Hybrid Pulmonary Rehabilitation Improves Cardiorespiratory Exercise Fitness in Formerly Hospitalised Long COVID Patients
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Respiratory Function Assessment
2.3. Body Mass Composition, Peripheral Muscle Strength and Quality of Life
2.4. Incremental Cycle Ergometer Exercise Test
2.5. Functional Capacity
2.6. Daily Physical Activity
2.7. Exercise-Based PR Protocol
2.8. Statistical Analysis
3. Results
4. Discussion
4.1. Study Limitations
4.2. Clinical Implications
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
6MWT | Six Minute Walk Test |
CPET | Cardiopulmonary Exercise Test |
HR | Heart Rate |
PR | Pulmonary Rehabilitation |
QF | Quadriceps Force |
SpO2 | Oxygen Saturation |
SPPB | Short Physical Performance Battery test |
UC | Usual Care |
VO2 | Oxygen Consumption |
WR | Work Rate |
References
- WHO. Available online: https://data.who.int/dashboards/covid19/cases?n=c (accessed on 17 April 2025).
- WHO. Available online: https://data.who.int/dashboards/covid19/cases?m49=300&n=c (accessed on 17 April 2025).
- NICE. COVID-19 Rapid Guideline: Managing the Longterm Effects of COVID-19. Available online: https://www.nice.org.uk/guidance/ng188/chapter/1-Identification (accessed on 9 June 2025).
- Evans, R.A.; McAuley, H.; Harrison, E.M.; Shikotra, A.; Singapuri, A.; Sereno, M.; Elneima, O.; Docherty, A.B.; Lone, N.I.; Leavy, O.C.; et al. Physical, cognitive, and mental health impacts of COVID-19 after hospitalisation (PHOSP-COVID): A UK multicentre, prospective cohort study. Lancet. Respir. Med. 2021, 9, 1275–1287. [Google Scholar] [CrossRef] [PubMed]
- Durstenfeld, M.S.; Sun, K.; Tahir, P.; Peluso, M.J.; Deeks, S.G.; Aras, M.A.; Grandis, D.J.; Long, C.S.; Beatty, A.; Hsue, P.Y. Use of Cardiopulmonary Exercise Testing to Evaluate Long COVID-19 Symptoms in Adults: A Systematic Review and Meta-analysis. JAMA Netw. Open 2022, 5, e2236057. [Google Scholar] [CrossRef] [PubMed]
- Baratto, C.; Caravita, S.; Faini, A.; Perego, G.B.; Senni, M.; Badano, L.P.; Parati, G. Impact of COVID-19 on exercise pathophysiology: A combined cardiopulmonary and echocardiographic exercise study. J. Appl. Physiol. (1985) 2021, 130, 1470–1478. [Google Scholar] [CrossRef] [PubMed]
- Arena, R.; Faghy, M.A. Cardiopulmonary exercise testing as a vital sign in patients recovering from COVID-19. Expert Rev. Cardiovasc. Ther. 2021, 19, 877–880. [Google Scholar] [CrossRef]
- Martínez-Pozas, O.; Meléndez-Oliva, E.; Rolando, L.M.; Rico, J.A.Q.; Corbellini, C.; Sánchez Romero, E.A. The pulmonary rehabilitation effect on long COVID-19 syndrome: A systematic review and meta-analysis. Physiother. Res. Int. J. Res. Clin. Phys. Ther. 2024, 29, e2077. [Google Scholar] [CrossRef]
- Skjørten, I.; Ankerstjerne, O.A.W.; Trebinjac, D.; Brønstad, E.; Rasch-Halvorsen, Ø.; Einvik, G.; Lerum, T.V.; Stavem, K.; Edvardsen, A.; Ingul, C.B. Cardiopulmonary exercise capacity and limitations 3 months after COVID-19 hospitalisation. Eur. Respir. J. 2021, 58, 2100996. [Google Scholar] [CrossRef]
- Ingul, C.B.; Edvardsen, A.; Follestad, T.; Trebinjac, D.; Ankerstjerne, O.A.W.; Brønstad, E.; Rasch-Halvorsen, Ø.; Aarli, B.; Dalen, H.; Nes, B.M.; et al. Changes in cardiopulmonary exercise capacity and limitations 3–12 months after COVID-19. Eur. Respir. J. 2023, 61, 2200745. [Google Scholar] [CrossRef]
- Singh, I.; Joseph, P.; Heerdt, P.M.; Cullinan, M.; Lutchmansingh, D.D.; Gulati, M.; Possick, J.D.; Systrom, D.M.; Waxman, A.B. Persistent Exertional Intolerance After COVID-19: Insights From Invasive Cardiopulmonary Exercise Testing. Chest 2022, 161, 54–63. [Google Scholar] [CrossRef]
- Spruit, M.A.; Holland, A.E.; Singh, S.J.; Tonia, T.; Wilson, K.C.; Troosters, T. COVID-19: Interim Guidance on Rehabilitation in the Hospital and Post-Hospital Phase from a European Respiratory Society and American Thoracic Society-coordinated International Task Force. Eur. Respir. J. 2020, 56, 2002197. [Google Scholar] [CrossRef]
- Singh, S.J.; Barradell, A.C.; Greening, N.J.; Bolton, C.; Jenkins, G.; Preston, L.; Hurst, J.R. British Thoracic Society survey of rehabilitation to support recovery of the post-COVID-19 population. BMJ Open 2020, 10, e040213. [Google Scholar] [CrossRef]
- Dalbosco-Salas, M.; Torres-Castro, R.; Rojas Leyton, A.; Morales Zapata, F.; Henríquez Salazar, E.; Espinoza Bastías, G.; Beltrán Díaz, M.E.; Tapia Allers, K.; Mornhinweg Fonseca, D.; Vilaró, J. Effectiveness of a Primary Care Telerehabilitation Program for Post-COVID-19 Patients: A Feasibility Study. J. Clin. Med. 2021, 10, 4428. [Google Scholar] [CrossRef] [PubMed]
- Daynes, E.; Mills, G.; Hull, J.H.; Bishop, N.C.; Bakali, M.; Burtin, C.; McAuley, H.J.C.; Singh, S.J.; Greening, N.J. Pulmonary Rehabilitation for People with Persistent Symptoms After COVID-19. Chest 2024, 166, 461–471. [Google Scholar] [CrossRef] [PubMed]
- Torres, G.; Gradidge, P.J. The quality and pattern of rehabilitation interventions prescribed for post-COVID-19 infection patients: A systematic review and meta-analysis. Prev. Med. Rep. 2023, 35, 102395. [Google Scholar] [CrossRef]
- Burnett, D.M.; Skinner, C.E. Year in Review: Long COVID and Pulmonary Rehabilitation. Respir. Care 2023, 68, 846–851. [Google Scholar] [CrossRef]
- Pescaru, C.C.; Crisan, A.F.; Marc, M.; Trusculescu, A.A.; Maritescu, A.; Pescaru, A.; Sumenkova, A.; Bratosin, F.; Oancea, C.; Vastag, E. A Systematic Review of Telemedicine-Driven Pulmonary Rehabilitation after the Acute Phase of COVID-19. J. Clin. Med. 2023, 12, 4854. [Google Scholar] [CrossRef]
- Daynes, E.; Evans, R.A.; Greening, N.J.; Bishop, N.C.; Yates, T.; Lozano-Rojas, D.; Ntotsis, K.; Richardson, M.; Baldwin, M.M.; Hamrouni, M.; et al. Post-Hospitalisation COVID-19 Rehabilitation (PHOSP-R): A randomised controlled trial of exercise-based rehabilitation. Eur. Respir. J. 2025, 65, 2402152. [Google Scholar] [CrossRef]
- Abbasi, A.; Gattoni, C.; Iacovino, M.; Ferguson, C.; Tosolini, J.; Singh, A.; Soe, K.K.; Porszasz, J.; Lanks, C.; Rossiter, H.B.; et al. A Pilot Study on the Effects of Exercise Training on Cardiorespiratory Performance, Quality of Life, and Immunologic Variables in Long COVID. J. Clin. Med. 2024, 13, 5590. [Google Scholar] [CrossRef]
- Besnier, F.; Malo, J.; Mohammadi, H.; Clavet, S.; Klai, C.; Martin, N.; Bérubé, B.; Lecchino, C.; Iglesies-Grau, J.; Vincent, T.; et al. Effects of Cardiopulmonary Rehabilitation on Cardiorespiratory Fitness and Clinical Symptom Burden in Long COVID: Results From the COVID-Rehab Randomized Controlled Trial. Am. J. Phys. Med. Rehabil. 2025, 104, 163–171. [Google Scholar] [CrossRef]
- Araújo, B.T.S.; Barros, A.; Nunes, D.T.X.; Remígio de Aguiar, M.I.; Mastroianni, V.W.; de Souza, J.A.F.; Fernades, J.; Campos, S.L.; Brandão, D.C.; Dornelas de Andrade, A. Effects of continuous aerobic training associated with resistance training on maximal and submaximal exercise tolerance, fatigue, and quality of life of patients post-COVID-19. Physiother. Res. Int. J. Res. Clin. Phys. Ther. 2023, 28, e1972. [Google Scholar] [CrossRef]
- Jimeno-Almazán, A.; Buendía-Romero, Á.; Martínez-Cava, A.; Franco-López, F.; Sánchez-Alcaraz, B.J.; Courel-Ibáñez, J.; Pallarés, J.G. Effects of a concurrent training, respiratory muscle exercise, and self-management recommendations on recovery from post-COVID-19 conditions: The RECOVE trial. J. Appl. Physiol. 2023, 134, 95–104. [Google Scholar] [CrossRef]
- Mooren, J.M.; Garbsch, R.; Schäfer, H.; Kotewitsch, M.; Waranski, M.; Teschler, M.; Schmitz, B.; Mooren, F.C. Medical Rehabilitation of Patients with Post-COVID-19 Syndrome-A Comparison of Aerobic Interval and Continuous Training. J. Clin. Med. 2023, 12, 6739. [Google Scholar] [CrossRef] [PubMed]
- Gloeckl, R.; Leitl, D.; Jarosch, I.; Schneeberger, T.; Nell, C.; Stenzel, N.; Vogelmeier, C.F.; Kenn, K.; Koczulla, A.R. Benefits of pulmonary rehabilitation in COVID-19: A prospective observational cohort study. ERJ Open Res. 2021, 7, 00108-2021. [Google Scholar] [CrossRef] [PubMed]
- Hermann, M.; Pekacka-Egli, A.M.; Witassek, F.; Baumgaertner, R.; Schoendorf, S.; Spielmanns, M. Feasibility and Efficacy of Cardiopulmonary Rehabilitation After COVID-19. Am. J. Phys. Med. Rehabil. 2020, 99, 865–869. [Google Scholar] [CrossRef]
- National Institutes of Health. COVID-19 Treatment Guidelines Panel. Coronavirus Disease 2019 (COVID-19) Treatment Guidelines. Available online: https://www.ncbi.nlm.nih.gov/books/NBK570371/pdf/Bookshelf_NBK570371.pdf (accessed on 9 June 2025).
- WHO. Post COVID-19 Condition (Long COVID). Available online: https://www.who.int/europe/news-room/fact-sheets/item/post-covid-19-condition (accessed on 19 May 2025).
- Stanojevic, S.; Kaminsky, D.A.; Miller, M.R.; Thompson, B.; Aliverti, A.; Barjaktarevic, I.; Cooper, B.G.; Culver, B.; Derom, E.; Hall, G.L.; et al. ERS/ATS technical standard on interpretive strategies for routine lung function tests. Eur. Respir. J. 2022, 60, 2101499. [Google Scholar] [CrossRef]
- Koulouris, N.; Mulvey, D.A.; Laroche, C.M.; Green, M.; Moxham, J. Comparison of two different mouthpieces for the measurement of Pimax and Pemax in normal and weak subjects. Eur. Respir. J. 1988, 1, 863–867. [Google Scholar] [CrossRef]
- Ringqvist, T. The ventilatory capacity in healthy subjects. An analysis of causal factors with special reference to the respiratory forces. Scand. J. Clin. Lab. Investig. Suppl. 1966, 88, 5–179. [Google Scholar]
- Borg, G.A. Psychophysical bases of perceived exertion. Med. Sci. Sports Exerc. 1982, 14, 377–381. [Google Scholar] [CrossRef]
- ATS. ATS statement: Guidelines for the six-minute walk test. Am. J. Respir. Crit. Care Med. 2002, 166, 111–117. [Google Scholar] [CrossRef]
- LeapAppsGroup. Available online: https://leap.app/ (accessed on 7 November 2024).
- Bhatia, R.; Kaye, M.; Roberti-Miller, A. Longitudinal assessment of exercise capacity and quality of life outcome measures in cystic fibrosis: A year-long prospective pilot study. J. Eval. Clin. Pract. 2020, 26, 236–241. [Google Scholar] [CrossRef]
- Jones, P.W.; Beeh, K.M.; Chapman, K.R.; Decramer, M.; Mahler, D.A.; Wedzicha, J.A. Minimal clinically important differences in pharmacological trials. Am. J. Respir. Crit. Care Med. 2014, 189, 250–255. [Google Scholar] [CrossRef]
- Compagno, S.; Palermi, S.; Pescatore, V.; Brugin, E.; Sarto, M.; Marin, R.; Calzavara, V.; Nizzetto, M.; Scevola, M.; Aloi, A.; et al. Physical and psychological reconditioning in long COVID syndrome: Results of an out-of-hospital exercise and psychological—Based rehabilitation program. Int. J. Cardiol. Heart Vasc. 2022, 41, 101080. [Google Scholar] [CrossRef] [PubMed]
- Everaerts, S.; Heyns, A.; Langer, D.; Beyens, H.; Hermans, G.; Troosters, T.; Gosselink, R.; Lorent, N.; Janssens, W. COVID-19 recovery: Benefits of multidisciplinary respiratory rehabilitation. BMJ Open Respir. Res. 2021, 8, e000837. [Google Scholar] [CrossRef] [PubMed]
- Longobardi, I.; Goessler, K.; de Oliveira Júnior, G.N.; Prado, D.; Santos, J.V.P.; Meletti, M.M.; de Andrade, D.C.O.; Gil, S.; Boza, J.; Lima, F.R.; et al. Effects of a 16-week home-based exercise training programme on health-related quality of life, functional capacity, and persistent symptoms in survivors of severe/critical COVID-19: A randomised controlled trial. Br. J. Sports Med. 2023, 57, 1295–1303. [Google Scholar] [CrossRef] [PubMed]
- Ostrowska, M.; Rzepka-Cholasińska, A.; Pietrzykowski, Ł.; Michalski, P.; Kosobucka-Ozdoba, A.; Jasiewicz, M.; Kasprzak, M.; Kryś, J.; Kubica, A. Effects of Multidisciplinary Rehabilitation Program in Patients with Long COVID-19: Post-COVID-19 Rehabilitation (PCR SIRIO 8) Study. J. Clin. Med. 2023, 12, 420. [Google Scholar] [CrossRef]
- Nantakool, S.; Sa-Nguanmoo, P.; Konghakote, S.; Chuatrakoon, B. Effects of Exercise Rehabilitation on Cardiorespiratory Fitness in Long-COVID-19 Survivors: A Meta-Analysis. J. Clin. Med. 2024, 13, 3621. [Google Scholar] [CrossRef]
- Liu, K.; Zhang, W.; Yang, Y.; Zhang, J.; Li, Y.; Chen, Y. Respiratory rehabilitation in elderly patients with COVID-19: A randomized controlled study. Complement. Ther. Clin. Pract. 2020, 39, 101166. [Google Scholar] [CrossRef]
- Li, J.; Xia, W.; Zhan, C.; Liu, S.; Yin, Z.; Wang, J.; Chong, Y.; Zheng, C.; Fang, X.; Cheng, W.; et al. A telerehabilitation programme in post-discharge COVID-19 patients (TERECO): A randomised controlled trial. Thorax 2022, 77, 697–706. [Google Scholar] [CrossRef]
- Okan, F.; Okan, S.; Duran Yücesoy, F. Evaluating the Efficiency of Breathing Exercises via Telemedicine in Post-COVID-19 Patients: Randomized Controlled Study. Clin. Nurs. Res. 2022, 31, 771–781. [Google Scholar] [CrossRef]
- Şahın, H.; Naz, İ.; Karadeniz, G.; Süneçlı, O.; Polat, G.; Ediboğlu, O. Effects of a home-based pulmonary rehabilitation program with and without telecoaching on health-related outcomes in COVID-19 survivors: A randomized controlled clinical study. J. Bras. Pneumol. Publicacao Of. Soc. Bras. Pneumol. Tisilogia 2023, 49, e20220107. [Google Scholar] [CrossRef]
- Del Corral, T.; Fabero-Garrido, R.; Plaza-Manzano, G.; Fernández-de-Las-Peñas, C.; Navarro-Santana, M.; López-de-Uralde-Villanueva, I. Home-based respiratory muscle training on quality of life and exercise tolerance in long-term post-COVID-19: Randomized controlled trial. Ann. Phys. Rehabil. Med. 2023, 66, 101709. [Google Scholar] [CrossRef]
- Pouliopoulou, D.V.; Macdermid, J.C.; Saunders, E.; Peters, S.; Brunton, L.; Miller, E.; Quinn, K.L.; Pereira, T.V.; Bobos, P. Rehabilitation Interventions for Physical Capacity and Quality of Life in Adults with Post-COVID-19 Condition: A Systematic Review and Meta-Analysis. JAMA Netw. Open 2023, 6, e2333838. [Google Scholar] [CrossRef] [PubMed]
- Vieira, A.; Pinto, A.; Garcia, B.; Eid, R.A.C.; Mól, C.G.; Nawa, R.K. Telerehabilitation improves physical function and reduces dyspnoea in people with COVID-19 and post-COVID-19 conditions: A systematic review. J. Physiother. 2022, 68, 90–98. [Google Scholar] [CrossRef] [PubMed]
- Estebanez-Pérez, M.J.; Pastora-Bernal, J.M.; Martín-Valero, R. The Effectiveness of a Four-Week Digital Physiotherapy Intervention to Improve Functional Capacity and Adherence to Intervention in Patients with Long COVID-19. Int. J. Environ. Res. Public Health 2022, 19, 9566. [Google Scholar] [CrossRef]
- Albu, S.; Rivas Zozaya, N.; Murillo, N.; García-Molina, A.; Figueroa Chacón, C.A.; Kumru, H. Multidisciplinary outpatient rehabilitation of physical and neurological sequelae and persistent symptoms of COVID-19: A prospective, observational cohort study. Disabil. Rehabil. 2022, 44, 6833–6840. [Google Scholar] [CrossRef]
- Calvo-Paniagua, J.; Díaz-Arribas, M.J.; Valera-Calero, J.A.; Gallardo-Vidal, M.I.; Fernández-de-Las-Peñas, C.; López-de-Uralde-Villanueva, I.; Del Corral, T.; Plaza-Manzano, G. A tele-health primary care rehabilitation program improves self-perceived exertion in COVID-19 survivors experiencing Post-COVID fatigue and dyspnea: A quasi-experimental study. PLoS ONE 2022, 17, e0271802. [Google Scholar] [CrossRef]
- Daynes, E.; Baldwin, M.M.; Annals, M.; Gardiner, N.; Chaplin, E.; Ward, S.; Greening, N.J.; Evans, R.A.; Singh, S.J. Changes in fatigue symptoms following an exercise-based rehabilitation programme for patients with long COVID. ERJ Open Res. 2024, 10, 00089-2024. [Google Scholar] [CrossRef]
- Daynes, E.; Gerlis, C.; Chaplin, E.; Gardiner, N.; Singh, S.J. Early experiences of rehabilitation for individuals post-COVID to improve fatigue, breathlessness exercise capacity and cognition—A cohort study. Chronic Respir. Dis. 2021, 18, 14799731211015691. [Google Scholar] [CrossRef]
- Nopp, S.; Moik, F.; Klok, F.A.; Gattinger, D.; Petrovic, M.; Vonbank, K.; Koczulla, A.R.; Ay, C.; Zwick, R.H. Outpatient Pulmonary Rehabilitation in Patients with Long COVID Improves Exercise Capacity, Functional Status, Dyspnea, Fatigue, and Quality of Life. Respir. Int. Rev. Thorac. Dis. 2022, 101, 593–601. [Google Scholar] [CrossRef]
- Groenveld, T.; Achttien, R.; Smits, M.; de Vries, M.; van Heerde, R.; Staal, B.; van Goor, H. Feasibility of Virtual Reality Exercises at Home for Post-COVID-19 Condition: Cohort Study. JMIR Rehabil. Assist. Technol. 2022, 9, e36836. [Google Scholar] [CrossRef]
Pulmonary Rehabilitation (PR) Group (n = 27) | Usual Care Group (n = 15) | |
---|---|---|
Sex (M/F) | 15/12 | 4/11 |
Age (years) | 53.6 ± 12.9 | 60.1 ± 9.2 |
Height (cm) | 168 ± 11 | 164 ± 9 |
Mass (kg) | 81.9 ± 16.4 | 75.2 ± 15.3 |
BMI | 28.9 ± 5.0 | 27.6 ± 4.4 |
Length of stay (days) | 10 ± 2 | 10 ± 3 |
COVID-19 vaccine prior referral (%) | 41 | 40 |
Time since hospital discharge | 134 ± 69 | 145 ± 101 |
Comorbidities | ||
Dyslipidaemia | 5 | 3 |
Hypertension | 4 | 2 |
Coronary artery disease | 2 | 1 |
Diabetes mellitus | 3 | 1 |
Asthma | 2 | 0 |
Anxiety—Depression | 3 | 1 |
FEV1 (%predicted) | 96 ± 19 | 90 ± 25 |
FEV1/FVC | 84 ± 7 | 79 ± 14 |
TLC (litres) | 5.44 ± 1.66 | 5.12 ± 1.81 |
TLC (% predicted) | 95 ± 36 | 97 ± 30 |
DLco (mL/min/mmHg) | 18.44 ± 7.57 | 16.92 ± 5.48 |
DLco (% predicted) | 72 ± 24 | 71 ± 22 |
mMRC | 2.1 ± 1.3 | 2.2 ± 1.2 |
FACIT score | 27 ± 10 | 25 ± 12 |
PR Group | Usual Care Group | p-ANOVA | |||
---|---|---|---|---|---|
Pre | Post | Pre | Post | ||
WR (Watt) | 94 ± 46 # | 113 ± 50 #* | 68 ± 20 | 71 ± 24 | 0.000 |
WR (% predicted) | 70 ± 26 | 86 ± 29 * | 75 ± 29 | 78 ± 30 | 0.000 |
VO2 (mL/kg/min) | 16.5 ± 6.2 | 18.9 ± 6.9 #* | 13.6 ± 4.1 | 13.2 ± 4.4 | 0.006 |
VO2 (%predicted) | 66 ± 17 | 75 ± 18 #* | 65 ± 20 | 62 ± 19 | 0.007 |
VCO2 (mL/min) | 1518 ± 609 # | 1801 ± 736 #* | 1071 ± 302 | 1026 ± 387 | 0.001 |
VE/VO2 | 38.4 ± 9.8 | 38.5 ± 7.9 | 35.8 ± 9.0 | 33.1 ± 5.5 | 0.342 |
VE/VCO2 | 34.5 ± 8.2 | 33.8 ± 5.7 | 32.9 ± 5.0 | 31.2 ± 2.8 | 0.633 |
RER | 1.11 ± 0.07 | 1.15 ± 0.10 | 1.08 ± 0.14 | 1.06 ± 0.11 | 0.058 |
ΔIC (litres) | 0.31 ± 0.27 | 0.07 ± 0.44 | 0.03 ± 0.29 | 0.02 ± 0.32 | 0.104 |
VE (litres/min) | 56.7 ± 21.7 #* | 65.7 ± 27.9 # | 40.1 ± 13.7 | 36.4 ± 13.4 | 0.015 |
Vt (litres) | 1.63 ± 0.61 #* | 1.89 ± 0.73 # | 1.26 ± 0.36 | 1.25 ± 0.51 | 0.023 |
Breathing frequency | 37 ± 12 | 36 ± 8 | 32 ± 10 | 31 ± 9 | 0.843 |
Ti (sec) | 0.84 ± 0.26 | 0.84 ± 0.20 | 0.92 ± 0.30 | 0.95 ± 0.34 | 0.676 |
Te (sec) | 0.96 ± 0.32 | 0.92 ± 0.23 | 1.09 ± 0.36 | 1.17 ± 0.35 | 0.164 |
Ttot (sec) | 1.79 ± 0.57 | 1.76 ± 0.41 | 2.01 ± 0.59 | 2.12 ± 0.63 | 0.315 |
Breathing reserve (%) | 40 ± 19 | 35 ± 16 | 43 ± 23 | 49 ± 24 | 0.110 |
HR (beats/min) | 127 ± 19 * | 136 ± 25 # | 116 ± 14 | 110 ± 18 | 0.010 |
HR (%predicted) | 76 ± 9 * | 82 ± 14 # | 73 ± 9 | 69 ± 12 | 0.018 |
HRR | 40 ± 15 * | 31 ± 20 # | 44 ± 16 | 50 ± 19 | 0.007 |
SpO2 (%) | 97 ± 4 | 97 ± 3 | 95 ± 7 | 96 ± 5 | 0.949 |
O2pulse (mL/beat) | 10.9 ± 4.1 | 11.6 ± 3.2 | 8.7 ± 2.3 | 8.7 ± 2.6 | 0.463 |
O2pulse (%predicted) | 89 ± 22 | 95 ± 18 | 88 ± 21 | 90 ± 22 | 0.668 |
SBP (mmHg) | 162 ± 30 | 163 ± 22 | 156 ± 23 | 163 ± 26 | 0.637 |
DBP (mmHg) | 80 ± 15 | 84 ± 13 | 87 ± 12 | 95 ± 17 | 0.441 |
Dyspnoea | 3.4 ± 2.4 | 2.5 ± 1.8 | 3.6 ± 1.2 | 3.0 ± 1.1 | 0.699 |
Fatigue | 5.8 ± 2.3 | 4.7 ± 1.8 | 4.7 ± 2.2 | 4.5 ± 1.8 | 0.291 |
PR Group | Usual Care Group | |||
---|---|---|---|---|
Peak Pre | Iso-Work | Peak Pre | Iso-Work | |
WR (Watt) | 94 ± 46 | 67 ± 21 | ||
VO2 (mL/kg/min) | 16.5 ± 6.2 | 15.8 ± 6.1 | 13.6 ± 4.1 | 13.4 ± 4.0 |
VCO2 (mL/min) | 1475 ± 638 | 1380 ± 642 * | 1072 ± 302 | 995 ± 300 |
RER | 1.10 ± 0.09 | 1.06 ± 0.09 * | 1.08 ± 0.14 | 1.03 ± 0.10 * |
VE (litres/min) | 55.2 ± 22.8 | 48.4 ± 21.7 * | 40.4 ± 13.6 | 35.0 ± 10.2 |
Vt (litres) | 1.587 ± 0.631 | 1.640 ± 0.789 | 1.266 ± 0.360 | 1.263 ± 0.476 |
Breathing frequency | 37 ± 12 | 31 ± 8 * | 33 ± 10 | 29 ± 7 |
Ti (sec) | 0.84 ± 0.26 | 0.95 ± 0.26 * | 0.92 ± 0.30 | 0.99 ± 0.34 |
Te (sec) | 0.97 ± 0.33 | 1.12 ± 0.30 * | 1.09 ± 0.36 | 1.19 ± 0.33 |
Ttot (sec) | 1.81 ± 0.57 | 2.07 ± 0.53 * | 2.01 ± 0.59 | 2.18 ± 0.60 |
HR (beats/min) | 127 ± 18 | 123 ± 22 | 116 ± 15 | 108 ± 15 * |
SpO2 (%) | 97 ± 4 | 98 ± 2 | 96 ± 7 | 97 ± 5 |
O2pulse (mL/beat) | 10.7 ± 4.2 | 10.5 ± 2.8 | 8.7 ± 2.3 | 9.0 ± 2.2 |
Dyspnoea | 3.4 ± 2.4 | 1.9 ± 1.7 * | 3.5 ± 1.0 | 2.8 ± 1.4 |
Fatigue | 5.8 ± 2.3 | 3.4 ± 1.6 * | 4.5 ± 2.1 | 4.4 ± 2.1 |
PR Group | Usual Care Group | p-ANOVA | |||
---|---|---|---|---|---|
PRE | POST | PRE | POST | ||
FACIT score | 27 ± 10 | 42 ± 8 *# | 25 ± 12 | 30 ± 13 | 0.002 |
CAT score | 14 ± 8 | 7 ± 6 *# | 17 ± 6 | 14 ± 7 | 0.044 |
mMRC scale | 2.1 ± 1.3 | 0.7 ± 0.8 *# | 2.2 ± 1.2 | 1.5 ± 1.0 * | 0.046 |
HADS anxiety | 5 ± 4 | 3 ± 3 | 9 ± 6 | 7 ± 5 | 0.927 |
HADS depression | 6 ± 4 | 4 ± 4 | 9 ± 4 | 8 ± 4 | 0.315 |
EQ-5D VAS | 67 ± 15 | 81 ± 14 | 60 ± 16 | 66 ± 18 | 0.101 |
Beck score | 12 ± 9 | 6 ± 6 | 18 ± 11 | 15 ± 11 | 0.124 |
IES-R (PTSD) score | 3.47 ± 2.43 | 1.86 ± 1.69 | 5.03 ± 2.97 | 3.83 ± 2.33 | 0.622 |
Steps/day | 5057 ± 3223 | 6357 ± 3641 | 4554 ± 3013 | 4992 ± 3565 | 0.109 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chynkiamis, N.; Vontetsianos, A.; Anagnostopoulou, C.; Lekka, C.; Gounaridi, M.I.; Oikonomou, E.; Vavuranakis, M.; Rovina, N.; Bakakos, P.; Koulouris, N.; et al. Hybrid Pulmonary Rehabilitation Improves Cardiorespiratory Exercise Fitness in Formerly Hospitalised Long COVID Patients. J. Clin. Med. 2025, 14, 4225. https://doi.org/10.3390/jcm14124225
Chynkiamis N, Vontetsianos A, Anagnostopoulou C, Lekka C, Gounaridi MI, Oikonomou E, Vavuranakis M, Rovina N, Bakakos P, Koulouris N, et al. Hybrid Pulmonary Rehabilitation Improves Cardiorespiratory Exercise Fitness in Formerly Hospitalised Long COVID Patients. Journal of Clinical Medicine. 2025; 14(12):4225. https://doi.org/10.3390/jcm14124225
Chicago/Turabian StyleChynkiamis, Nikolaos, Angelos Vontetsianos, Christina Anagnostopoulou, Christiana Lekka, Maria Ioanna Gounaridi, Evangelos Oikonomou, Manolis Vavuranakis, Nikoleta Rovina, Petros Bakakos, Nikolaos Koulouris, and et al. 2025. "Hybrid Pulmonary Rehabilitation Improves Cardiorespiratory Exercise Fitness in Formerly Hospitalised Long COVID Patients" Journal of Clinical Medicine 14, no. 12: 4225. https://doi.org/10.3390/jcm14124225
APA StyleChynkiamis, N., Vontetsianos, A., Anagnostopoulou, C., Lekka, C., Gounaridi, M. I., Oikonomou, E., Vavuranakis, M., Rovina, N., Bakakos, P., Koulouris, N., Kaltsakas, G., & Vogiatzis, I. (2025). Hybrid Pulmonary Rehabilitation Improves Cardiorespiratory Exercise Fitness in Formerly Hospitalised Long COVID Patients. Journal of Clinical Medicine, 14(12), 4225. https://doi.org/10.3390/jcm14124225