Skip to main content

Advertisement

Log in

Evaluation of the inhibitory potential of bioactive compounds against SARS-CoV-2 by in silico approach

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Context

The COVID-19 (coronavirus disease 19) pandemic brought on by the SARS-CoV-2 outbreak (severe acute respiratory syndrome coronavirus 2) has stimulated the exploration of various available chemical compounds that could be used to treat the infection. This has driven numerous researchers to investigate the antiviral potential of several bioactive compounds from medicinal plants due to their reduced adverse effects compared to chemicals. Some of the bioactive compounds used in folklore treatment strategies are reported as effective inhibitors against the proliferative and infective cycles of SARS-CoV-2. The secondary metabolites from plants are generally used to treat various diseases due to their intact medicinal properties. The present study analyzes the inhibitory potential of phytochemicals from medicinal plants like Sphaeranthus indicus, Lantana camara, and Nelumbo nucifera against SARS-CoV-2 by molecular docking.

Methods

Ten druggable protein targets from SARS-CoV-2 are docked against the phytochemicals from the selected medicinal plants. The phytocompounds astragalin, isoquercetin, and 5-hydroxy-7-methoxy-6-c-glycosy flavone were found to have lower binding energy depicting their inhibitive potential compared with the reported inhibitors that are used in the treatment of SARS-CoV-2 infection. The phytocompounds found to have the least binding energy were selected for further analyses. To assess the compounds’ potential as drugs, their ADMET characteristics were also examined. Sphaeranthus indicus, Lantana camara, and Nelumbo nucifera six possible compounds were separately screened for ADME and toxicity characteristics; then, the results were analyzed. To assess the impact of the phytocompound binding on the dynamics of SARS-CoV-2 ribonuclease protein NSP15, microsecond-level all atomistic molecular dynamics simulations were performed, and their dynamics were analyzed. Microsecond-level molecular dynamics simulations of both the ligands complexed with NSP15 revealed that the ligand induces allosteric effects on NSP15, which could lead to destabilization of NSP15 hexameric interface and loss of RNA binding. The low binding energy exhibited by the phytochemicals from Lantana camera, Sphaeranthus indicus, and Nelumbo nucifera against the protein targets of SARS-CoV-2 showed inhibitory potential by the selected molecules. Their predicted interference of the enzymes involved in the molecular mechanisms aiding the proliferation of SARS-CoV-2 indicated the inhibitive ability of the phytochemicals.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

Data availability

The MD simulation trajectories analyzed in this work will be shared upon request.

References

  1. Ignacimuthu S, Ayyanar M, Sankarasivaraman K (2008) Ethnobotanical study of medicinal plants used by Paliyar tribals in Theni district of Tamil Nadu. India Fitoterapia 79(7–8):562–568. https://doi.org/10.1016/j.fitote.2008.06.003

    Article  CAS  PubMed  Google Scholar 

  2. Kiran G, Karthik L, Devi MS, Sathiyarajeswaran P, Kanakavalli K, Kumar KM, Kumar DR (2020) In silico computational screening of KabasuraKudineer-official Siddha formulation and JACOM against SARS-CoV-2 spike protein. J Ayurveda Integr Med 100324.https://doi.org/10.1016/j.jaim.2020.05.009

  3. Ramalingam V, Venkataramani G (2020) Unlocking the potential of traditional native medicines-a perspective to manage the COVID-19 pandemic. J Res Tradition Med 6(1):21–28

    Google Scholar 

  4. Srivastava A, Rengaraju M, Srivastava S, Narayanan V, Gupta V, Upadhayay R, Kumar J, Parameswaran S, KanakavalliKadarkarai, AarthiVelmurugan (2021) Efficacy of two siddha polyherbal decoctions, Nilavembu Kudineer and Kaba Sura Kudineer, along with standard allopathy treatment in the management of mild to moderate symptomatic COVID-19 patients—a double-blind, placebo-controlled, clinical trial. Trials 22(1):570

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Khanna K, Kohli SK, Kaur R, Bhardwaj A, Bhardwaj V, Ohri P, Sharma A, Ahmad A, Bhardwaj R, Ahmad P (2021) Herbal immune-boosters: substantial warriors of pandemic Covid-19 battle. Phytomedicine 85:153361

    Article  CAS  PubMed  Google Scholar 

  6. Khan M, Srivastava SK, Syamasundar KV, Singh M, Naqvi AA (2002) Chemical composition of leaf and flower essential oil of Lantana camara from India. Flavour Fragr J 17(1):75–77. https://doi.org/10.1002/ffj.1047

    Article  CAS  Google Scholar 

  7. Nea F, Tanoh EA, Yapi TA, Garcia G, Tomi F, Tonzibo ZF (2017) Chemical investigation on leaf, flower and fruit oils of lantana camara from Côte d’Ivoire. Nat Prod Commun 12(4):1934578X1701200434

    CAS  Google Scholar 

  8. Ramachandran S (2013) Review on Sphaeranthus indicus Linn. (Koṭṭaikkarantai). Pharm Rev 7(14):157. https://doi.org/10.4103/0973-7847.120517

    Article  CAS  Google Scholar 

  9. Mahajan NG, Chopda MZ, Mahajan RT (2015) A review on Sphaeranthus indicus Linn: multipotential medicinal plant. Int J Pharm Res Allied Sci 4(3):48–74

    CAS  Google Scholar 

  10. Emani LR, Ravada SR, Garaga MR, Meka B, Golakoti T (2017) Four new sesquiterpenoids from Sphaeranthus indicus. Nat Prod Res 31(21):2497–2504. https://doi.org/10.1080/14786419.2017.1315576

    Article  CAS  PubMed  Google Scholar 

  11. Lin Z, Zhang C, Cao D, Damaris RN, Yang P (2019) The latest studies on lotus (Nelumbo nucifera)-an emerging horticultural model plant. Int J Mol Sci 20(15):3680. https://doi.org/10.3390/ijms20153680

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Sheikh SA (2014) Ethno-medicinal uses and pharmacological activities of lotus (Nelumbo nucifera). J Med Plant Stud 2(6):42–46

    Google Scholar 

  13. Chen G, Zhu M, Guo M (2019) Research advances in traditional and modern use of Nelumbo nucifera: phytochemicals, health promoting activities and beyond. Crit Rev Food Sci Nutr 59(sup1):S189–S209. https://doi.org/10.1080/10408398.2018.1553846

    Article  CAS  PubMed  Google Scholar 

  14. Domingo-Calap P, Schubert B, Joly M, Solis M, Untrau M, Carapito R, Bahram S (2018) An unusually high substitution rate in transplant-associated BK polyomavirus in vivo is further concentrated in HLA-C-bound viral peptides. PLoS pathogens 14(10):e1007368. https://doi.org/10.1371/journal.ppat.1007368

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Garcia-Beltran WF, Lam EC, Denis KS, Nitido AD, Garcia ZH, Hauser BM, Feldman J, Pavlovic MN, Gregory DJ, Poznansky MC, Balazs AB (2021) Multiple SARS-CoV-2 variants escape neutralization by vaccine-induced humoral immunity. Cell 184(9):2372–2383. https://doi.org/10.1016/j.cell.2021.03.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. El-Kamand S, Du Plessis MD, Breen N, Johnson L, Beard S, Kwan AH, Richard DJ, Cubeddu L, Gamsjaeger R (2022) A distinct ssDNA/RNA binding interface in the Nsp9 protein from SARS-CoV-2. Proteins Struct Funct Bioinformatics 90(1):176–185. https://doi.org/10.1002/prot.26205

    Article  CAS  Google Scholar 

  17. Krafcikova P, Silhan J, Nencka R, Boura E (2020) Structural analysis of the SARS-CoV-2 methyltransferase complex involved in RNA cap creation bound to sinefungin. Nat Commun 11(1):1–7. https://doi.org/10.1038/s41467-020-17495-9

    Article  CAS  Google Scholar 

  18. Kirchdoerfer RN, Ward AB (2019) Structure of the SARS-CoV nsp12 polymerase bound to nsp7 and nsp8 co-factors. Nat Commun 10(1):1–9. https://doi.org/10.1038/s41467-019-10280-3

    Article  ADS  CAS  Google Scholar 

  19. Nallusamy S, Mannu J, Ravikumar C, Angamuthu K, Nathan B, Nachimuthu K, Ramasamy G, Muthurajan R, Subbarayalu M, Neelakandan K (2021) Exploring phytochemicals of traditional medicinal plants exhibiting inhibitory activity against main protease, spike glycoprotein, RNA-dependent RNA polymerase and non-structural proteins of SARS-CoV-2 through virtual screening. Front Pharmacol 12:1704. https://doi.org/10.3389/fphar.2021.667704

    Article  CAS  Google Scholar 

  20. Ma Y, Wu L, Shaw N, Gao Y, Wang J, Sun Y, … Rao Z (2015) Structural basis and functional analysis of the SARS coronavirus nsp14–nsp10 complex. Proc Natl Acad Sci 112(30):9436–9441.https://doi.org/10.1073/pnas.1508686112

  21. Pillon MC, Frazier MN, Dillard LB, Williams JG, Kocaman S, Krahn JM, … Stanley RE (2021) Cryo-EM structures of the SARS-CoV-2 endoribonuclease Nsp15 reveal insight into nuclease specificity and dynamics. Nat Commun 12(1):1–12.https://doi.org/10.1038/s41467-020-20608-z

  22. Jin Z, Du X, Xu Y, Deng Y, Liu M, Zhao Y, Zhang B, Li X, Zhang L, Peng Duan C, Y, Yang H (2020) Structure of Mpro from SARS-CoV-2 and discovery of its inhibitors. Nature 582(7811):289-293. https://doi.org/10.1038/s41586-020-2223-y

  23. Shin D, Mukherjee R, Grewe D, Bojkova D, Baek K, Bhattacharya A, … Dikic I (2020) Papain-like protease regulates SARS-CoV-2 viral spread and innate immunity. Nature 587(7835):657–662.https://doi.org/10.1038/s41586-020-2601-5

  24. Ndombera F, Maiyoh G, Tuei V (2019) Pharmacokinetic, physicochemical and medicinal properties of n-glycoside anti-cancer agent more potent than 2-deoxy-d-glucose in lung cancer cells

  25. Daina A, Zoete V (2016) A boiled-egg to predict gastrointestinal absorption and brain penetration of small molecules. ChemMedChem 11(11):1117–1121. https://doi.org/10.1002/cmdc.201600182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Newman JA, Douangamath A, Yadzani S, Yosaatmadja Y, Aimon A, Brandão-Neto J, Dunnett L, Gorrie-Stone T, Skyner R, Fearon D, Schapira M (2021) Structure, mechanism and crystallographic fragment screening of the SARS-CoV-2 NSP13 helicase. Nat Commun 12(1):1–11. https://doi.org/10.1038/s41467-021-25166-6

    Article  CAS  Google Scholar 

  27. Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE (2000) The protein data bank. Nucleic Acids Res 28(1):235–242. https://doi.org/10.1093/nar/28.1.235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Rizvi SMD, Shakil S, Haneef M (2013) A simple click by click protocol to perform docking: AutoDock 4.2 made easy for non-bioinformaticians. EXCLI J 12:831

    PubMed  PubMed Central  Google Scholar 

  29. Seeliger D, de Groot BL (2010) Ligand docking and binding site analysis with PyMOL and Autodock/Vina. J Comput Aided Mol Des 24(5):417–422. https://doi.org/10.1007/s10822-010-9352-6

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  30. Forli S, Huey R, Pique ME, Sanner MF, Goodsell DS, Olson AJ (2016) Computational protein–ligand docking and virtual drug screening with the AutoDock suite. Nat Protoc 11(5):905–919. https://doi.org/10.1038/nprot.2016.051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Adeniji SE, Arthur DE, Abdullahi M, Haruna A (2020) Quantitative structure–activity relationship model, molecular docking simulation and computational design of some novel compounds against DNA gyrase receptor. Chemistry Africa 3:391–408. https://doi.org/10.1007/s42250-020-00132-9

    Article  CAS  Google Scholar 

  32. Cheng F, Li W, Zhou Y, Shen J, Wu Z, Liu G, Lee PW, Tang Y (2012) admetSAR: a comprehensive source and free tool for assessment of chemical ADMET properties. J Chem Inf Model. https://doi.org/10.1021/ci300367a

    Article  PubMed  Google Scholar 

  33. Ranjith D, Ravikumar C (2019) SwissADME predictions of pharmacokinetics and drug-likeness properties of small molecules present in Ipomoea mauritiana Jacq. J Pharmacogn Phytochem 8(5):2063–2073

    Google Scholar 

  34. Manzano JA, Pilapil DYH, Fernandez RAT, Ching JK, Quimque MTJ, Notarte KI, Macabeo AP (2021) Repurposing multi-targeting plant natural product scaffolds in silico against SARS-CoV-2 non-structural proteins implicated in viral pathogenesis. Biol Med Chem. https://doi.org/10.26434/chemrxiv.14125433.v1

    Article  Google Scholar 

  35. Nisha CM, Kumar A, Nair P, Gupta N, Silakari C, Tripathi T, Kumar A (2016) Molecular docking and in silico ADMET study reveals acylguanidine 7a as a potential inhibitor of β-secretase. Adv Bioinformatics 2016

  36. Wang J, Kollman P, Casw D, Wang W (2004) Antechamber, an accessory software package for mol mech calculations. J Am Chem Soc 222(U403)

  37. Jakalian A, Jack D, Bayly C (2002) Fast, efficient generation of high-quality atomic charges. AM1-BCC model: II. Parameterization and validation. J Comput Chem 23(16):1623–1641. https://doi.org/10.1002/jcc.10128

    Article  CAS  PubMed  Google Scholar 

  38. Sousa da Silva A, Vranken W (2012) ACPYPE - AnteChamberPYthon Parser interfacE. BMC Res Notes 5(1). https://doi.org/10.1186/1756-0500-5-367

  39. Ash S, Pyne S, Misra A, De S (2010) Excited state intramolecular proton transfer in 3-hydroxy flavone and 5-hydroxy flavone: a DFT based comparative study. J Mol Model 16(5):831–839. https://doi.org/10.1007/s00894-009-0578-y

    Article  CAS  PubMed  Google Scholar 

  40. Pettersen E, Goddard T, Couch G, Meng E, Ferrin T, Huang C, Greenblatt D (2004) UCSF Chimera? A visualization system for exploratory research and analysis. J Comput Chem 25(13):1605–1612. https://doi.org/10.1002/jcc.20084

    Article  CAS  PubMed  Google Scholar 

  41. Berendsen H, Drunen R, van der Spoel D (1995) GROMACS: a message-passing parallel molecular dynamics implementation. Comput Phys Commun 91:43–56

    Article  ADS  CAS  Google Scholar 

  42. Kutzner C, Esztermann A, Páll S, Groot B, Fechner M, Grubmüller H (2019) More bang for your buck: improved use of GPU nodes for GROMACS 2018. J Comput Chem 40(27):2418–2431. https://doi.org/10.1002/jcc.26011

    Article  CAS  PubMed  Google Scholar 

  43. Lindorff-Larsen K, Palmo K, Piana S, Klepeis J, Shaw D, Maragakis P, Dror R (2010) Improved side-chain torsion potentials for the Amber ff99SB protein force field: improved protein side-chain potentials. Proteins Struct Funct Bioinforma 78(8):1950–1958. https://doi.org/10.1002/prot.22711

    Article  CAS  Google Scholar 

  44. Price D, Brooks C (2004) A modified TIP3P water potential for simulation with Ewald summation. J Chem Phys 121(20):10096–10103. https://doi.org/10.1063/1.1808117

    Article  ADS  CAS  PubMed  Google Scholar 

  45. Lemak A, Balabaev N (1994) On the Berendsen thermostat. Mol Simul 13(3):177–187. https://doi.org/10.1080/08927029408021981

    Article  CAS  Google Scholar 

  46. Grubmüller H, Windemuth A, Heller H, Schulten K (1991) Generalized Verlet algorithm for efficient molecular dynamics simulations with long-range interactions. Mol Simul 6(1–3):121–142. https://doi.org/10.1080/08927029108022142

    Article  Google Scholar 

  47. Essmann U, Perera L, Berkowitz M, Pedersen L, Darden T, Lee H (1995) A smooth particle mesh Ewald method. J Chem Phys 103(19):8577–8593. https://doi.org/10.1063/1.470117

    Article  ADS  CAS  Google Scholar 

  48. Frazier M, Krahn J, Stanley R, Wilson I, Butay K, Dillard L, Borgnia M (2022) Flipped over U: structural basis for dsRNA cleavage by the SARS-CoV-2 endoribonuclease. Nucleic Acids Res 50(14):8290–8301. https://doi.org/10.1093/nar/gkac589

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Humphrey W, Schulten S, Dalke A (1996) VMD: visual molecular dynamics. 14(1):33–38. https://doi.org/10.1016/0263-7855(96)00018-5

  50. Bakan A, Bahar I, Meireles L (2011) ProDy : protein dynamics inferred from theory and experiments. Bioinformatics 27(11):1575–1577. https://doi.org/10.1093/bioinformatics/btr168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Naveed M, Ahmed I, Khalid N, Mumtaz AS (2014) Bioinformatics based structural characterization of glucose dehydrogenase (gdh) gene and growth promoting activity of Leclercia sp. QAU-66. Braz J Microbiol 45:603–611

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Ismail MM, El-Zahabi HS, Ibrahim RS, Mehany AB (2020) Design and synthesis of novel tranilast analogs: docking, antiproliferative evaluation and in-silico screening of TGFβR1 inhibitors. Bioorg Chem 105:104368. https://doi.org/10.1016/j.bioorg.2020.104368

    Article  CAS  PubMed  Google Scholar 

  53. Pandey P, Singh D, Hasanain M, Ashraf R, Maheshwari M, Choyal K, … Sarkar J (2019) 7-hydroxyfrullanolide, isolated from Sphaeranthus indicus, inhibits colorectal cancer cell growth by p53-dependent and-independent mechanism. Carcinogenesis 40(6):791–804. https://doi.org/10.1093/carcin/bgy176

  54. Ambavade SD, Mhetre NA, Tate VD, Bodhankar SL (2006) Pharmacological evaluation of the extracts of Sphaeranthus indicus flowers on anxiolytic activity in mice. Indian J Pharmacol 38(4):254. https://doi.org/10.4103/0253-7613.27021

    Article  Google Scholar 

  55. Machado RR, Valente Júnior W, Lesche B, Coimbra ES, Souza NBD, Abramo C, Soares GLG, Kaplan MAC (2012) Essential oil from leaves of Lantana camara: a potential source of medicine against leishmaniasis. Rev Bras 22:1011–1017. https://doi.org/10.1590/S0102-695X2012005000057

    Article  CAS  Google Scholar 

  56. Kalita S, Kumar G, Karthik L, Rao KVB (2012) A review on medicinal properties of Lantana camara Linn. Res J Pharm Technol 5(6):711–715

    Google Scholar 

  57. Tungmunnithum D, Pinthong D, Hano C (2018) Flavonoids from Nelumbo nucifera Gaertn., a medicinal plant: uses in traditional medicine, phytochemistry and pharmacological activities. Medicines 5(4):127. https://doi.org/10.3390/medicines5040127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Naveed M, Ain N, Aziz T, Javed K, Ishfaq H, Khalil S, Alharbi M, Alshammari A, Alasmari AF (2023) A pharmacophore screening approach of homeopathic phenols for a renovated design of fragment-optimized Bauhiniastatin-1 as a drug against acromegaly. Eur Rev Med Pharmacol Sci 27(12)

  59. Deng X, Baker S (2018) An “old” protein with a new story: coronavirus endoribonuclease is important for evading host antiviral defenses. Virology 517:157–163. https://doi.org/10.1016/j.virol.2017.12.024

    Article  CAS  PubMed  Google Scholar 

  60. Kim Y, Maltseva N, Jedrzejczak R, Wilamowski M, Joachimiak A, Godzik A, Michalska K, Endres M (2020) Crystal structure of NSP15 endoribonuclease NendoU from SARS-CoV -2. Protein Sci 29(7):1596–1605. https://doi.org/10.1002/pro.3873

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Sigrist C, Bairoch A, Langendijk-Genevaux P, Le Saux V, Hulo N, De Castro E (2005) ProRule: a new database containing functional and structural information on PROSITE profiles. Bioinformatics 21(21):4060–4066. https://doi.org/10.1093/bioinformatics/bti614

    Article  CAS  PubMed  Google Scholar 

  62. Sigrist C, Bougueleret L, Hulo N, Xenarios I, de Castro E, Cuche B, Cerutti L, Bridge A (2012) New and continuing developments at PROSITE. Nucleic Acids Res 41(D1):D344–D347. https://doi.org/10.1093/nar/gks1067

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Dutta A, Greger I, Krieger J, Lee J, Bahar I, Garcia-Nafria J (2015) Cooperative dynamics of intact AMPA and NMDA glutamate receptors: similarities and subfamily-specific differences. Structure 23(9):1692–1704. https://doi.org/10.1016/j.str.2015.07.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Gorlenko C, Kiselev H, Budanova E, Zamyatnin A, Ikryannikova L (2020) Plant secondary metabolites in the battle of drugs and drug-resistant bacteria: new heroes or worse clones of antibiotics? Antibiotics 9(4):170. https://doi.org/10.3390/antibiotics9040170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank the Kalasalingam Academy of Research and Education, Srivilliputhur, India, for providing with the facilities throughout this work. The authors also thank the financial resources and infrastructural support from Yenepoya (Deemed to be University). The authors also thank the ROMEO-HPC of Université de Reims Champagne-Ardenne, France, for computational resources for the MD simulations.

Funding

Ms. Shalini Mohan, Junior Research Fellow, acknowledges the Department of Biotechnology (DBT), Government of India, for the financial grant offered with the fellowship ID DBT/2022–23/KARE/2059. Dr. Lakshmanan Muthulakshmi acknowledges the Department of Scientific and Industrial Research for the financial grant (DSIR/TDUPW-1101/3/2021-IRD (SC)/-DSIR) and Kalasalingam Academy of Research and Education for seed money grant in the year 2021–2022. Rajas M. Rao acknowledges computational resources from Prof. Manuel Dauchez and ROMEO-HPC, University of Reims Champagne-Ardenne.

Author information

Authors and Affiliations

Authors

Contributions

MSRJ, AP, NV and SV did the molecular docking and review of literature. RPD and RMR did the molecular dynamics simulations and analysis. LM compiled the work and edited the manuscript. All the authors wrote, reviewed and approved the final version of the manuscript.

Corresponding authors

Correspondence to Rajas M. Rao or Lakshmanan Muthulakshmi.

Ethics declarations

Ethical approval

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 4589 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rani, J.M.S., Akkarshana, P., Neelaveni, V. et al. Evaluation of the inhibitory potential of bioactive compounds against SARS-CoV-2 by in silico approach. J Mol Model 30, 60 (2024). https://doi.org/10.1007/s00894-024-05858-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-024-05858-8

Keywords

Profiles

  1. Rajas M. Rao