Evaluation of Type I Interferon Treatment in Hospitalized COVID-19 Patients: A Retrospective Cohort Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Database Network
2.2. Study and Cohort Design
2.3. Outcomes
3. Results
3.1. Cohort Characteristics: Research Network
3.2. Outcomes: Research Network
3.3. Cohort Characteristics: COVID-19 Research Network
3.4. Respiratory Outcomes and Death 1–30 Days Afterwards: COVID-19 Research Network
3.5. Respiratory Outcomes, Death, and PASC 1 Day Afterwards—27 October 2023: COVID-19 Research Network
3.6. Cardiovascular Outcomes 1 Day to Anytime Afterwards: COVID-19 Research Network
3.7. Neurological and Psychiatric Outcomes 1 Day to Anytime Afterwards: COVID-19 Research Network
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- COVID—Coronavirus Statistics—Worldometer. Available online: https://www.worldometers.info/coronavirus/ (accessed on 20 June 2024).
- FDA. Know Your Treatment Options for COVID-19. 2023. Available online: https://www.fda.gov/consumers/consumer-updates/know-your-treatment-options-covid-19 (accessed on 11 March 2024).
- VanBlargan, L.A.; Errico, J.M.; Halfmann, P.J.; Zost, S.J.; Crowe, J.E.; Purcell, L.A.; Kawaoka, Y.; Corti, D.; Fremont, D.H.; Diamond, M.S. An infectious SARS-CoV-2 B.1.1.529 Omicron virus escapes neutralization by therapeutic monoclonal antibodies. Nat. Med. 2022, 28, 490–495. [Google Scholar] [CrossRef] [PubMed]
- COVID-19 Treatment Guidelines. Anti-SARS-CoV-2 Monoclonal Antibodies. Available online: https://www.covid19treatmentguidelines.nih.gov/therapies/antivirals-including-antibody-products/anti-sars-cov-2-monoclonal-antibodies/ (accessed on 11 March 2024).
- Davis, H.E.; McCorkell, L.; Vogel, J.M.; Topol, E.J. Long COVID: Major findings, mechanisms and recommendations. Nat. Rev. Microbiol. 2023, 21, 133–146. [Google Scholar] [CrossRef] [PubMed]
- Long COVID | NIH COVID-19 Research. Available online: https://covid19.nih.gov/covid-19-topics/long-covid (accessed on 11 March 2024).
- Chitalia, V.C.; Munawar, A.H. A painful lesson from the COVID-19 pandemic: The need for broad-spectrum, host-directed antivirals. J. Transl. Med. 2020, 18, 390. [Google Scholar] [CrossRef] [PubMed]
- Galbraith, M.D.; Kinning, K.T.; Sullivan, K.D.; Araya, P.; Smith, K.P.; Granrath, R.E.; Shaw, J.R.; Baxter, R.; Jordan, K.R.; Russell, S.; et al. Specialized interferon action in COVID-19. Proc. Natl. Acad. Sci. USA 2022, 119, e2116730119. [Google Scholar] [CrossRef] [PubMed]
- Samuel, C.E. Antiviral Actions of Interferons. Clin. Microbiol. Rev. 2001, 14, 778–809. [Google Scholar] [CrossRef] [PubMed]
- COVID-19 Treatment Guidelines. Interferons. Available online: https://www.covid19treatmentguidelines.nih.gov/therapies/antivirals-including-antibody-products/interferons/ (accessed on 11 March 2024).
- Interferon Alfa-2b Injection: MedlinePlus Drug Information. Available online: https://medlineplus.gov/druginfo/meds/a690006.html (accessed on 11 March 2024).
- Interferon Beta-1b Injection: MedlinePlus Drug Information. Available online: https://medlineplus.gov/druginfo/meds/a601151.html (accessed on 11 March 2024).
- Khanna, N.R.; Gerriets, V. Interferon. In StatPearls [Internet]; StatPearls Publishing: Treasure Island, FL, USA, 2024. Available online: http://www.ncbi.nlm.nih.gov/books/NBK555932/ (accessed on 6 June 2024).
- Wang, B.; Li, D.; Liu, T.; Wang, H.; Luo, F.; Liu, Y. Subcutaneous injection of IFN alpha-2b for COVID-19: An observational study. BMC Infect. Dis. 2020, 20, 723. [Google Scholar] [CrossRef]
- Pandit, A.; Bhalani, N.; Bhushan, B.L.S.; Koradia, P.; Gargiya, S.; Bhomia, V.; Kansagra, K. Efficacy and safety of pegylated interferon alfa-2b in moderate COVID-19: A phase II randomized, controlled, open-label study. Int. J. Infect. Dis. 2021, 105, 516–521. [Google Scholar] [CrossRef] [PubMed]
- Yu, J.; Lu, X.; Tong, L.; Shi, X.; Ma, J.; Lv, F.; Wu, J.; Pan, Q.; Yang, J.; Cao, H.; et al. Interferon-α-2b aerosol inhalation is associated with improved clinical outcomes in patients with coronavirus disease-2019. Br. J. Clin. Pharmacol. 2021, 87, 4737–4746. [Google Scholar] [CrossRef] [PubMed]
- Hung, I.F.N.; Lung, K.C.; Tso, E.Y.K.; Liu, R.; Chung, T.W.H.; Chu, M.Y.; Ng, Y.-Y.; Lo, J.; Chan, J.; Tam, A.R.; et al. Triple combination of interferon beta-1b, lopinavir–ritonavir, and ribavirin in the treatment of patients admitted to hospital with COVID-19: An open-label, randomised, phase 2 trial. Lancet 2020, 395, 1695–1704. [Google Scholar] [CrossRef]
- Hassaniazad, M.; Farshidi, H.; Gharibzadeh, A.; Bazram, A.; Khalili, E.; Noormandi, A.; Fathalipour, M. Efficacy and safety of favipiravir plus interferon-beta versus lopinavir/ritonavir plus interferon-beta in moderately ill patients with COVID-19: A randomized clinical trial. J. Med. Virol. 2022, 94, 3184–3191. [Google Scholar] [CrossRef]
- WHO Solidarity Trial Consortium. Repurposed Antiviral Drugs for COVID-19—Interim WHO Solidarity Trial Results. N. Engl. J. Med. 2021, 384, 497–511. [Google Scholar] [CrossRef]
- Sosa, J.P.; Ferreira Caceres, M.M.; Ross Comptis, J.; Quiros, J.; Príncipe-Meneses, F.S.; Riva-Moscoso, A.; Belizaire, M.P.; Malanyaon, F.Q.; Agadi, K.; Jaffery, S.S.; et al. Effects of Interferon Beta in COVID-19 adult patients: Systematic Review. Infect. Chemother. 2021, 53, 247–260. [Google Scholar] [CrossRef]
- Tam, A.R.; Zhang, R.R.; Lung, K.C.; Liu, R.; Leung, K.Y.; Liu, D.; Fan, Y.; Lu, L.; Lam, A.H.-Y.; Chung, T.W.-H.; et al. Early Treatment of High-Risk Hospitalized Coronavirus Disease 2019 (COVID-19) Patients With a Combination of Interferon Beta-1b and Remdesivir: A Phase 2 Open-label Randomized Controlled Trial. Clin. Infect. Dis. 2023, 76, e216–e226. [Google Scholar] [CrossRef]
- Jagannathan, P.; Chew, K.W.; Giganti, M.J.; Hughes, M.D.; Moser, C.; Main, M.J.; Monk, P.D.; Javan, A.C.; Li, J.Z.; Fletcher, C.V.; et al. Safety and efficacy of inhaled interferon-β1a (SNG001) in adults with mild-to-moderate COVID-19: A randomized, controlled, phase II trial. eClinicalMedicine 2023, 65, 102250. [Google Scholar] [CrossRef]
- Multiple Sclerosis | National Institute of Neurological Disorders and Stroke. Available online: https://www.ninds.nih.gov/health-information/disorders/multiple-sclerosis (accessed on 12 March 2024).
- TriNetX Help Center. Compare Outcomes, How ARE patients Matched When Balancing Cohorts? TriNetX Help Center: Healdsburg, CA, USA, 2019; Available online: https://support.trinetx.com/hc/en-us/articles/360011978033-In-compare-outcomes-how-are-patients-matched-when-balancing-cohorts (accessed on 5 June 2024).
- Xie, Y.; Xu, E.; Bowe, B.; Al-Aly, Z. Long-term cardiovascular outcomes of COVID-19. Nat. Med. 2022, 28, 583–590. [Google Scholar] [CrossRef] [PubMed]
- Taquet, M.; Geddes, J.R.; Husain, M.; Luciano, S.; Harrison, P.J. 6-month neurological and psychiatric outcomes in 236 379 survivors of COVID-19: A retrospective cohort study using electronic health records. Lancet Psychiatry 2021, 8, 416–427. [Google Scholar] [CrossRef] [PubMed]
- TriNetX. Available online: https://trinetx.com/real-world-resources/coronavirus/ (accessed on 12 March 2024).
- World Health Organization. Coronavirus Disease (COVID-19): Hydroxychloroquine. Available online: https://www.who.int/news-room/questions-and-answers/item/coronavirus-disease-(covid-19)-hydroxychloroquine (accessed on 12 March 2024).
- Taquet, M.; Sillett, R.; Zhu, L.; Mendel, J.; Camplisson, I.; Dercon, Q.; Harrison, P.J. Neurological and psychiatric risk trajectories after SARS-CoV-2 infection: An analysis of 2-year retrospective cohort studies including 1,284,437 patients. Lancet Psychiatry 2022, 9, 815–827. [Google Scholar] [CrossRef]
- CDC. Centers for Disease Control and Prevention. In Underlying Medical Conditions Associated with Higher Risk for Severe COVID-19: Information for Healthcare Professionals; 2023. Available online: https://www.cdc.gov/coronavirus/2019-ncov/hcp/clinical-care/underlyingconditions.html (accessed on 12 March 2024).
- Schneider, W.M.; Chevillotte, M.D.; Rice, C.M. Interferon-Stimulated Genes: A Complex Web of Host Defenses. Annu. Rev. Immunol. 2014, 32, 513–545. [Google Scholar] [CrossRef] [PubMed]
- McNab, F.; Mayer-Barber, K.; Sher, A.; Wack, A.; O’Garra, A. Type I interferons in infectious disease. Nat. Rev. Immunol. 2015, 15, 87–103. [Google Scholar] [CrossRef]
- Houglum, J.E. Interferon: Mechanisms of action and clinical value. Clin. Pharm. 1983, 2, 20–28. [Google Scholar] [CrossRef]
- Bessière, P.; Wasniewski, M.; Picard-Meyer, E.; Servat, A.; Figueroa, T.; Foret-Lucas, C.; Coggon, A.; Lesellier, S.; Boué, F.; Cebron, N.; et al. Intranasal type I interferon treatment is beneficial only when administered before clinical signs onset in the SARS-CoV-2 hamster model. PLoS Pathog. 2021, 17, e1009427. [Google Scholar] [CrossRef] [PubMed]
- Hoagland, D.A.; Møller, R.; Uhl, S.A.; Oishi, K.; Frere, J.; Golynker, I.; Horiuchi, S.; Panis, M.; Blanco-Melo, D.; Sachs, D.; et al. Leveraging the antiviral type I interferon system as a first line of defense against SARS-CoV-2 pathogenicity. Immunity 2021, 54, 557–570.e5. [Google Scholar] [CrossRef] [PubMed]
- Guo, K.; Barrett, B.S.; Morrison, J.H.; Mickens, K.L.; Vladar, E.K.; Hasenkrug, K.J.; Poeschla, E.M.; Santiago, M.L. Interferon resistance of emerging SARS-CoV-2 variants. Proc. Natl. Acad. Sci. USA 2022, 119, e2203760119. [Google Scholar] [CrossRef] [PubMed]
- Subbiah, V. The next generation of evidence-based medicine. Nat. Med. 2023, 29, 49–58. [Google Scholar] [CrossRef] [PubMed]
Category | Sub-Category | Patients, n = 238 (%) |
---|---|---|
Sex | Male | 148 (62%) |
Female | 78 (33%) | |
Unknown | 12 (5%) | |
Ethnicity | Not Hispanic or Latino | 72 (30%) |
Hispanic or Latino | 10* (4%) | |
Unknown | 159 (66%) | |
Race | White | 65 (27%) |
Black or African American | 11 (4%) | |
Asian | 10* (4%) | |
Native Hawaiian or other | 10* (4%) | |
Other | 10* (4%) | |
Unknown | 154 (64%) | |
Age at index (years) | Mean | 61.2 |
Standard deviation | 15.5 | |
Minimum | 18 | |
Maximum | 87 | |
COVID-19 diagnosis | 173 (73%) | |
Overweight, obesity, and other hyperalimentation | 31 (13%) | |
Essential (primary) hypertension | 82 (34%) | |
Diabetes mellitus | 39 (16%) | |
Chronic lower respiratory diseases | 35 (15%) | |
Other chronic obstructive pulmonary disease | 16 (7%) | |
Nicotine dependence | 14 (6%) | |
Heart diseases | Ischemic heart diseases | 19 (8%) |
Other forms of heart disease | 47 (20%) | |
Acute kidney failure and chronic kidney disease | 60 (25%) | |
Chronic kidney disease | 34 (14%) | |
Diseases of liver | 16 (7%) | |
Neoplasms | 49 (21%) | |
Malignant neoplasms of lymphoid, hematopoietic, and related tissue | 22 (9%) | |
Certain disorders involving the immune mechanism | 24 (10%) | |
Antivirals | 114 (48%) | |
Lopinavir | 88 (37%) | |
Ritonavir | 88 (37%) | |
Respiratory tract medications | 109 (46%) | |
Hydroxychloroquine | 99 (42%) | |
Immunological agents | 25 (11%) |
Category | With Treatment n (%) | Without Treatment n (%) |
---|---|---|
Total Patients | 231 | 231 |
Average Age at Index | 61.4 years | 61.5 years |
Male | 143 (61.9%) | 140 (60.6%) |
White | 61 (26.4%) | 61 (26.4%) |
Black or African American | 11 (4.8%) | 10 (4.3%) |
Not Hispanic or Latino | 72 (31.2%) | 68 (29.4%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tat, V.Y.; Huang, P.; Khanipov, K.; Tat, N.Y.; Tseng, C.-T.K.; Golovko, G. Evaluation of Type I Interferon Treatment in Hospitalized COVID-19 Patients: A Retrospective Cohort Study. Pathogens 2024, 13, 539. https://doi.org/10.3390/pathogens13070539
Tat VY, Huang P, Khanipov K, Tat NY, Tseng C-TK, Golovko G. Evaluation of Type I Interferon Treatment in Hospitalized COVID-19 Patients: A Retrospective Cohort Study. Pathogens. 2024; 13(7):539. https://doi.org/10.3390/pathogens13070539
Chicago/Turabian StyleTat, Vivian Y., Pinghan Huang, Kamil Khanipov, Nathan Y. Tat, Chien-Te Kent Tseng, and George Golovko. 2024. "Evaluation of Type I Interferon Treatment in Hospitalized COVID-19 Patients: A Retrospective Cohort Study" Pathogens 13, no. 7: 539. https://doi.org/10.3390/pathogens13070539
APA StyleTat, V. Y., Huang, P., Khanipov, K., Tat, N. Y., Tseng, C.-T. K., & Golovko, G. (2024). Evaluation of Type I Interferon Treatment in Hospitalized COVID-19 Patients: A Retrospective Cohort Study. Pathogens, 13(7), 539. https://doi.org/10.3390/pathogens13070539