Skip to main content

Advertisement

Log in

High-Sensitivity Terahertz Refractive Index Sensor Using Black Phosphorus-MXene-Graphene Hybrid Metasurfaces for Label-Free COVID-19 Detection

  • RESEARCH
  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

Fast and reliable virus detection like SARS-CoV-2, continues to pose significant challenges in the worldwide health administration. This study introduces a refractive index sensor designed for COVID-19 detection. The sensor leverages a SiO2-based substrate supporting two quadrant-shaped resonators and other metasurfaces designs. The material choice incorporates a synergistic combination of black phosphorus (BP), MXene (MX), and graphene. Simulation results exemplify 800 GHzRIU−1, 11.429 RIU−1, and 0.119 THz as optimal sensitivity, figure of merit and detection limit. Additionally, machine learning algorithms, essentially the weighted k-nearest neighbour regression, were employed to predict sensor performance, yielding a near-perfect correlation between predicted and actual transmittance values. The suggested sensor’s capability to quickly and accurately detect viral particles without requiring labelling makes it an essential tool for point-of-care diagnostics during pandemics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

Data Availability

The data supporting the findings in this work are available from the corresponding author with reasonable request.

References

  1. Raja RK et al (2023) SARS-CoV-2 and its new variants: a comprehensive review on nanotechnological application insights into potential approaches. Applied Nanoscience (Switzerland) 13(1):65–93. https://doi.org/10.1007/s13204-021-01900-w

    Article  CAS  Google Scholar 

  2. Tripathi SL, Mendiratta N, Ghai D, Avasthi S, Dhir K (2022) Coronavirus: diagnosis, detection, and analysis. In biomedical engineering applications for people with disabilities and the elderly in the COVID-19 pandemic and beyond (pp. 109–117). Academic Press. https://doi.org/10.1016/B978-0-323-85174-9.00026-1

  3. Hasöksüz M., Kiliç S., and  Saraç F., (2020)“Coronaviruses and sars-cov-2,” Turkish Journal of Medical Sciences, vol. 50, no. SI-1. pp. 549–556,  https://doi.org/10.3906/sag-2004-127.

  4. Eales O.et al.,(2023) “The use of representative community samples to assess SARS-CoV-2 lineage competition: Alpha outcompetes Beta and wild-type in England from January to March 2021,” Microb. Genomics, vol. 9, no. 2,  https://doi.org/10.1099/mgen.0.000887.

  5. Jacobs JL, Haidar G, Mellors JW (2023) COVID-19: Challenges of Viral Variants. Annu Rev Med 74:31–53. https://doi.org/10.1146/annurev-med-042921-020956

    Article  CAS  PubMed  Google Scholar 

  6. Miyashita K.et al., (2023)“Changes in the characteristics and outcomes of COVID-19 patients from the early pandemic to the delta variant epidemic: a nationwide population-based study,” Emerg. Microbes Infect., vol. 12, no. 1,  https://doi.org/10.1080/22221751.2022.2155250.

  7. Pather S, Muik A, Rizzi R, Mensa F (2023) Clinical development of variant-adapted BNT162b2 COVID-19 vaccines: the early Omicron era. Expert Rev Vaccines 22(1):650–661. https://doi.org/10.1080/14760584.2023.2232851

    Article  CAS  PubMed  Google Scholar 

  8. Wu F.et al., (2020)“Antibody-dependent enhancement (ADE) of SARS-CoV-2 infection in recovered COVID-19 patients: studies based on cellular and structural biology analysis,” medRxiv, p. 2020.10.08.20209114, 

  9. Green MR, Sambrook J (2018) Quantification of RNA by real-time reverse transcription-polymerase chain reaction (RT-PCR). Cold Spring Harb Protoc 2018(10):847–856. https://doi.org/10.1101/pdb.prot095042

    Article  Google Scholar 

  10. Jameel T, Baig M, Gazzaz ZJ (2020) Persistence of Reverse Transcription-Polymerase Chain Reaction (RT-PCR) Positivity in COVID-19 Recovered Patients: A Call for Revised Hospital Discharge Criteria. Cureus. https://doi.org/10.7759/cureus.9048

    Article  PubMed  PubMed Central  Google Scholar 

  11. Green MR, Sambrook J (2019) Amplification of cDNA generated by reverse transcription of mRNA: Two-step reverse transcription-polymerase chain reaction (RT-PCR). Cold Spring Harb Protoc 2019(5):405–416. https://doi.org/10.1101/pdb.prot095190

    Article  Google Scholar 

  12. Singh AK, Mittal S, Das M, Saharia A, Tiwari M (2023) Optical biosensors: a decade in review. Alex Eng J 67:673–691. https://doi.org/10.1016/j.aej.2022.12.040

    Article  Google Scholar 

  13. Naresh V, Lee N (2021) A review on biosensors and recent development of nanostructured materials-enabled biosensors. Sensors (Switzerland) 21(4):1–35. https://doi.org/10.3390/s21041109

    Article  CAS  Google Scholar 

  14. Mehrotra P (2016) “Biosensors and their applications - A review”, Journal of Oral Biology and Craniofacial. Research. https://doi.org/10.1016/j.jobcr.2015.12.002

    Article  Google Scholar 

  15. Cesewski E.and Johnson B. N., (2020) “Electrochemical biosensors for pathogen detection,” Biosensors and Bioelectronics, vol. 159.  https://doi.org/10.1016/j.bios.2020.112214.

  16. Tan C et al (2022) Cancer Diagnosis Using Terahertz-Graphene-Metasurface-Based Biosensor with Dual-Resonance Response. Nanomaterials. https://doi.org/10.3390/nano12213889

    Article  PubMed  PubMed Central  Google Scholar 

  17. Hu J., Bandyopadhyay S., Liu Y. H., and Shao L. Y., (2021)“A Review on Metasurface: From Principle to Smart Metadevices,” Frontiers in Physics, vol. 8.  https://doi.org/10.3389/fphy.2020.586087.

  18. Kazanskiy N. L., Khonina S. N., and Butt M. A., (2023)“Recent Development in Metasurfaces: A Focus on Sensing Applications,” Nanomaterials, vol. 13, no. 1.  https://doi.org/10.3390/nano13010118.

  19. Karawdeniya BI et al (2022) Surface Functionalization and Texturing of Optical Metasurfaces for Sensing Applications. Chem Rev 122(19):14990–15030. https://doi.org/10.1021/acs.chemrev.1c00990

    Article  CAS  PubMed  Google Scholar 

  20. Armghan A., Han B. B., Patel G. S., S. K., Aliqab K., and  Alsharari M., “Investigation of Graphene-Based Multilayer Zr-GaSb-TiC Wide-Band Surface Plasmon Resonance Solar Absorber for Renewable Energy Applications Optimized Using Machine Learning,” Plasmonics, Jan. 2025, https://doi.org/10.1007/s11468-025-02773-3.

  21. Ahmad B., Jacob A., Dhivya W. R.,  Kouki M., Almawgani A. H. M., and Patel S. K., “Machine Learning Optimized Optical Surface Plasmon Resonance Biosensor Using Locally Weighted Linear Regression for Rapid and Accurate Detection of Tuberculosis Biomarkers,” Plasmonics, no. 0123456789, 2025, https://doi.org/10.1007/s11468-025-02770-6.

  22. Wekalao J., Patel S. K., Panchapakesan A.,  Ahmed F., and  Zahrani A., “Graphene ‑ Based SPR Sensor Design for Bio ‑ Alcohol Detection in the Terahertz Regime with Machine Learning Optimization Using XGBoost Regressor,” Plasmonics, no. 0123456789, 2025, https://doi.org/10.1007/s11468-024-02641-6.

  23. Wekalao J., Patel S. K., Kumar O. P., and  Al-zahrani F. A. , (2025)“Machine learning optimized design of THz piezoelectric perovskite-based biosensor for the detection of formalin in aqueous environments,” pp. 1–32,

  24. Patel SK, Charola S, Jani C, Ladumor M, Parmar J, Guo T (2019) Graphene-based highly efficient and broadband solar absorber. Opt Mater (Amst). https://doi.org/10.1016/j.optmat.2019.109330

    Article  Google Scholar 

  25. Li F et al (2020) The terahertz metamaterials for sensitive biosensors in the detection of ethanol solutions. Opt Commun. https://doi.org/10.1016/j.optcom.2020.126287

    Article  Google Scholar 

  26. Wekalao J.,  Alsalman O., and Patel S. K., “Diamond & Related Materials Graphene metasurface biosensor design for label-free peptide detection with machine learning optimization based on support vector regression with polynomial kernel,” Diam. Relat. Mater., vol. 153, no. January, p. 112053, 2025, https://doi.org/10.1016/j.diamond.2025.112053.

  27. Wekalao J.,  Patel S. K.,  Armghan A., and  Kraiem H., (2025)“Design of a High ‑ Performance Surface Plasmon Resonance Sensor for Precise Detection of Alcoholic Compounds in Forensic and Medical Applications,” Plasmonics, no. 0123456789,  https://doi.org/10.1007/s11468-025-02767-1.

  28. Abdelrahman Ali Y. A., Kamani T.,  Patel S. K,  Armghan A., and Almawgani A. H. M., “Design and Investigation of Machine Learning–Optimized Surface Plasmon Resonance Biosensor for Early Brain Tumor Detection,” Plasmonics, Dec. 2024, https://doi.org/10.1007/s11468-024-02635-4.

  29. Wekalao J. , Patel S. K., Kumar A., Armghan U. A. ,  Kraiem H., and  Said Y., (2024)“Detection of Proteins in a Surface Plasmon Resonance Biosensor Based on Hybrid Metasurface Architecture and Behaviour Prediction Using Random Forest Regression,” Plasmonics, no. 0123456789,  https://doi.org/10.1007/s11468-024-02712-8.

  30. Wekalao J.,  Mandela N.,  Kumar A.,  Sujatha S. ,  Dharani, V. and  Poornima R., (2024)“Graphene Metasurface Based Biosensor for COVID ‑ 19 Detection in the Terahertz Regime with Machine Learning Optimization using K ‑ Nearest Neighbours Regression,” Plasmonics, no. 0123456789,  https://doi.org/10.1007/s11468-024-02686-7.

  31. Taya S. A., Daher M. G.,  Almawgani A. H. M,  Hindi A. T.,  Zyoud S. H., and  Colak I.,(2023,) “Detection of Virus SARS-CoV-2 Using a Surface Plasmon Resonance Device Based on BiFeO3-Graphene Layers,” Plasmonics, no. 0123456789,  https://doi.org/10.1007/s11468-023-01867-0.

  32. Sidhu R.,Zheng R.,  Rasheed A. , and  Khan M. A.,(2021) “The Development of Point-of-Care Plasmonic-based Biosensor for Early Detection of COVID-19 Virus,” in IEEE International Conference on Nano/Molecular Medicine and Engineering, NANOMED,  vol. 2021-Novem, pp. 23–27, https://doi.org/10.1109/NANOMED54179.2021.9766610.

  33. Akib T. B. A.,  Mostufa S., Rana M. M., Hossain M. B., and Islam M. R., (2023)“A performance comparison of heterostructure surface plasmon resonance biosensor for the diagnosis of novel coronavirus SARS-CoV-2,” Opt. Quantum Electron., vol. 55, no. 5,  https://doi.org/10.1007/s11082-023-04700-4.

  34. Balamurugan AM, Parvin T, Alsalem KAJ, Ibrahim SM (2023) Refractive index based optically transparent biosensor device design for early detection of coronavirus. Opt Quantum Electron 55(6):1–16. https://doi.org/10.1007/s11082-023-04788-8

    Article  CAS  Google Scholar 

  35. Negahdari R, Rafiee E, Kordrostami Z (2023) A Sensitive Biosensor Based on Plasmonic-Graphene Configuration for Detection of COVID-19 Virus. Plasmonics 18(4):1325–1335. https://doi.org/10.1007/s11468-023-01851-8

    Article  CAS  Google Scholar 

  36. Bilgili N, Cetin A (2024) Design and Numerical Analysis of a One-Dimensional Photonic Crystal Biosensor for Detection of SARS-CoV-2. Plasmonics. https://doi.org/10.1007/s11468-024-02218-3

    Article  Google Scholar 

  37. EL-Wasif Z. , Ismail T., and Hamdy O.,(2023) “Design and optimization of highly sensitive multi-band terahertz metamaterial biosensor for coronaviruses detection,” Opt. Quantum Electron.,  https://doi.org/10.1007/s11082-023-04906-6.

  38. Nguyen D. D. and Thuy Le M., (2021,)“Enhanced Indoor Localization Based BLE Using Gaussian Process Regression and Improved Weighted kNN,” IEEE Access, vol. 9, pp. 143795–143806, https://doi.org/10.1109/ACCESS.2021.3122011.

  39. Chen Z., Li B., and Han B., “Improve regression accuracy by using an attribute weighted KNN approach,” in ICNC-FSKD 2017 - 13th International Conference on Natural Computation, Fuzzy Systems and Knowledge Discovery, 2018, pp. 1838–1843, https://doi.org/10.1109/FSKD.2017.8393046.

  40. Li A, Kang L (2009) KNN-based modeling and its application in aftershock prediction. International Asia Symposium on Intelligent Interaction and Affective Computing, ASIA 2009:83–86. https://doi.org/10.1109/ASIA.2009.21

    Article  Google Scholar 

  41. Rodrigues O.,(2023) “Corrigendum to ‘Combining Minkowski and Chebyshev: New distance proposal and survey of distance metrics using k-nearest neighbours classifier’ [Pattern Recognition Letters 110 (2018) 66–71, (S0167865518301004), (https://doi.org/10.1016/j.patrec.2018.03.021)]: Pattern Rec,” Pattern Recognition Letters, vol. 175. p. 44, https://doi.org/10.1016/j.patrec.2023.10.005.

  42. Cunningham P. and Delany S. J., (2021)“K-Nearest Neighbour Classifiers-A Tutorial,” ACM Computing Surveys, vol. 54, no. 6., https://doi.org/10.1145/3459665.

Download references

Acknowledgements

The authors extend their appreciation to the Deanship of Scientific Research at Northern Border University, Arar, KSA for funding this research work through the project number "NBU-FFR-2025-2461-05"

Funding

The authors extend their appreciation to the Deanship of Scientific Research at Northern Border University, Arar, KSA for funding this research work through the project number "NBU-FFR-2025–2461-05".

Author information

Authors and Affiliations

Authors

Contributions

Methodology, J.W and R.G,.; software, J.W and S.K.P,; investigation, R.G. D.R and A.A; Results Analysis, A.K.U.; writing—original draft preparation, All authors,; writing—review and editing, All Authors,; All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Refka Ghodhbani.

Ethics declarations

Ethical Approval

Not applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wekalao, J., Ghodhbani, R., R, D. et al. High-Sensitivity Terahertz Refractive Index Sensor Using Black Phosphorus-MXene-Graphene Hybrid Metasurfaces for Label-Free COVID-19 Detection. Plasmonics (2025). https://doi.org/10.1007/s11468-025-02884-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11468-025-02884-x

Keywords