Latent Profile Analysis of Acute Stress Disorder Symptoms and Their Links to Individual Characteristics and Mental Health Among College Students During the Early COVID-19 Pandemic
Abstract
:1. Introduction
1.1. Literature Review
1.2. Research Questions and Hypothesis Development
2. Materials and Methods
2.1. Participants and Procedure
2.2. Measures
2.2.1. Acute Stress Disorder Scale
2.2.2. Perceived Social Support Scale
2.2.3. The General Anxiety Symptoms Scale (GAD-7)
2.2.4. The Patient Health Questionnaire (PHQ-9)
2.2.5. The Satisfaction with Life Scale (SWLS)
2.3. Data Analysis
3. Results
3.1. Latent Profile Analysis of ASD
3.2. Predictors of ASD Profiles in Student Characteristics
3.3. Differences in Mental Health-Related Outcomes Among ASD Profiles
4. Discussion
4.1. Implications
4.2. Limitations and Directions for Future Research
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bryant, R.A. Acute stress disorder. Curr. Opin. Psychol. 2017, 14, 127–131. [Google Scholar] [CrossRef] [PubMed]
- Parker, C.; Shalev, D.; Hsu, I.; Shenoy, A.; Cheung, S.; Nash, S.; Shapiro, P.A. Depression, anxiety, and acute stress disorder among patients hospitalized with COVID-19: A prospective cohort study. J. Acad. Consult. Liaison Psychiatry 2021, 62, 211–219. [Google Scholar] [CrossRef] [PubMed]
- South, M.; Rodgers, J.; Van Hecke, A. Anxiety and ASD: Current progress and ongoing challenges. J. Autism Dev. Disord. 2017, 47, 3679–3681. [Google Scholar] [CrossRef] [PubMed]
- López-Díaz, Á.; Lorenzo-Herrero, P.; Lara, I.; Fernández-González, J.L.; Ruiz-Veguilla, M. Acute stress and substance use as predictors of suicidal behaviour in acute and transient psychotic disorders. Psychiatry Res. 2018, 269, 414–418. [Google Scholar] [CrossRef] [PubMed]
- Shahrour, G.; Dardas, L.A. Acute stress disorder, coping self-efficacy and subsequent psychological distress among nurses amid COVID-19. J. Nurs. Manag. 2020, 28, 1686–1695. [Google Scholar] [CrossRef]
- Zhou, X.; Yao, B. Social support and acute stress symptoms (ASSs) during the COVID-19 outbreak: Deciphering the roles of psychological needs and sense of control. Eur. J. Psychotraumatol 2020, 11, 1779494. [Google Scholar] [CrossRef]
- Luo, Y.; He, X.; Wang, S.; Li, J.; Zhang, Y. Media exposure predicts acute stress and probable acute stress disorder during the early COVID-19 outbreak in China. PeerJ 2021, 9, e11407. [Google Scholar] [CrossRef]
- Leal Filho, W.; Wall, T.; Rayman-Bacchus, L.; Mifsud, M.; Pritchard, D.J.; Lovren, V.O.; Balogun, A.L. Impacts of COVID-19 and social isolation on academic staff and students at universities: A cross-sectional study. BMC Public Health 2021, 21, 1213. [Google Scholar] [CrossRef]
- Fedorenko, E.J.; Kibbey, M.M.; Contrada, R.J.; Farris, S.G. Psychosocial predictors of virus and social distancing fears in undergraduate students living in a US COVID-19 “hotspot”. Cogn. Behav. Ther. 2021, 50, 217–233. [Google Scholar] [CrossRef]
- Tasso, A.F.; Hisli Sahin, N.; San Roman, G.J. COVID-19 disruption on college students: Academic and socioemotional implications. Psychol. Trauma. 2021, 13, 9–15. [Google Scholar] [CrossRef]
- Haikalis, M.; Doucette, H.; Meisel, M.K.; Birch, K.; Barnett, N.P. Changes in college student anxiety and depression from pre- to during-COVID-19: Perceived stress, academic challenges, loneliness, and positive perceptions. Emerg. Adulthood 2022, 10, 534–545. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.; Yang, J.; Yue, L.; Xu, J.; Liu, X.; Li, W.; He, G. Impact of perception reduction of employment opportunities on employment pressure of college students under COVID-19 epidemic–joint moderating effects of employment policy support and job-searching self-efficacy. Front. Psychol. 2022, 13, 986070. [Google Scholar] [CrossRef] [PubMed]
- Nylund, K.L.; Asparouhov, T.; Muthén, B.O. Deciding on the number of classes in latent class analysis and growth mixture modeling: A Monte Carlo simulation study. Struct. Equ. Model. 2007, 14, 535–569. [Google Scholar] [CrossRef]
- Woo, S.E.; Hofmans, J.; Wille, B.; Tay, L. Person-centered modeling: Techniques for studying associations between people rather than variables. Annu. Rev. Organ. Psychol. Organ. Behav. 2024, 11, 453–480. [Google Scholar] [CrossRef]
- Armour, C.; Hansen, M. Assessing DSM-5 latent subtypes of acute stress disorder dissociative or intrusive? Psychiatry Res. 2015, 225, 476–483. [Google Scholar] [CrossRef]
- Lenferink, L.I.; Egberts, M.R.; Kullberg, M.L.; Meentken, M.G.; Zimmermann, S.; Mertens, Y.L.; Krause-Utz, A. Latent classes of DSM-5 acute stress disorder symptoms in children after single-incident trauma: Findings from an international data archive. Eur. J. Psychotraumatol. 2020, 11, 1717156. [Google Scholar] [CrossRef]
- Straud, C.L.; Moring, J.C.; Hale, W.J. Patterns of acute stress disorder in a sample of blast-injured military service members: A latent profile analysis. Psychol. Trauma 2023, 15, 255–264. [Google Scholar] [CrossRef]
- McKinnon, A.; Meiser-Stedman, R.; Watson, P.; Dixon, C.; WatKassam‐Adamsson, N.; Ehlers, A.; Winston, F.; Smith, P.; Yule, W.; Dalgleish, T. The latent structure of acute stress disorder symptoms in trauma-exposed children and adolescents. J. Child. Psychol. Psychiatry 2016, 57, 1308–1316. [Google Scholar] [CrossRef]
- Shevlin, M.; Hyland, P.; Elklit, A. Different profiles of acute stress disorder differentially predict posttraumatic stress disorder in a large sample of female victims of sexual trauma. Psychol. Assess. 2014, 26, 1155–1161. [Google Scholar] [CrossRef]
- Hansen, M.; Armour, C.; Wang, L.; Elklit, A.; Bryant, R.A. Assessing possible DSM-5 ASD subtypes in a sample of victims meeting caseness for DSM-5 ASD based on self-report following multiple forms of traumatic exposure. J. Anxiety Disord. 2015, 31, 84–89. [Google Scholar] [CrossRef]
- Brown, R.C.; Nugent, N.R.; Hawn, S.E.; Koenen, K.C.; Miller, A.; Amstadter, A.B.; Saxe, G. Predicting the transition from acute stress disorder to posttraumatic stress disorder in children with severe injuries. J. Pediatr. Health Care 2016, 30, 558–568. [Google Scholar] [CrossRef] [PubMed]
- Smyth, J.M.; Zawadzki, M.J.; Juth, V.; Sciamanna, C.N. Global life satisfaction predicts ambulatory affect, stress, and cortisol in daily life in working adults. J. Behav. Med. 2017, 40, 320–331. [Google Scholar] [CrossRef] [PubMed]
- Rohner, S.L.; Bernays, F.; Maercker, A.; Thoma, M.V. Salutary mechanisms in the relationship between stress and health: The mediating and moderating roles of sense of coherence—Revised. Stress Health 2022, 38, 388–401. [Google Scholar] [CrossRef] [PubMed]
- Bryant, R.A.; Moulds, M.L.; Guthrie, R.M. Acute stress disorder scale: A self-report measure of acute stress disorder. Psychol. Assess. 2000, 12, 61–68. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Li, Z.; Shi, Z.; Zhang, Y.; Shen, J. Factor structure of acute stress disorder symptoms in Chinese earthquake victims: A confirmatory factor analysis of the acute stress disorder scale. Pers. Individ. Differ. 2010, 48, 798–802. [Google Scholar] [CrossRef]
- Lin, M.; Hirschfeld, G.; Margraf, J. Brief form of the Perceived Social Support Questionnaire (F-SozU K-6): Validation, norms, and cross-cultural measurement invariance in the USA, Germany, Russia, and China. Psychol. Assess. 2019, 31, 609–621. [Google Scholar] [CrossRef]
- Spitzer, R.L.; Kroenke, K.; Williams, J.B.; Löwe, B. A brief measure for assessing generalized anxiety disorder: The GAD-7. Arch. Intern. Med. 2006, 166, 1092–1097. [Google Scholar] [CrossRef]
- Li, J.; Luo, C.; Liu, L.; Huang, A.; Ma, Z.; Chen, Y.; Zhao, J. Depression, anxiety, and insomnia symptoms among Chinese college students: A network analysis across pandemic stages. J. Affect. Disord. 2024, 356, 54–63. [Google Scholar] [CrossRef]
- Spitzer, R.L.; Kroenke, K.; Williams, J.B.W. Validation and utility of a self-report version of PRIME-MD: The PHQ primary care study. JAMA 1999, 282, 1737–1744. [Google Scholar] [CrossRef]
- Du, N.; Yu, K.; Ye, Y.; Chen, S. Validity study of Patient Health Questionnaire-9 items for Internet screening in depression among Chinese university students. Asia-Pac. Psychiatry 2017, 9, e12266. [Google Scholar] [CrossRef]
- Diener, E.; Emmons, R.A.; Larsen, R.J.; Griffin, S. The satisfaction with life scale. J. Pers. Assess. 1985, 49, 71–75. [Google Scholar] [CrossRef] [PubMed]
- Li, A.; Wang, S.; Liu, X. Childhood psychological maltreatment and life satisfaction among Chinese young adults: The mediating role of internalizing problems and the buffering role of social support. Curr. Psychol. 2023, 42, 7701–7711. [Google Scholar] [CrossRef]
- Muthén, L.K.; Muthén, B.O. Mplus User’s Guide; Muthén & Muthén: Los Angeles, CA, USA, 1998–2022; pp. 165–221. [Google Scholar]
- Podsakoff, P.M.; MacKenzie, S.B.; Lee, J.Y.; Podsakoff, N.P. Common method biases in behavioral research: A critical review of the literature and recommended remedies. J. Appl. Psychol. 2003, 88, 879–903. [Google Scholar] [CrossRef] [PubMed]
- Marsh, H.W.; Ludtke, O.; Trautwein, U.; Morin, A.J.S. Classical latent profile analysis of academic self-concept dimensions: Syndergy of person and variable centered approaches to theoretical models of self-concepts. Struct. Equ. Model. 2009, 16, 191–225. [Google Scholar] [CrossRef]
- Nylund-Gibson, K.; Choi, A.Y. Ten frequently asked questions about latent class analysis. Transl. Issues Psychol. Sci. 2018, 4, 440–461. [Google Scholar] [CrossRef]
- Spurk, D.; Hirschi, A.; Wang, M.; Valero, D.; Kauffeld, S. Latent profile analysis: A review and “how to” guide of its application within vocational behavior research. J. Vocat. Behav. 2020, 120, 103445. [Google Scholar] [CrossRef]
- Lo, Y.; Mendell, N.; Rubin, D. Testing the number of components in a normal mixture. Biometrika 2001, 88, 767–778. [Google Scholar] [CrossRef]
- Lubke, G.; Muthén, B.O. Performance of factor mixture models as a function of model size, covariate effects, and class-specific parameters. Struct. Equ. Model. 2007, 14, 26–47. [Google Scholar] [CrossRef]
- Tein, J.Y.; Coxe, S.; Cham, H. Statistical power to detect the correct number of classes in latent profile analysis. Struct. Equ. Model. 2013, 20, 640–657. [Google Scholar] [CrossRef]
- Asparouhov, T.; Muthén, B. Auxiliary variables in mixture modeling: Three-step approaches using Mplus. Struct. Equ. Model. 2014, 21, 329–341. [Google Scholar] [CrossRef]
- Asparouhov, T.; Muthén, B. Auxiliary Variables in Mixture Modeling: Using the BCH Method in Mplus to Estimate a Distal Outcome Model and an Arbitrary Secondary Model; Mplus Web Notes: No. 21; Muthén & Muthén: Los Angeles, CA, USA, 2021. [Google Scholar]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences, 2nd ed.; Erlbaum: Hillsdale, NJ, USA, 1988. [Google Scholar]
- Sun, S.; Pan, W.; Wang, L.L. A comprehensive review of effect size reporting and interpreting practices in academic journals in education and psychology. J. Educ. Psychol. 2010, 102, 989–1004. [Google Scholar] [CrossRef]
- Hou, F.; Bi, F.; Jiao, R.; Luo, D.; Song, K. Gender differences of depression and anxiety among social media users during the COVID-19 outbreak in China: A cross-sectional study. BMC Public Health 2020, 20, 1648. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.; Li, B.J.; Zhang, H.; Zhang, G. Social media use for coping with stress and psychological adjustment: A transactional model of stress and coping perspective. Front. Psychol. 2023, 14, 1140312. [Google Scholar] [CrossRef] [PubMed]
- Li, S.H.; Graham, B.M. Why are women so vulnerable to anxiety, trauma-related and stress-related disorders? The potential role of sex hormones. Lancet Psychiatry 2017, 4, 73–82. [Google Scholar] [CrossRef] [PubMed]
- Yuan, J.; Luo, Y.; Yan, J.H.; Meng, X.; Yu, F.; Li, H. Neural correlates of the females’ susceptibility to negative emotions: An insight into gender-related prevalence of affective disturbances. Hum. Brain Mapp. 2009, 30, 3676–3686. [Google Scholar] [CrossRef]
- Lin, J.; Zou, L.; Lin, W.; Becker, B.; Yeung, A.; Cuijpers, P.; Li, H. Does gender role explain a high risk of depression? A meta-analytic review of 40 years of evidence. J. Affect. Disord. 2021, 294, 261–278. [Google Scholar] [CrossRef]
- Thomeer, M.B.; Moody, M.D.; Yahirun, J. Racial and ethnic disparities in mental health and mental health care during the COVID-19 pandemic. J. Racial Ethn. Health Disparities 2023, 10, 961–976. [Google Scholar] [CrossRef]
- Kamal, K.; Li, J.J.; Hahm, H.C.; Liu, C.H. Psychiatric impacts of the COVID-19 global pandemic on US sexual and gender minority young adults. Psychiatry Res. 2021, 299, 113855. [Google Scholar] [CrossRef]
- Perrigo, J.L.; Samek, A.; Hurlburt, M. Minority and low-SES families’ experiences during the early phases of the COVID-19 pandemic crisis: A qualitative study. Child. Youth Serv. Rev. 2022, 140, 106594. [Google Scholar] [CrossRef]
- Yoshioka, T.; Okubo, R.; Tabuchi, T.; Odani, S.; Shinozaki, T.; Tsugawa, Y. Factors associated with serious psychological distress during the COVID-19 pandemic in Japan: A nationwide cross-sectional internet-based study. BMJ Open 2021, 11, e051115. [Google Scholar] [CrossRef]
- Matsui, K.; Chung, F.; Bjelajac, A.K.; Merikanto, I.; Korman, M.; Mota-Rolim, S.; Inoue, Y. Associations between changes in habitual sleep duration and lower self-rated health among COVID-19 survivors: Findings from a survey across 16 countries/regions. BMC Public Health 2023, 23, 2352. [Google Scholar] [CrossRef] [PubMed]
- Jing, X.; Meng, H.; Li, Y.; Lu, L.; Yao, Y. Associations of psychological capital, coping style and emotional intelligence with self-rated health status of college students in China during COVID-19 pandemic. Psychol. Res. Behav. Manag. 2022, 15, 2587–2597. [Google Scholar] [CrossRef] [PubMed]
- Monroe, S.M.; Simons, A.D. Diathesis-stress theories in the context of life stress research: Implications for the depressive disorders. Psychol. Bull. 1991, 110, 406–425. [Google Scholar] [CrossRef] [PubMed]
- Ye, Z.; Yang, X.; Zeng, C.; Wang, Y.; Shen, Z.; Li, X.; Lin, D. Resilience, social support, and coping as mediators between COVID-19-related stressful experiences and acute stress disorder among college students in China. Appl. Psychol. Health Well-Being 2020, 12, 1074–1094. [Google Scholar] [CrossRef] [PubMed]
- Coulaud, P.J.; Jesson, J.; Bolduc, N.; Ferlatte, O.; Jenkins, E.; Bertrand, K.; Knight, R. Young adults’ mental health and unmet service needs in the context of the COVID-19 pandemic across Canada and France. Community Ment. Health J. 2023, 59, 222–232. [Google Scholar] [CrossRef]
- Salimi, N.; Gere, B.; Talley, W.; Irioogbe, B. College students mental health challenges: Concerns and considerations in the COVID-19 pandemic. J. Coll. Stud. Psychother. 2023, 37, 39–51. [Google Scholar] [CrossRef]
Profiles Number | AIC | BIC | aBIC | Entropy | BLRT (p) | LMRT (p) | Profile Prevalence |
---|---|---|---|---|---|---|---|
1 | 10,549.96 | 10,590.67 | 10,565.26 | — | — | — | — |
2 | 8831.80 | 8897.95 | 8856.66 | 0.877 | <0.001 | <0.001 | 0.747/0.253 |
3 | 8331.89 | 8423.48 | 8366.30 | 0.839 | <0.001 | <0.001 | 0.567/0.316/0.117 |
4 | 8128.61 | 8245.64 | 8172.59 | 0.868 | <0.001 | 0.011 | 0.551/0.303/0.130/0.016 |
ASD Symptoms | High ASD Profile (11.7%) | Moderate ASD Profile (31.6%) | Low ASD Profile (56.7%) | |||
---|---|---|---|---|---|---|
M | SD | M | SD | M | SD | |
Dissociation | 2.81 | 0.51 | 2.12 | 0.51 | 1.34 | 0.51 |
Reexperiencing | 3.12 | 0.54 | 2.45 | 0.54 | 1.69 | 0.54 |
Avoidance | 2.99 | 0.52 | 2.28 | 0.52 | 1.46 | 0.52 |
Arousal | 3.15 | 0.36 | 1.92 | 0.36 | 1.31 | 0.36 |
Profile Type | High ASD Profile | Moderate ASD Profile | Low ASD Profile |
---|---|---|---|
High ASD profile | 0.947 | 0.053 | <0.001 |
Moderate ASD profile | 0.016 | 0.877 | 0.106 |
Low ASD profile | <0.001 | 0.048 | 0.952 |
High vs. Low ASD | Moderate vs. Low ASD | |||
---|---|---|---|---|
B | OR | B | OR | |
Gender | 0.71 ** | 1.86 * | 0.62 ** | 2.03 * |
Age | 0.05 | 1.04 | −0.01 | 0.99 |
Grade | −0.01 | 0.99 | −0.05 | 0.95 |
Ethnicity | 0.44 * | 1.55 | 0.47 ** | 1.60 * |
SES | −0.34 * | 0.71 * | −0.27 * | 0.76 ** |
Self-rated health | −0.84 *** | 0.60 *** | −0.50 *** | 0.43 *** |
Perceived social support | 0.07 | 1.07 | −0.18 * | 0.83 * |
High ASD Profile | Moderate ASD Profile | Low ASD Profile | Overall χ2 Test Value (df) | Effect Size (Cramér’s V) | ||||
---|---|---|---|---|---|---|---|---|
M | SE | M | SE | M | SE | |||
Anxiety | 2.03 | 0.06 | 1.56 | 0.02 | 1.18 | 0.01 | χ2(2) = 371.60 *** | 0.39 |
Depression | 1.81 | 0.06 | 1.39 | 0.03 | 1.12 | 0.01 | χ2(2) = 194.54 *** | 0.28 |
Life satisfaction | 3.18 | 0.11 | 3.20 | 0.07 | 3.53 | 0.05 | χ2(2) = 15.27 *** | 0.08 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yan, X.; Gao, B.; Cai, X.; Fan, Y.; Zhao, C.; Bai, L. Latent Profile Analysis of Acute Stress Disorder Symptoms and Their Links to Individual Characteristics and Mental Health Among College Students During the Early COVID-19 Pandemic. Behav. Sci. 2024, 14, 1020. https://doi.org/10.3390/bs14111020
Yan X, Gao B, Cai X, Fan Y, Zhao C, Bai L. Latent Profile Analysis of Acute Stress Disorder Symptoms and Their Links to Individual Characteristics and Mental Health Among College Students During the Early COVID-19 Pandemic. Behavioral Sciences. 2024; 14(11):1020. https://doi.org/10.3390/bs14111020
Chicago/Turabian StyleYan, Xiaoqi, Bin Gao, Xianghua Cai, Yongsheng Fan, Chong Zhao, and Lu Bai. 2024. "Latent Profile Analysis of Acute Stress Disorder Symptoms and Their Links to Individual Characteristics and Mental Health Among College Students During the Early COVID-19 Pandemic" Behavioral Sciences 14, no. 11: 1020. https://doi.org/10.3390/bs14111020
APA StyleYan, X., Gao, B., Cai, X., Fan, Y., Zhao, C., & Bai, L. (2024). Latent Profile Analysis of Acute Stress Disorder Symptoms and Their Links to Individual Characteristics and Mental Health Among College Students During the Early COVID-19 Pandemic. Behavioral Sciences, 14(11), 1020. https://doi.org/10.3390/bs14111020