-1432.
[http://dx.doi.org/10.1007/s00705-012-1594-2] [PMID: 23358612]
[6]
Sia, S.F.; Yan, L.M.; Chin, A.W.H.; Fung, K.; Choy, K.T.; Wong, A.Y.L.; Kaewpreedee, P.; Perera, R.A.P.M.; Poon, L.L.M.; Nicholls, J.M.; Peiris, M.; Yen, H.L. Pathogenesis and transmission of SARS-CoV-2 in golden hamsters. Nature, 2020, 583(7818), 834-838.
[http://dx.doi.org/10.1038/s41586-020-2342-5] [PMID: 32408338]
[7]
Jakhmola, S.; Indari, O.; Kashyap, D.; Varshney, N.; Das, A.; Manivannan, E.; Jha, H.C. Mutational analysis of structural proteins of SARS-CoV-2. Heliyon, 2021, 7(3), e06572.
[http://dx.doi.org/10.1016/j.heliyon.2021.e06572] [PMID: 33778179]
[8]
Lu, R.; Zhao, X.; Li, J.; Niu, P.; Yang, B.; Wu, H.; Tan, W. Caracterización genómica y epidemiología del nuevo coronavirus 2019: Implicaciones para los orígenes del virus y la unión al receptor. Lancet, 2020, 395(10224), 30251-30258.
[http://dx.doi.org/10.1016/S0140-6736(20)30251-8]
[9]
Zhao, J.; Yang, Y.; Huang, H.; Li, D.; Gu, D.; Lu, X.; Zhang, Z.; Liu, L.; Liu, T.; Liu, Y.; He, Y.; Sun, B.; Wei, M.; Yang, G.; Wang, X.; Zhang, L.; Zhou, X.; Xing, M.; Wang, P.G. Relationship between the ABO blood group and the coronavirus disease 2019 (COVID-19) susceptibility. Clin. Infect. Dis., 2021, 73(2), 328-331.
[http://dx.doi.org/10.1093/cid/ciaa1150] [PMID: 32750119]
[10]
Hoffmann, M.; Kleine-Weber, H.; Schroeder, S.; Krüger, N.; Herrler, T.; Erichsen, S.; Schiergens, T.S.; Herrler, G.; Wu, N-H.; Nitsche, A. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell, 2020, 181(2), 271-280.
[11]
Yan, R.; Zhang, Y.; Li, Y.; Xia, L.; Guo, Y.; Zhou, Q. Structural basis for the recognition of SARS-CoV-2 by full-length human ACE2. Science, 2020, 367(6485), 1444-1448.
[http://dx.doi.org/10.1126/science.abb2762] [PMID: 32132184]
[12]
Li, L.; Petrovsky, N. Molecular mechanisms for enhanced DNA vaccine immunogenicity. Expert Rev. Vaccines, 2016, 15(3), 313-329.
[http://dx.doi.org/10.1586/14760584.2016.1124762] [PMID: 26707950]
[13]
Wang, K.; Chen, W.; Zhang, Z.; Deng, Y.; Lian, J.Q.; Du, P.; Wei, D.; Zhang, Y.; Sun, X.X.; Gong, L.; Yang, X.; He, L.; Zhang, L.; Yang, Z.; Geng, J.J.; Chen, R.; Zhang, H.; Wang, B.; Zhu, Y.M.; Nan, G.; Jiang, J.L.; Li, L.; Wu, J.; Lin, P.; Huang, W.; Xie, L.; Zheng, Z.H.; Zhang, K.; Miao, J.L.; Cui, H.Y.; Huang, M.; Zhang, J.; Fu, L.; Yang, X.M.; Zhao, Z.; Sun, S.; Gu, H.; Wang, Z.; Wang, C.F.; Lu, Y.; Liu, Y.Y.; Wang, Q.Y.; Bian, H.; Zhu, P.; Chen, Z.N. CD147-spike protein is a novel route for SARS-CoV-2 infection to host cells. Signal Transduct. Target. Ther., 2020, 5(1), 283.
[http://dx.doi.org/10.1038/s41392-020-00426-x] [PMID: 33277466]
[14]
Wang, S.; Qiu, Z.; Hou, Y.; Deng, X.; Xu, W.; Zheng, T.; Wu, P.; Xie, S.; Bian, W.; Zhang, C.; Sun, Z.; Liu, K.; Shan, C.; Lin, A.; Jiang, S.; Xie, Y.; Zhou, Q.; Lu, L.; Huang, J.; Li, X. AXL is a candidate receptor for SARS-CoV-2 that promotes infection of pulmonary and bronchial epithelial cells. Cell Res., 2021, 31(2), 126-140.
[http://dx.doi.org/10.1038/s41422-020-00460-y] [PMID: 33420426]
[15]
Zhang, J.; Xie, B.; Hashimoto, K. Current status of potential therapeutic candidates for the COVID-19 crisis. Brain Behav. Immun., 2020, 87, 59-73.
[http://dx.doi.org/10.1016/j.bbi.2020.04.046] [PMID: 32334062]
[16]
Fehr, A.; Perlman, S.; Maier, H.; Bickerton, E.; Britton, P. An overview of their replication and pathogenesis; section 2 genomic organization. Methods Mol. Biol., 2015, 1282, 1-23.
[http://dx.doi.org/10.1007/978-1-4939-2438-7_1] [PMID: 25720466]
[17]
Ziebuhr, J.; Gorbalenya, A.E.; Snijder, E.J. Virus-encoded proteinases and proteolytic processing in the Nidovirales. J. Gen. Virol., 2000, 81(4), 853-879.
[http://dx.doi.org/10.1099/0022-1317-81-4-853] [PMID: 10725411]
[18]
Angelini, P. Some considerations on the history of law and slavic studies. Historia et ius, 2013, 4, 1.
[19]
Siu, Y.L.; Teoh, K.T.; Lo, J.; Chan, C.M.; Kien, F.; Escriou, N.; Tsao, S.W.; Nicholls, J.M.; Altmeyer, R.; Peiris, J.S.M.; Bruzzone, R.; Nal, B. The M, E, and N structural proteins of the severe acute respiratory syndrome coronavirus are required for efficient assembly, trafficking, and release of virus-like particles. J. Virol., 2008, 82(22), 11318-11330.
[http://dx.doi.org/10.1128/JVI.01052-08] [PMID: 18753196]
[20]
Huang, C.; Wang, Y.; Li, X.; Ren, L.; Zhao, J.; Hu, Y.; Zhang, L.; Fan, G.; Xu, J.; Gu, X.; Cheng, Z.; Yu, T.; Xia, J.; Wei, Y.; Wu, W.; Xie, X.; Yin, W.; Li, H.; Liu, M.; Xiao, Y.; Gao, H.; Guo, L.; Xie, J.; Wang, G.; Jiang, R.; Gao, Z.; Jin, Q.; Wang, J.; Cao, B. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet, 2020, 395(10223), 497-506.
[http://dx.doi.org/10.1016/S0140-6736(20)30183-5] [PMID: 31986264]
[21]
Cui, H.; Gao, Z.; Liu, M.; Lu, S.; Mo, S.; Mkandawire, W.; Narykov, O.; Srinivasan, S.; Korkin, D. Structural genomics and interactomics of 2019 Wuhan novel coronavirus, 2019-nCoV, indicate evolutionary conserved functional regions of viral proteins. biorxiv, 2020.
[http://dx.doi.org/10.1101/2020.02.10.942136]
[22]
Romano, M.; Ruggiero, A.; Squeglia, F.; Maga, G.; Berisio, R. A structural view of SARS-CoV-2 RNA replication machinery: RNA synthesis, proofreading and final capping. Cells, 2020, 9(5), 1267.
[http://dx.doi.org/10.3390/cells9051267] [PMID: 32443810]
[23]
Rausch, J.W.; Capoferri, A.A.; Katusiime, M.G.; Patro, S.C.; Kearney, M.F. Low genetic diversity may be an Achilles heel of SARS-CoV-2. Proc. Natl. Acad. Sci. USA, 2020, 117(40), 24614-24616.
[http://dx.doi.org/10.1073/pnas.2017726117] [PMID: 32958678]
[24]
Jaimes, J.; Millet, J.; Whittaker, G. Proteolytic cleavage of the SARS-CoV-2 spike protein and the role of the novel S1/S2 site. iScience, 6(09), 101212.
[25]
Chakravarty, S. COVID-19: The effect of host genetic variations on host–virus interactions. J. Proteome Res., 2021, 20(1), 139-153.
[http://dx.doi.org/10.1021/acs.jproteome.0c00637] [PMID: 33301685]
[26]
Fricke-Galindo, I.; Falfán-Valencia, R. Genetics insight for COVID-19 susceptibility and severity: a review. Frontiers in immunology, 2021, 12, 622176.
[27]
Mohammadpour, S.; Torshizi Esfahani, A.; Halaji, M.; Lak, M.; Ranjbar, R. An updated review of the association of host genetic factors with susceptibility and resistance to COVID-19. J. Cell. Physiol., 2021, 236(1), 49-54.
[PMID: 32542735]
[28]
Benetti, E.; Tita, R.; Spiga, O.; Ciolfi, A.; Birolo, G.; Bruselles, A.; Doddato, G.; Giliberti, A.; Marconi, C.; Musacchia, F.; Pippucci, T.; Torella, A.; Trezza, A.; Valentino, F.; Baldassarri, M.; Brusco, A.; Asselta, R.; Bruttini, M.; Furini, S.; Seri, M.; Nigro, V.; Matullo, G.; Tartaglia, M.; Mari, F.; Frullanti, E.; Fallerini, C.; Daga, S.; Croci, S.; Amitrano, S.; Fava, F.; Montagnani, F.; Di Sarno, L.; Tommasi, A.; Palmieri, M.; Emiliozzi, A.; Fabbiani, M.; Rossetti, B.; Zanelli, G.; Bergantini, L.; D’Alessandro, M.; Cameli, P.; Bennet, D.; Anedda, F.; Marcantonio, S.; Scolletta, S.; Franchi, F.; Mazzei, M.A.; Conticini, E.; Cantarini, L.; Frediani, B.; Tacconi, D.; Feri, M.; Scala, R.; Spargi, G.; Corridi, M.; Nencioni, C.; Caldarelli, G.P.; Spagnesi, M.; Piacentini, P.; Bandini, M.; Desanctis, E.; Canaccini, A.; Spertilli, C.; Donati, A.; Guidelli, L.; Croci, L.; Verzuri, A.; Anemoli, V.; Ognibene, A.; Vaghi, M.; D’Arminio Monforte, A.; Merlini, E.; Mondelli, M.U.; Mantovani, S.; Ludovisi, S.; Girardis, M.; Venturelli, S.; Sita, M.; Cossarizza, A.; Antinori, A.; Vergori, A.; Rusconi, S.; Siano, M.; Gabrieli, A.; Riva, A.; Francisci, D.; Schiaroli, E.; Scotton, P.G.; Andretta, F.; Panese, S.; Scaggiante, R.; Parisi, S.G.; Castelli, F.; Quiros-Roldan, M.E.; Magro, P.; Minardi, C.; Castelli, D.; Polesini, I.; Della Monica, M.; Piscopo, C.; Capasso, M.; Russo, R.; Andolfo, I.; Iolascon, A.; Carella, M.; Castori, M.; Merla, G.; Aucella, F.; Raggi, P.; Marciano, C.; Perna, R.; Bassetti, M.; Di Biagio, A.; Sanguinetti, M.; Masucci, L.; Gabbi, C.; Valente, S.; Guerrini, S.; Meloni, I.; Mencarelli, M.A.; Rizzo, C.L.; Bargagli, E.; Mandalà, M.; Giorli, A.; Salerni, L.; Fiorentino, G.; Zucchi, P.; Parravicini, P.; Menatti, E.; Baratti, S.; Trotta, T.; Giannattasio, F.; Coiro, G.; Lena, F.; Coviello, D.A.; Mussini, C.; Renieri, A.; Pinto, A.M. ACE2 gene variants may underlie interindividual variability and susceptibility to COVID-19 in the Italian population. Eur. J. Hum. Genet., 2020, 28(11), 1602-1614.
[http://dx.doi.org/10.1038/s41431-020-0691-z] [PMID: 32681121]
[29]
Poulton, K.; Wright, P.; Hughes, P.; Savic, S.; Welberry Smith, M.; Guiver, M.; Morton, M.; Dellen, D.; Tholouli, E.; Wynn, R.; Clark, B. A role for human leucocyte antigens in the susceptibility to SARS‐Cov‐2 infection observed in transplant patients. Int. J. Immunogenet., 2020, 47(4), 324-328.
[http://dx.doi.org/10.1111/iji.12505] [PMID: 32623831]
[30]
Bernal, E.; Gimeno, L.; Alcaraz, M.J.; Quadeer, A.A.; Moreno, M.; Martínez-Sánchez, M.V.; Campillo, J.A.; Gomez, J.M.; Pelaez, A.; García, E.; Herranz, M.; Hernández-Olivo, M.; Martínez-Alfaro, E.; Alcaraz, A.; Muñoz, Á.; Cano, A.; McKay, M.R.; Muro, M.; Minguela, A. Activating killer-cell immunoglobulin-like receptors are associated with the severity of coronavirus disease 2019. J. Infect. Dis., 2021, 224(2), 229-240.
[http://dx.doi.org/10.1093/infdis/jiab228] [PMID: 33928374]
[31]
Vique-Sánchez, J.L. Potential inhibitors interacting in Neuropilin-1 to develop an adjuvant drug against COVID-19, by molecular docking. Bioorg. Med. Chem., 2021, 33, 116040.
[http://dx.doi.org/10.1016/j.bmc.2021.116040] [PMID: 33515918]
[32]
Wang, Q.; Zhang, Y.; Wu, L.; Niu, S.; Song, C.; Zhang, Z.; Lu, G.; Qiao, C.; Hu, Y.; Yuen, K.Y.; Wang, Q.; Zhou, H.; Yan, J.; Qi, J. Structural and functional basis of SARS-CoV-2 entry by using human ACE2. Cell, 2020, 181(4), 894-904.e9.
[http://dx.doi.org/10.1016/j.cell.2020.03.045] [PMID: 32275855]
[33]
Hashizume, M.; Gonzalez, G.; Ono, C.; Takashima, A.; Iwasaki, M. Population-specific ACE2 single-nucleotide polymorphisms have limited impact on SARS-CoV-2 infectivity in vitro. Viruses, 2021, 13(1), 67.
[http://dx.doi.org/10.3390/v13010067] [PMID: 33418950]
[34]
Asselta, R.; Paraboschi, E.M.; Mantovani, A.; Duga, S. ACE2 and TMPRSS2 variants and expression as candidates to sex and country differences in COVID-19 severity in Italy. Aging (Albany NY), 2020, 12(11), 10087-10098.
[http://dx.doi.org/10.18632/aging.103415] [PMID: 32501810]
[35]
Russo, R.; Andolfo, I.; Lasorsa, V.A.; Iolascon, A.; Capasso, M. Genetic analysis of the coronavirus SARS-CoV-2 host protease TMPRSS2 in different populations. Front. Genet., 2020, 11, 872.
[http://dx.doi.org/10.3389/fgene.2020.00872] [PMID: 32849840]
[36]
Lambert, D.W.; Yarski, M.; Warner, F.J.; Thornhill, P.; Parkin, E.T.; Smith, A.I.; Hooper, N.M.; Turner, A.J. Tumor necrosis factor-α convertase (ADAM17) mediates regulated ectodomain shedding of the severe-acute respiratory syndrome-coronavirus (SARS-CoV) receptor, angiotensin-converting enzyme-2 (ACE2). J. Biol. Chem., 2005, 280(34), 30113-30119.
[http://dx.doi.org/10.1074/jbc.M505111200] [PMID: 15983030]
[37]
Heurich, A.; Hofmann-Winkler, H.; Gierer, S.; Liepold, T.; Jahn, O.; Pöhlmann, S. TMPRSS2 and ADAM17 cleave ACE2 differentially and only proteolysis by TMPRSS2 augments entry driven by the severe acute respiratory syndrome coronavirus spike protein. J. Virol., 2014, 88(2), 1293-1307.
[http://dx.doi.org/10.1128/JVI.02202-13] [PMID: 24227843]
[38]
Secolin, R.; de Araujo, T.K.; Gonsales, M.C.; Rocha, C.S.; Naslavsky, M.; Marco, L.D.; Bicalho, M.A.C.; Vazquez, V.L.; Zatz, M.; Silva, W.A.; Lopes-Cendes, I. Genetic variability in COVID-19-related genes in the Brazilian population. Hum. Genome Var., 2021, 8(1), 15.
[http://dx.doi.org/10.1038/s41439-021-00146-w] [PMID: 33824725]
[39]
Szczawinska-Poplonyk, A.; Jonczyk-Potoczna, K.; Breborowicz, A.; Bartkowska-Sniatkowska, A.; Figlerowicz, M. Fatal respiratory distress syndrome due to coronavirus infection in a child with severe combined immunodeficiency. Influenza Other Respir. Viruses, 2013, 7(5), 634-636.
[http://dx.doi.org/10.1111/irv.12059] [PMID: 23199056]
[40]
Dropulic, L.K.; Cohen, J.I. Severe viral infections and primary immunodeficiencies. Clin. Infect. Dis., 2011, 53(9), 897-909.
[http://dx.doi.org/10.1093/cid/cir610] [PMID: 21960712]
[41]
Mamlok, R.J. Primary immunodeficiency disorders. Prim. Care, 1998, 25(4), 739-758.
[http://dx.doi.org/10.1016/S0095-4543(05)70085-3] [PMID: 9735116]
[42]
Zhang, L.; Jackson, C.B.; Mou, H.; Ojha, A.; Rangarajan, E.S.; Izard, T.; Farzan, M.; Choe, H. The D614G mutation in the SARS-CoV-2 spike protein reduces S1 shedding and increases infectivity. BioRxiv, 2020.
[http://dx.doi.org/10.1101/2020.06.12.148726]
[43]
Palau, V.; Riera, M.; Soler, M.J. ADAM17 inhibition may exert a protective effect on COVID-19. Nephrol. Dial. Transplant., 2020, 35(6), 1071-1072.
[http://dx.doi.org/10.1093/ndt/gfaa093] [PMID: 32291449]
[44]
Zipeto, D.; Palmeira, J.F.; Argañaraz, G.A.; Argañaraz, E.R. ACE2/ADAM17/TMPRSS2 interplay may be the main risk factor for COVID-19. Front. Immunol., 2020, 11, 576745.
[http://dx.doi.org/10.3389/fimmu.2020.576745]
[45]
van der Made, C.I.; Simons, A.; Schuurs-Hoeijmakers, J.; van den Heuvel, G.; Mantere, T.; Kersten, S.; van Deuren, R.C.; Steehouwer, M.; van Reijmersdal, S.V.; Jaeger, M.; Hofste, T.; Astuti, G.; Corominas Galbany, J.; van der Schoot, V.; van der Hoeven, H. Hagmolen of ten Have, W.; Klijn, E.; van den Meer, C.; Fiddelaers, J.; de Mast, Q.; Bleeker-Rovers, C.P.; Joosten, L.A.B.; Yntema, H.G.; Gilissen, C.; Nelen, M.; van der Meer, J.W.M.; Brunner, H.G.; Netea, M.G.; van de Veerdonk, F.L.; Hoischen, A. Presence of genetic variants among young men with severe COVID-19. JAMA, 2020, 324(7), 663-673.
[http://dx.doi.org/10.1001/jama.2020.13719] [PMID: 32706371]
[46]
Delavari, S.; Abolhassani, H.; Abolnezhadian, F.; Babaha, F.; Iranparast, S.; Ahanchian, H.; Moazzen, N.; Nabavi, M.; Arshi, S.; Fallahpour, M.; Bemanian, M.H.; Shokri, S.; Momen, T.; Sadeghi-Shabestari, M.; Molatefi, R.; Shirkani, A.; Vosughimotlagh, A.; Safarirad, M.; Sharifzadeh, M.; Pashangzadeh, S.; Salami, F.; Shirmast, P.; Rezaei, A.; Moeini Shad, T.; Mohraz, M.; Rezaei, N.; Hammarström, L.; Yazdani, R.; Aghamohamamdi, A. Impact of SARS-CoV-2 pandemic on patients with primary immunodeficiency. J. Clin. Immunol., 2021, 41(2), 345-355.
[http://dx.doi.org/10.1007/s10875-020-00928-x] [PMID: 33263173]
[47]
Fulzele, S.; Sahay, B.; Yusufu, I.; Lee, T.J.; Sharma, A.; Kolhe, R.; Isales, C.M. COVID-19 virulence in aged patients might be impacted by the host cellular microRNAs abundance/profile. Aging Dis., 2020, 11(3), 509-522.
[http://dx.doi.org/10.14336/AD.2020.0428] [PMID: 32489698]
[48]
Chen, Y.; Wang, X. miRDB: An online database for prediction of functional microRNA targets. Nucleic Acids Res., 2020, 48(D1), D127-D131.
[http://dx.doi.org/10.1093/nar/gkz757] [PMID: 31504780]
[49]
Tahamtan, A.; Teymoori-Rad, M.; Nakstad, B.; Salimi, V. Anti-inflammatory microRNAs and their potential for inflammatory diseases treatment. Front. Immunol., 2018, 9, 1377.
[http://dx.doi.org/10.3389/fimmu.2018.01377] [PMID: 29988529]
[50]
Grubaugh, N.D.; Petrone, M.E.; Holmes, E.C. We shouldn’t worry when a virus mutates during disease outbreaks. Nat. Microbiol., 2020, 5(4), 529-530.
[http://dx.doi.org/10.1038/s41564-020-0690-4] [PMID: 32071422]
[51]
Su, Y.C.; Anderson, D.E.; Young, B.E.; Zhu, F.; Linster, M.; Kalimuddin, S.; Low, J.G.; Yan, Z.; Jayakumar, J.; Sun, L. Discovery of a 382-nt deletion during the early evolution of SARS-CoV-2. BioRxiv, 2020.
[http://dx.doi.org/10.1101/2020.03.11.987222]
[52]
Laamarti, M.; Alouane, T.; Kartti, S.; Chemao-Elfihri, M.W.; Hakmi, M.; Essabbar, A.; Laamarti, M.; Hlali, H.; Bendani, H.; Boumajdi, N.; Benhrif, O.; Allam, L.; El Hafidi, N.; El Jaoudi, R.; Allali, I.; Marchoudi, N.; Fekkak, J.; Benrahma, H.; Nejjari, C.; Amzazi, S.; Belyamani, L.; Ibrahimi, A. Large scale genomic analysis of 3067 SARS-CoV-2 genomes reveals a clonal geo-distribution and a rich genetic variations of hotspots mutations. PLoS One, 2020, 15(11), e0240345.
[http://dx.doi.org/10.1371/journal.pone.0240345] [PMID: 33170902]
[53]
Wang, R.; Chen, J.; Gao, K.; Hozumi, Y.; Yin, C.; Wei, G-W. Analysis of SARS-CoV-2 mutations in the United States suggests presence of four substrains and novel variants. Commun. Biol., 2021, 4(1), 1-14.
[PMID: 33398033]
[54]
Weisblum, Y.; Schmidt, F.; Zhang, F.; DaSilva, J.; Poston, D.; Lorenzi, J.C.C.; Muecksch, F.; Rutkowska, M.; Hoffmann, H.H.; Michailidis, E.; Gaebler, C.; Agudelo, M.; Cho, A.; Wang, Z.; Gazumyan, A.; Cipolla, M.; Luchsinger, L.; Hillyer, C.D.; Caskey, M.; Robbiani, D.F.; Rice, C.M.; Nussenzweig, M.C.; Hatziioannou, T.; Bieniasz, P.D. Escape from neutralizing antibodies by SARS-CoV-2 spike protein variants. eLife, 2020, 9, e61312.
[http://dx.doi.org/10.7554/eLife.61312] [PMID: 33112236]
[55]
Harcourt, B.H.; Jukneliene, D.; Kanjanahaluethai, A.; Bechill, J.; Severson, K.M.; Smith, C.M.; Rota, P.A.; Baker, S.C. Identification of severe acute respiratory syndrome coronavirus replicase products and characterization of papain-like protease activity. J. Virol., 2004, 78(24), 13600-13612.
[http://dx.doi.org/10.1128/JVI.78.24.13600-13612.2004] [PMID: 15564471]
[56]
Angeletti, S.; Benvenuto, D.; Bianchi, M.; Giovanetti, M.; Pascarella, S.; Ciccozzi, M. COVID‐2019: The role of the nsp2 and nsp3 in its pathogenesis. J. Med. Virol., 2020, 92(6), 584-588.
[http://dx.doi.org/10.1002/jmv.25719] [PMID: 32083328]
[57]
Ou, J.; Zhou, Z.; Dai, R.; Zhang, J.; Lan, W.; Zhao, S.; Wu, J.; Seto, D.; Cui, L.; Zhang, G. Emergence of RBD mutations in circulating SARS-CoV-2 strains enhancing the structural stability and human ACE2 receptor affinity of the spike protein. bioRxiv, 2020.
[58]
Khailany, R.A.; Safdar, M.; Ozaslan, M. Genomic characterization of a novel SARS-CoV-2. Gene Rep., 2020, 19, 100682.
[http://dx.doi.org/10.1016/j.genrep.2020.100682] [PMID: 32300673]
[59]
Shi, C.S.; Nabar, N.R.; Huang, N.N.; Kehrl, J.H. SARS-coronavirus open reading frame-8b triggers intracellular stress pathways and activates NLRP3 inflammasomes. Cell Death Discov., 2019, 5(1), 101.
[http://dx.doi.org/10.1038/s41420-019-0181-7] [PMID: 31231549]
[60]
Mlcochova, P.; Kemp, S.; Dhar, M.S.; Papa, G.; Meng, B.; Mishra, S.; Whittaker, C.; Mellan, T.; Ferreira, I.; Datir, R. SARS-CoV-2 B. 1.617. 2 Delta variant emergence and vaccine breakthrough. bioRxiv, 2021. Available from: https://www.biorxiv.org/content/10.1101/2021.05.08.443253v5
[61]
Sheikh, A.; McMenamin, J.; Taylor, B.; Robertson, C. SARS-CoV-2 Delta VOC in Scotland: Demographics, risk of hospital admission, and vaccine effectiveness. Lancet, 2021, 397(10293), 2461-2462.
[http://dx.doi.org/10.1016/S0140-6736(21)01358-1] [PMID: 34139198]
[62]
Shahhosseini, N.; Babuadze, G.; Wong, G.; Kobinger, G. Mutation signatures and in silico docking of novel SARS-CoV-2 variants of concern. Microorganisms, 2021, 9(5), 926.
[http://dx.doi.org/10.3390/microorganisms9050926] [PMID: 33925854]
[63]
Calligari, P.; Bobone, S.; Ricci, G.; Bocedi, A. Molecular investigation of SARS–CoV-2 proteins and their interactions with antiviral drugs. Viruses, 2020, 12(4), 445.
[http://dx.doi.org/10.3390/v12040445] [PMID: 32295237]
[64]
Medhi, B.; Prajapat, M.; Sarma, P.; Shekhar, N.; Avti, P.; Sinha, S.; Kaur, H.; Kumar, S.; Bhattacharyya, A.; Kumar, H.; Bansal, S. Drug for corona virus: A systematic review. Indian J. Pharmacol., 2020, 52(1), 56-65.
[http://dx.doi.org/10.4103/ijp.IJP_115_20] [PMID: 32201449]
[65]
Zhou, Y.; Hou, Y.; Shen, J.; Huang, Y.; Martin, W.; Cheng, F. Network-based drug repurposing for novel coronavirus 2019-nCoV/SARS-CoV-2. Cell Discov., 2020, 6(1), 14.
[http://dx.doi.org/10.1038/s41421-020-0153-3] [PMID: 32194980]
[66]
Grohskopf, L.A.; Sokolow, L.Z.; Broder, K.R.; Walter, E.B.; Fry, A.M.; Jernigan, D.B. Prevention and control of seasonal influenza with vaccines: Recommendations of the advisory committee on immunization practices-United States, 2018-19 influenza season. MMWR Recomm. Rep., 2018, 67(3), 1-20.
[http://dx.doi.org/10.15585/mmwr.rr6703a1] [PMID: 30141464]
[67]
Regla-Nava, J.A.; Nieto-Torres, J.L.; Jimenez-Guardeño, J.M.; Fernandez-Delgado, R.; Fett, C.; Castaño-Rodríguez, C.; Perlman, S.; Enjuanes, L.; DeDiego, M.L. Severe acute respiratory syndrome coronaviruses with mutations in the E protein are attenuated and promising vaccine candidates. J. Virol., 2015, 89(7), 3870-3887.
[http://dx.doi.org/10.1128/JVI.03566-14] [PMID: 25609816]
[68]
Du, L.; Zhao, G.; Chan, C.C.S.; Li, L.; He, Y.; Zhou, Y.; Zheng, B.J.; Jiang, S. A 219-mer CHO-expressing receptor-binding domain of SARS-CoV S protein induces potent immune responses and protective immunity. Viral Immunol., 2010, 23(2), 211-219.
[http://dx.doi.org/10.1089/vim.2009.0090] [PMID: 20374001]
[69]
Du, L.; He, Y.; Zhou, Y.; Liu, S.; Zheng, B.J.; Jiang, S. The spike protein of SARS-CoV — a target for vaccine and therapeutic development. Nat. Rev. Microbiol., 2009, 7(3), 226-236.
[http://dx.doi.org/10.1038/nrmicro2090] [PMID: 19198616]
[70]
Jackson, L.A.; Anderson, E.J.; Rouphael, N.G.; Roberts, P.C.; Makhene, M.; Coler, R.N.; McCullough, M.P.; Chappell, J.D.; Denison, M.R.; Stevens, L.J.; Pruijssers, A.J.; McDermott, A.; Flach, B.; Doria-Rose, N.A.; Corbett, K.S.; Morabito, K.M.; O’Dell, S.; Schmidt, S.D.; Swanson, P.A., II; Padilla, M.; Mascola, J.R.; Neuzil, K.M.; Bennett, H.; Sun, W.; Peters, E.; Makowski, M.; Albert, J.; Cross, K.; Buchanan, W.; Pikaart-Tautges, R.; Ledgerwood, J.E.; Graham, B.S.; Beigel, J.H. An mRNA vaccine against SARS-CoV-2-preliminary report. N. Engl. J. Med., 2020, 383(20), 1920-1931.
[http://dx.doi.org/10.1056/NEJMoa2022483]
[71]
Folegatti, P.M.; Ewer, K.J.; Aley, P.K.; Angus, B.; Becker, S.; Belij-Rammerstorfer, S.; Bellamy, D.; Bibi, S.; Bittaye, M.; Clutterbuck, E.A.; Dold, C.; Faust, S.N.; Finn, A.; Flaxman, A.L.; Hallis, B.; Heath, P.; Jenkin, D.; Lazarus, R.; Makinson, R.; Minassian, A.M.; Pollock, K.M.; Ramasamy, M.; Robinson, H.; Snape, M.; Tarrant, R.; Voysey, M.; Green, C.; Douglas, A.D.; Hill, A.V.S.; Lambe, T.; Gilbert, S.C.; Pollard, A.J.; Aboagye, J.; Adams, K.; Ali, A.; Allen, E.; Allison, J.L.; Anslow, R.; Arbe-Barnes, E.H.; Babbage, G.; Baillie, K.; Baker, M.; Baker, N.; Baker, P.; Baleanu, I.; Ballaminut, J.; Barnes, E.; Barrett, J.; Bates, L.; Batten, A.; Beadon, K.; Beckley, R.; Berrie, E.; Berry, L.; Beveridge, A.; Bewley, K.R.; Bijker, E.M.; Bingham, T.; Blackwell, L.; Blundell, C.L.; Bolam, E.; Boland, E.; Borthwick, N.; Bower, T.; Boyd, A.; Brenner, T.; Bright, P.D.; Brown-O’Sullivan, C.; Brunt, E.; Burbage, J.; Burge, S.; Buttigieg, K.R.; Byard, N.; Cabera Puig, I.; Calvert, A.; Camara, S.; Cao, M.; Cappuccini, F.; Carr, M.; Carroll, M.W.; Carter, V.; Cathie, K.; Challis, R.J.; Charlton, S.; Chelysheva, I.; Cho, J-S.; Cicconi, P.; Cifuentes, L.; Clark, H.; Clark, E.; Cole, T.; Colin-Jones, R.; Conlon, C.P.; Cook, A.; Coombes, N.S.; Cooper, R.; Cosgrove, C.A.; Coy, K.; Crocker, W.E.M.; Cunningham, C.J.; Damratoski, B.E.; Dando, L.; Datoo, M.S.; Davies, H.; De Graaf, H.; Demissie, T.; Di Maso, C.; Dietrich, I.; Dong, T.; Donnellan, F.R.; Douglas, N.; Downing, C.; Drake, J.; Drake-Brockman, R.; Drury, R.E.; Dunachie, S.J.; Edwards, N.J.; Edwards, F.D.L.; Edwards, C.J.; Elias, S.C.; Elmore, M.J.; Emary, K.R.W.; English, M.R.; Fagerbrink, S.; Felle, S.; Feng, S.; Field, S.; Fixmer, C.; Fletcher, C.; Ford, K.J.; Fowler, J.; Fox, P.; Francis, E.; Frater, J.; Furze, J.; Fuskova, M.; Galiza, E.; Gbesemete, D.; Gilbride, C.; Godwin, K.; Gorini, G.; Goulston, L.; Grabau, C.; Gracie, L.; Gray, Z.; Guthrie, L.B.; Hackett, M.; Halwe, S.; Hamilton, E.; Hamlyn, J.; Hanumunthadu, B.; Harding, I.; Harris, S.A.; Harris, A.; Harrison, D.; Harrison, C.; Hart, T.C.; Haskell, L.; Hawkins, S.; Head, I.; Henry, J.A.; Hill, J.; Hodgson, S.H.C.; Hou, M.M.; Howe, E.; Howell, N.; Hutlin, C.; Ikram, S.; Isitt, C.; Iveson, P.; Jackson, S.; Jackson, F.; James, S.W.; Jenkins, M.; Jones, E.; Jones, K.; Jones, C.E.; Jones, B.; Kailath, R.; Karampatsas, K.; Keen, J.; Kelly, S.; Kelly, D.; Kerr, D.; Kerridge, S.; Khan, L.; Khan, U.; Killen, A.; Kinch, J.; King, T.B.; King, L.; King, J.; Kingham-Page, L.; Klenerman, P.; Knapper, F.; Knight, J.C.; Knott, D.; Koleva, S.; Kupke, A.; Larkworthy, C.W.; Larwood, J.P.J.; Laskey, A.; Lawrie, A.M.; Lee, A.; Ngan Lee, K.Y.; Lees, E.A.; Legge, H.; Lelliott, A.; Lemm, N-M.; Lias, A.M.; Linder, A.; Lipworth, S.; Liu, X.; Liu, S.; Lopez Ramon, R.; Lwin, M.; Mabesa, F.; Madhavan, M.; Mallett, G.; Mansatta, K.; Marcal, I.; Marinou, S.; Marlow, E.; Marshall, J.L.; Martin, J.; McEwan, J.; McInroy, L.; Meddaugh, G.; Mentzer, A.J.; Mirtorabi, N.; Moore, M.; Moran, E.; Morey, E.; Morgan, V.; Morris, S.J.; Morrison, H.; Morshead, G.; Morter, R.; Mujadidi, Y.F.; Muller, J.; Munera-Huertas, T.; Munro, C.; Munro, A.; Murphy, S.; Munster, V.J.; Mweu, P.; Noé, A.; Nugent, F.L.; Nuthall, E.; O’Brien, K.; O’Connor, D.; Oguti, B.; Oliver, J.L.; Oliveira, C.; O’Reilly, P.J.; Osborn, M.; Osborne, P.; Owen, C.; Owens, D.; Owino, N.; Pacurar, M.; Parker, K.; Parracho, H.; Patrick-Smith, M.; Payne, V.; Pearce, J.; Peng, Y.; Peralta Alvarez, M.P.; Perring, J.; Pfafferott, K.; Pipini, D.; Plested, E.; Pluess-Hall, H.; Pollock, K.; Poulton, I.; Presland, L.; Provstgaard-Morys, S.; Pulido, D.; Radia, K.; Ramos Lopez, F.; Rand, J.; Ratcliffe, H.; Rawlinson, T.; Rhead, S.; Riddell, A.; Ritchie, A.J.; Roberts, H.; Robson, J.; Roche, S.; Rohde, C.; Rollier, C.S.; Romani, R.; Rudiansyah, I.; Saich, S.; Sajjad, S.; Salvador, S.; Sanchez Riera, L.; Sanders, H.; Sanders, K.; Sapaun, S.; Sayce, C.; Schofield, E.; Screaton, G.; Selby, B.; Semple, C.; Sharpe, H.R.; Shaik, I.; Shea, A.; Shelton, H.; Silk, S.; Silva-Reyes, L.; Skelly, D.T.; Smee, H.; Smith, C.C.; Smith, D.J.; Song, R.; Spencer, A.J.; Stafford, E.; Steele, A.; Stefanova, E.; Stockdale, L.; Szigeti, A.; Tahiri-Alaoui, A.; Tait, M.; Talbot, H.; Tanner, R.; Taylor, I.J.; Taylor, V.; Te Water Naude, R.; Thakur, N.; Themistocleous, Y.; Themistocleous, A.; Thomas, M.; Thomas, T.M.; Thompson, A.; Thomson-Hill, S.; Tomlins, J.; Tonks, S.; Towner, J.; Tran, N.; Tree, J.A.; Truby, A.; Turkentine, K.; Turner, C.; Turner, N.; Turner, S.; Tuthill, T.; Ulaszewska, M.; Varughese, R.; Van Doremalen, N.; Veighey, K.; Verheul, M.K.; Vichos, I.; Vitale, E.; Walker, L.; Watson, M.E.E.; Welham, B.; Wheat, J.; White, C.; White, R.; Worth, A.T.; Wright, D.; Wright, S.; Yao, X.L.; Yau, Y. Safety and immunogenicity of the ChAdOx1 nCoV-19 vaccine against SARS-CoV-2: A preliminary report of a phase 1/2, single-blind, randomised controlled trial. Lancet, 2020, 396(10249), 467-478.
[http://dx.doi.org/10.1016/S0140-6736(20)31604-4] [PMID: 32702298]
[72]
Graham, R.L.; Donaldson, E.F.; Baric, R.S. A decade after SARS: Strategies for controlling emerging coronaviruses. Nat. Rev. Microbiol., 2013, 11(12), 836-848.
[http://dx.doi.org/10.1038/nrmicro3143] [PMID: 24217413]
[73]
Pang, H.; Liu, Y.; Han, X.; Xu, Y.; Jiang, F.; Wu, D.; Kong, X.; Bartlam, M.; Rao, Z. Protective humoral responses to severe acute respiratory syndrome-associated coronavirus: Implications for the design of an effective protein-based vaccine. J. Gen. Virol., 2004, 85(10), 3109-3113.
[http://dx.doi.org/10.1099/vir.0.80111-0] [PMID: 15448374]
[74]
Yoshimoto, F.K. The proteins of severe acute respiratory syndrome coronavirus-2 (SARS CoV-2 or n-COV19), the cause of COVID-19. Protein J., 2020, 39(3), 198-216.
[http://dx.doi.org/10.1007/s10930-020-09901-4] [PMID: 32447571]
[75]
Anand, K.; Ziebuhr, J.; Wadhwani, P.; Mesters, J.R.; Hilgenfeld, R. Coronavirus main proteinase (3CLpro) structure: Basis for design of anti-SARS drugs. Science, 2003, 300(5626), 1763-1767.
[http://dx.doi.org/10.1126/science.1085658] [PMID: 12746549]
[76]
Vuong, W.; Khan, M.B.; Fischer, C.; Arutyunova, E.; Lamer, T.; Shields, J.; Saffran, H.A.; McKay, R.T.; van Belkum, M.J.; Joyce, M.A. Feline coronavirus drug inhibits the main protease of SARS-CoV-2 and blocks virus replication. Nat. Commun., 2020, 11(1), 1-8.
[PMID: 31911652]
[77]
Morse, J.S.; Lalonde, T.; Xu, S.; Liu, W.R. Learning from the past: Possible urgent prevention and treatment options for severe acute respiratory infections caused by 2019‐nCoV. ChemBioChem, 2020, 21(5), 730-738.
[http://dx.doi.org/10.1002/cbic.202000047] [PMID: 32022370]
[78]
Li, H.; Yang, L.; Liu, F.; Ma, X.; He, P.; Tang, W.; Tong, X.; Zuo, J. Overview of therapeutic drug research for COVID-19 in China. Acta Pharmacol. Sin., 2020, 41(9), 1133-1140.
[http://dx.doi.org/10.1038/s41401-020-0438-y] [PMID: 32555446]
[79]
Williamson, B.N.; Feldmann, F.; Schwarz, B.; Meade-White, K.; Porter, D.P.; Schulz, J.; van Doremalen, N.; Leighton, I.; Yinda, C.K.; Pérez-Pérez, L.; Okumura, A.; Lovaglio, J.; Hanley, P.W.; Saturday, G.; Bosio, C.M.; Anzick, S.; Barbian, K.; Cihlar, T.; Martens, C.; Scott, D.P.; Munster, V.J.; de Wit, E. Clinical benefit of remdesivir in rhesus macaques infected with SARS-CoV-2. Nature, 2020, 585(7824), 273-276.
[http://dx.doi.org/10.1038/s41586-020-2423-5] [PMID: 32516797]
[80]
Le Bert, N.; Tan, A.T.; Kunasegaran, K.; Tham, C.Y.L.; Hafezi, M.; Chia, A.; Chng, M.H.Y.; Lin, M.; Tan, N.; Linster, M.; Chia, W.N.; Chen, M.I.C.; Wang, L.F.; Ooi, E.E.; Kalimuddin, S.; Tambyah, P.A.; Low, J.G.H.; Tan, Y.J.; Bertoletti, A. SARS-CoV-2-specific T cell immunity in cases of COVID-19 and SARS, and uninfected controls. Nature, 2020, 584(7821), 457-462.
[http://dx.doi.org/10.1038/s41586-020-2550-z] [PMID: 32668444]
[81]
Tu, Y.F.; Chien, C.S.; Yarmishyn, A.A.; Lin, Y.Y.; Luo, Y.H.; Lin, Y.T.; Lai, W.Y.; Yang, D.M.; Chou, S.J.; Yang, Y.P.; Wang, M.L.; Chiou, S.H. A review of SARS-CoV-2 and the ongoing clinical trials. Int. J. Mol. Sci., 2020, 21(7), 2657.
[http://dx.doi.org/10.3390/ijms21072657] [PMID: 32290293]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy