Novel Methods for the Analysis of Serum NET Remnants: Evaluation in Patients with Severe COVID-19
Abstract
:1. Introduction
2. Results
2.1. Detection of NET Generated In Vitro
2.2. Detection of NET Remnants in Sera
2.3. NET Remnants and Clinical Features
3. Discussion
4. Materials and Methods
4.1. Study Population
4.2. Neutrophil Isolation and In Vitro Generation of NETs
4.3. Detection of Serum NET Remnants
4.4. Statistical Analysis
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Brinkmann, V.; Reichard, U.; Goosmann, C.; Fauler, B.; Uhlemann, Y.; Weiss, D.S.; Weinrauch, Y.; Zychlinsky, A. Neutrophil extracellular traps kill bacteria. Science 2004, 303, 1532–1535. [Google Scholar] [CrossRef] [PubMed]
- Fuchs, T.A.; Abed, U.; Goosmann, C.; Hurwitz, R.; Schulze, I.; Wahn, V.; Weinrauch, Y.; Brinkmann, V.; Zychlinsky, A. Novel cell death program leads to neutrophil extracellular traps. J. Cell Biol. 2007, 176, 231–241. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Biermann, M.H.; Brauner, J.M.; Liu, Y.; Zhao, Y.; Herrmann, M. New Insights into Neutrophil Extracellular Traps: Mechanisms of Formation and Role in Inflammation. Front. Immunol. 2016, 7, 302. [Google Scholar] [CrossRef] [PubMed]
- Papayannopoulos, V.; Metzler, K.D.; Hakkim, A.; Zychlinsky, A. Neutrophil elastase and myeloperoxidase regulate the formation of neutrophil extracellular traps. J. Cell Biol. 2010, 191, 677–691. [Google Scholar] [CrossRef]
- Wang, Y.; Li, M.; Stadler, S.; Correll, S.; Li, P.; Wang, D.; Hayama, R.; Leonelli, L.; Han, H.; Grigoryev, S.A.; et al. Histone hypercitrullination mediates chromatin decondensation and neutrophil extracellular trap formation. J. Cell Biol. 2009, 184, 205–213. [Google Scholar] [CrossRef]
- Schönrich, G.; Raftery, M.J. Neutrophil Extracellular Traps Go Viral. Front. Immunol. 2016, 7, 366. [Google Scholar] [CrossRef]
- Ma, Y.; Zhang, Y.; Zhu, L. Role of Neutrophil in acute viral infection. Immun. Inflamm. Dis. 2021, 9, 1186–1196. [Google Scholar] [CrossRef]
- Radermecker, C.; Detrembleur, N.; Guiot, J.; Cavalier, E.; Henket, M.; d’Emal, C.; Vanwinge, C.; Cataldo, D.; Oury, C.; Delvenne, P.; et al. Neutrophil extracellular traps infiltrate the lung airway, interstitial, and vascular compartments in severe COVID-19. J. Exp. Med. 2020, 217, e20201012. [Google Scholar] [CrossRef]
- Saffarzadeh, M.; Juenemann, C.; Queisser, M.A.; Lochnit, G.; Barreto, G.; Galuska, S.P.; Lohmeyer, J.; Preissner, K.T. Neutrophil extracellular traps directly induce epithelial and endothelial cell death: A predominant role of histones. PLoS ONE 2012, 7, e32366. [Google Scholar] [CrossRef]
- Zhou, X.; Jin, J.; Lv, T.; Song, Y. A Narrative Review: The Role of NETs in Acute Respiratory Distress Syndrome/Acute Lung Injury. Int. J. Mol. Sci. 2024, 25, 1464. [Google Scholar] [CrossRef]
- Wienkamp, A.K.; Erpenbeck, L.; Rossaint, J. Platelets in the NETworks interweaving inflammation and thrombosis. Front. Immunol. 2022, 13, 953129. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Chen, X.; Liu, X. NETosis and Neutrophil Extracellular Traps in COVID-19: Immunothrombosis and Beyond. Front. Immunol. 2022, 13, 838011. [Google Scholar] [CrossRef] [PubMed]
- Liana, P.; Liberty, I.A.; Murti, K.; Hafy, Z.; Salim, E.M.; Zulkarnain, M.; Umar, T.P. A systematic review on neutrophil extracellular traps and its prognostication role in COVID-19 patients. Immunol. Res. 2022, 70, 449–460. [Google Scholar] [CrossRef] [PubMed]
- Donkel, S.J.; Wolters, F.J.; Ikram, M.A.; de Maat, M.P.M. Circulating Myeloperoxidase (MPO)−DNA complexes as marker for Neutrophil Extracellular Traps (NETs) levels and the association with cardiovascular risk factors in the general population. PLoS ONE 2021, 16, e0253698. [Google Scholar] [CrossRef]
- Lood, C.; Blanco, L.P.; Purmalek, M.M.; Carmona-Rivera, C.; De Ravin, S.S.; Smith, C.K.; Malech, H.L.; Ledbetter, J.A.; Elkon, K.B.; Kaplan, M.J. Neutrophil extracellular traps enriched in oxidized mitochondrial DNA are interferogenic and contribute to lupus-like disease. Nat. Med. 2016, 22, 146–153. [Google Scholar] [CrossRef]
- Reshetnyak, T.; Nurbaeva, K.; Ptashnik, I.; Kudriaeva, A.; Belogurov, A., Jr.; Lila, A.; Nasonov, E. Markers of NETosis in Patients with Systemic Lupus Erythematosus and Antiphospholipid Syndrome. Int. J. Mol. Sci. 2023, 24, 9210. [Google Scholar] [CrossRef]
- ARDS Definition Task Force; Ranieri, V.M.; Rubenfeld, G.D.; Thompson, B.T.; Ferguson, N.D.; Caldwell, E.; Fan, E.; Camporota, L.; Slutsky, A.S. Acute respiratory distress syndrome: The Berlin Definition. JAMA 2012, 307, 2526–2533. [Google Scholar] [CrossRef]
- Masuda, S.; Nakazawa, D.; Shida, H.; Miyoshi, A.; Kusunoki, Y.; Tomaru, U.; Ishizu, A. NETosis markers: Quest for specific, objective, and quantitative markers. Clin. Chim. Acta 2016, 459, 89–93. [Google Scholar] [CrossRef]
- Petretto, A.; Bruschi, M.; Pratesi, F.; Croia, C.; Candiano, G.; Ghiggeri, G.; Migliorini, P. Neutrophil extracellular traps (NET) induced by different stimuli: A comparative proteomic analysis. PLoS ONE 2019, 14, e0218946. [Google Scholar] [CrossRef]
- Chapman, E.A.; Lyon, M.; Simpson, D.; Mason, D.; Beynon, R.J.; Moots, R.J.; Wright, H.L. Caught in a Trap? Proteomic Analysis of Neutrophil Extracellular Traps in Rheumatoid Arthritis and Systemic Lupus Erythematosus. Front. Immunol. 2019, 10, 423. [Google Scholar] [CrossRef]
- Urban, C.F.; Ermert, D.; Schmid, M.; Abu-Abed, U.; Goosmann, C.; Nacken, W.; Brinkmann, V.; Jungblut, P.R.; Zychlinsky, A. Neutrophil extracellular traps contain calprotectin, a cytosolic protein complex involved in host defense against Candida albicans. PLoS Pathog. 2009, 5, e1000639. [Google Scholar] [CrossRef] [PubMed]
- Moscato, S.; Pratesi, F.; Sabbatini, A.; Chimenti, D.; Scavuzzo, M.; Passatino, R.; Bombardieri, S.; Giallongo, A.; Migliorini, P. Surface expression of a glycolytic enzyme, alpha-enolase, recognized by autoantibodies in connective tissue disorders. Eur. J. Immunol. 2000, 30, 3575–3584. [Google Scholar] [CrossRef] [PubMed]
- Hayden, H.; Ibrahim, N.; Klopf, J.; Zagrapan, B.; Mauracher, L.M.; Hell, L.; Hofbauer, T.M.; Ondracek, A.S.; Schoergenhofer, C.; Jilma, B.; et al. ELISA detection of MPO−DNA complexes in human plasma is error-prone and yields limited information on neutrophil extracellular traps formed in vivo. PLoS ONE 2021, 16, e0250265. [Google Scholar] [CrossRef] [PubMed]
- Matta, B.; Battaglia, J.; Barnes, B.J. Detection of neutrophil extracellular traps in patient plasma: Method development and validation in systemic lupus erythematosus and healthy donors that carry IRF5 genetic risk. Front. Immunol. 2022, 13, 951254. [Google Scholar] [CrossRef]
- Bruschi, M.; Petretto, A.; Santucci, L.; Vaglio, A.; Pratesi, F.; Migliorini, P.; Bertelli, R.; Lavarello, C.; Bartolucci, M.; Candiano, G.; et al. Neutrophil Extracellular Traps protein composition is specific for patients with Lupus nephritis and includes methyl-oxidized αenolase (methionine sulfoxide 93). Sci. Rep. 2019, 9, 7934. [Google Scholar] [CrossRef]
- Zuo, Y.; Yalavarthi, S.; Shi, H.; Gockman, K.; Zuo, M.; Madison, J.A.; Blair, C.; Weber, A.; Barnes, B.J.; Egeblad, M.; et al. Neutrophil extracellular traps in COVID-19. JCI Insight 2020, 5, e138999. [Google Scholar] [CrossRef]
- Rong, N.; Wei, X.; Liu, J. The Role of Neutrophil in COVID-19: Positive or Negative. J. Innate Immun. 2024, 16, 80–95. [Google Scholar] [CrossRef]
- Krinsky, N.; Sizikov, S.; Nissim, S.; Dror, A.; Sas, A.; Prinz, H.; Pri-Or, E.; Perek, S.; Raz-Pasteur, A.; Lejbkowicz, I.; et al. NETosis induction reflects COVID-19 severity and long COVID: Insights from a 2-center patient cohort study in Israel. J. Thromb. Haemost. 2023, 21, 2569–2584. [Google Scholar] [CrossRef]
- De Diego, C.; Lasierra, A.B.; López-Vergara, L.; Torralba, L.; Ruiz de Gopegui, P.; Lahoz, R.; Abadía, C.; Godino, J.; Cebollada, A.; Jimeno, B.; et al. What is the actual relationship between neutrophil extracellular traps and COVID-19 severity? A longitudinal study. Respir. Res. 2024, 25, 48. [Google Scholar] [CrossRef]
PaO2/FiO2 | Neutrophils Count (n° × 103/µL) | CRP (mg/dL) | D-Dimer (ng/mL FEU) | IL-6 (pg/mL) | PLT (n° × 103/µL) | LDH (U/L) | PCT (ng/mL) | |
---|---|---|---|---|---|---|---|---|
MPO-DNA (%) | p = 0.02 | p = 0.006 | n.s | n.s | n.s | n.s | n.s | n.s |
enolase-DNA (%) | p = 0.0004 | p < 0.0001 | n.s | n.s | n.s | n.s | n.s | n.s |
calprotectin-DNA (%) | p = 0.01 | p = 0.0001 | n.s | n.s | n.s | n.s | n.s | n.s |
PaO2/FiO2 | - | p = 0.004 | p = 0.052 | n.s | n.s | n.s | p = 0.02 | n.s |
Neutrophils count (n° × 103/µL) | p = 0.004 | - | n.s | n.s | n.s | n.s | n.s | n.s |
CRP (mg/dL) | p = 0.052 | n.s | - | n.s | p = 0.02 | n.s | p = 0.006 | p < 0.0001 |
D-dimer (ng/mL FEU) | n.s | n.s | n.s | - | n.s | n.s | p = 0.005 | p = 0.008 |
IL-6 (pg/mL) | n.s | n.s | p = 0.02 | n.s | - | n.s | n.s | n.s |
PLT (n° × 103/µL) | n.s | n.s | n.s | n.s | n.s | - | n.s | n.s |
LDH (U/L) | p = 0.02 | n.s | p = 0.006 | p = 0.05 | n.s | n.s | - | p = 0.04 |
PCT (ng/mL) | n.s | n.s | p < 0.0001 | p = 0.008 | n.s | n.s | p = 0.04 | - |
Demographic characteristics | |
---|---|
Healty subjects (n°) | 25 |
Mean age—yr (range) | 44 (27−61) |
Sex (M/F) | 12/13 |
Patients (n°) | 40 |
Mean age—yr (range) | 64 (42−83) |
Sex (M/F) | 21/19 |
Comorbidities | |
Obesity n° (%) | 8/40 (20%) |
Hypertension n° (%) | 14/40 (47.5%) |
Diabetes n° (%) | 9/40 (22.5%) |
Dyslipidemia n° (%) | 4/40 (10%) |
Clinical parameters | |
PaO2/FiO2 | 199.6 ± 90.3 |
Neutrophil count (n° × 103/µL) (mean ± SD) | 8.5 ± 6.8 |
CRP (mg/dL) (mean ± SD) | 10.3 ± 8.3 |
IL-6 (pg/mL) (mean ± SD) | 26.1 ± 28.3 |
D-dimer (ng/mL FEU) (mean ± SD) | 1871 ± 4435 |
LDH (U/L) (mean ± SD) | 395.2 ± 181.8 |
PCT (ng/mL) (mean ± SD) | 0.8 ± 2.2 |
PLT (n° × 103/µL) (mean ± SD) | 231.8 ± 113 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pisani, F.; Porciani, C.; Croia, C.; Pucino, V.; Virdis, A.; Puxeddu, I.; Migliorini, P.; Pratesi, F. Novel Methods for the Analysis of Serum NET Remnants: Evaluation in Patients with Severe COVID-19. Int. J. Mol. Sci. 2025, 26, 2221. https://doi.org/10.3390/ijms26052221
Pisani F, Porciani C, Croia C, Pucino V, Virdis A, Puxeddu I, Migliorini P, Pratesi F. Novel Methods for the Analysis of Serum NET Remnants: Evaluation in Patients with Severe COVID-19. International Journal of Molecular Sciences. 2025; 26(5):2221. https://doi.org/10.3390/ijms26052221
Chicago/Turabian StylePisani, Francesco, Caterina Porciani, Cristina Croia, Valentina Pucino, Agostino Virdis, Ilaria Puxeddu, Paola Migliorini, and Federico Pratesi. 2025. "Novel Methods for the Analysis of Serum NET Remnants: Evaluation in Patients with Severe COVID-19" International Journal of Molecular Sciences 26, no. 5: 2221. https://doi.org/10.3390/ijms26052221
APA StylePisani, F., Porciani, C., Croia, C., Pucino, V., Virdis, A., Puxeddu, I., Migliorini, P., & Pratesi, F. (2025). Novel Methods for the Analysis of Serum NET Remnants: Evaluation in Patients with Severe COVID-19. International Journal of Molecular Sciences, 26(5), 2221. https://doi.org/10.3390/ijms26052221