Tracing Emergence of SARS-CoV-2 Variants: Insights from Comprehensive Assessment Using Reverse Transcription Polymerase Chain Reaction and Whole Genome Sequencing
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Samples
2.2. SARS-CoV-2 Variant Detection by RT-PCR
2.3. SARS-CoV-2 Variant Detection by WGS
2.4. Phylogenetic Tree Based on Mutational Profiles of SARS-CoV-2 Lineages
3. Results
3.1. Similarities in Regional and Global COVID-19 Subtype Patterns over the Study Period
3.2. Concordance and Validation of TaqMan and AccuPower RT-PCR Assays for COVID-19 Delta Variant Detection
3.3. Genomic Sub-Lineage and Mutation Distribution of the Omicron Variant
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Raman, R.; Patel, K.J.; Ranjan, K. COVID-19: Unmasking Emerging SARS-CoV-2 Variants, Vaccines and Therapeutic Strategies. Biomolecules 2021, 11, 993. [Google Scholar] [CrossRef] [PubMed]
- El Zowalaty, M.E.; Järhult, J.D. From SARS to COVID-19: A previously unknown SARS- related coronavirus (SARS-CoV-2) of pandemic potential infecting humans—Call for a One Health approach. One Health 2020, 9, 100124. [Google Scholar] [CrossRef] [PubMed]
- Barbuddhe, S.B.; Rawool, D.B.; Gaonkar, P.P.; Vergis, J.; Dhama, K.; Malik, S.S. Global scenario, public health concerns and mitigation strategies to counter current ongoing SARS-CoV-2/COVID-19 pandemic. Hum. Vaccines Immunother. 2020, 16, 3023–3033. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Thambiraja, T.S.; Karuppanan, K.; Subramaniam, G. Omicron and Delta variant of SARS-CoV-2: A comparative computational study of spike protein. J. Med. Virol. 2022, 94, 1641–1649. [Google Scholar] [CrossRef] [PubMed]
- Araf, Y.; Akter, F.; Tang, Y.-d.; Fatemi, R.; Parvez, M.S.A.; Zheng, C.; Hossain, M.G. Omicron variant of SARS-CoV-2: Genomics, transmissibility, and responses to current COVID-19 vaccines. J. Med. Virol. 2022, 94, 1825–1832. [Google Scholar] [CrossRef]
- Li, B.; Deng, A.; Li, K.; Hu, Y.; Li, Z.; Shi, Y.; Xiong, Q.; Liu, Z.; Guo, Q.; Zou, L.; et al. Viral infection and transmission in a large, well-traced outbreak caused by the SARS-CoV-2 Delta variant. Nat. Commun. 2022, 13, 460. [Google Scholar] [CrossRef]
- Planas, D.; Veyer, D.; Baidaliuk, A.; Staropoli, I.; Guivel-Benhassine, F.; Rajah, M.M.; Planchais, C.; Porrot, F.; Robillard, N.; Puech, J.; et al. Reduced sensitivity of SARS-CoV-2 variant Delta to antibody neutralization. Nature 2021, 596, 276–280. [Google Scholar] [CrossRef]
- Gao, S.-J.; Guo, H.; Luo, G. Omicron variant (B.1.1.529) of SARS-CoV-2, a global urgent public health alert! J. Med. Virol. 2022, 94, 1255–1256. [Google Scholar] [CrossRef]
- He, X.; Hong, W.; Pan, X.; Lu, G.; Wei, X. SARS-CoV-2 Omicron variant: Characteristics and prevention. MedComm 2021, 2, 838–845. [Google Scholar] [CrossRef]
- Tahamtan, A.; Ardebili, A. Real-time RT-PCR in COVID-19 detection: Issues affecting the results. Expert Rev. Mol. Diagn. 2020, 20, 453–454. [Google Scholar] [CrossRef]
- Matheka, C.; Kilonzo, J.; Mbugua, E.; Munshi, Z.; Nyasinga, J.; Gunturu, R.; Njau, A. SARS-CoV-2 Variants Genotyping and Diagnostic Performance of a 2-Genes Detection Assay. J. Appl. Lab. Med. 2024, 9, 273–283. [Google Scholar] [CrossRef] [PubMed]
- Bray, N.; Sopwith, W.; Edmunds, M.; Vansteenhouse, H.; Feenstra, J.D.M.; Jacobs, P.; Rajput, K.; O’Connell, A.M.; Smith, M.L.; Blomquist, P.; et al. RT-PCR genotyping assays to identify SARS-CoV-2 variants in England in 2021: A design and retrospective evaluation study. Lancet Microbe 2024, 5, e173–e180. [Google Scholar] [CrossRef] [PubMed]
- Nörz, D.; Grunwald, M.; Tang, H.T.; Weinschenk, C.; Günther, T.; Robitaille, A.; Giersch, K.; Fischer, N.; Grundhoff, A.; Aepfelbacher, M.; et al. Clinical Evaluation of a Fully-Automated High-Throughput Multiplex Screening-Assay to Detect and Differentiate the SARS-CoV-2 B.1.1.529 (Omicron) and B.1.617.2 (Delta) Lineage Variants. Viruses 2022, 14, 608. [Google Scholar] [CrossRef] [PubMed]
- Lu, I.N.; Muller, C.P.; He, F.Q. Applying next-generation sequencing to unravel the mutational landscape in viral quasispecies. Virus Res. 2020, 283, 197963. [Google Scholar] [CrossRef] [PubMed]
- Bhimraj, A.; Morgan, R.L.; Shumaker, A.H.; Baden, L.R.; Cheng, V.C.; Edwards, K.M.; Gallagher, J.C.; Gandhi, R.T.; Muller, W.J.; Nakamura, M.M.; et al. Infectious Diseases Society of America Guidelines on the Treatment and Management of Patients With COVID-19 (September 2022). Clin. Infect Dis. 2024, 78, e250–e349. [Google Scholar] [CrossRef] [PubMed]
- Park, A.K.; Kim, I.H.; Man Kim, H.; Lee, H.; Lee, N.J.; Kim, J.A.; Woo, S.; Lee, C.Y.; Lee, J.; Oh, S.J.; et al. SARS-CoV-2 B.1.619 and B.1.620 Lineages, South Korea, 2021. Emerg. Infect. Dis. 2022, 28, 415–419. [Google Scholar] [CrossRef] [PubMed]
- Mahase, E. Covid-19: What do we know about omicron sublineages? BMJ 2022, 376, o358. [Google Scholar] [CrossRef]
- Ao, D.; Lan, T.; He, X.; Liu, J.; Chen, L.; Baptista-Hon, D.T.; Zhang, K.; Wei, X. SARS-CoV-2 Omicron variant: Immune escape and vaccine development. MedComm 2022, 3, e126. [Google Scholar] [CrossRef]
- Nasir, A.; Aamir, U.B.; Kanji, A.; Bukhari, A.R.; Ansar, Z.; Ghanchi, N.K.; Masood, K.I.; Samreen, A.; Islam, N.; Ghani, S.; et al. Tracking SARS-CoV-2 variants through pandemic waves using RT-PCR testing in low-resource settings. PLOS Glob. Public Health 2023, 3, e0001896. [Google Scholar] [CrossRef]
- Munoz-Gallego, I.; Melendez Carmona, M.A.; Martin Higuera, C.; Viedma, E.; Delgado, R.; Folgueira, M.D. Rapid screening of SARS-CoV-2 variants, a key tool for pandemic surveillance. Sci. Rep. 2023, 13, 11094. [Google Scholar] [CrossRef]
- Suh, I.B.; Lim, J.; Kim, H.S.; Rhim, G.; Kim, H.; Kim, H.; Lee, S.M.; Park, H.S.; Song, H.J.; Hong, M.; et al. Development and Evaluation of AccuPower COVID-19 Multiplex Real-Time RT-PCR Kit and AccuPower SARS-CoV-2 Multiplex Real-Time RT-PCR Kit for SARS-CoV-2 Detection in Sputum, NPS/OPS, Saliva and Pooled Samples. PLoS ONE 2022, 17, e0263341. [Google Scholar] [CrossRef] [PubMed]
- Feng, W.; Newbigging, A.M.; Le, C.; Pang, B.; Peng, H.; Cao, Y.; Wu, J.; Abbas, G.; Song, J.; Wang, D.-B.; et al. Molecular Diagnosis of COVID-19: Challenges and Research Needs. Anal. Chem. 2020, 92, 10196–10209. [Google Scholar] [CrossRef] [PubMed]
- Setthapramote, C.; Wongsuk, T.; Thongnak, C.; Phumisantiphong, U.; Hansirisathit, T.; Thanunchai, M. SARS-CoV-2 Variants by Whole-Genome Sequencing in a University Hospital in Bangkok: First to Third COVID-19 Waves. Pathogens 2023, 12, 626. [Google Scholar] [CrossRef] [PubMed]
- Lekana-Douki, S.E.; N’Dilimabaka, N.; Levasseur, A.; Colson, P.; Andeko, J.C.; Zong Minko, O.; Banga Mve-Ella, O.; Fournier, P.E.; Devaux, C.; Ondo, B.M.; et al. Screening and Whole Genome Sequencing of SARS-CoV-2 Circulating During the First Three Waves of the COVID-19 Pandemic in Libreville and the Haut-Ogooue Province in Gabon. Front. Med. 2022, 9, 877391. [Google Scholar] [CrossRef]
- Lorenzo-Redondo, R.; de Sant’Anna Carvalho, A.M.; Hultquist, J.F.; Ozer, E.A. SARS-CoV-2 genomics and impact on clinical care for COVID-19. J. Antimicrob. Chemother. 2023, 78, ii25–ii36. [Google Scholar] [CrossRef]
- Willett, B.J.; Grove, J.; MacLean, O.A.; Wilkie, C.; De Lorenzo, G.; Furnon, W.; Cantoni, D.; Scott, S.; Logan, N.; Ashraf, S.; et al. SARS-CoV-2 Omicron is an immune escape variant with an altered cell entry pathway. Nat. Microbiol. 2022, 7, 1161–1179. [Google Scholar] [CrossRef]
- Chatterjee, S.; Bhattacharya, M.; Nag, S.; Dhama, K.; Chakraborty, C. A Detailed Overview of SARS-CoV-2 Omicron: Its Sub-Variants, Mutations and Pathophysiology, Clinical Characteristics, Immunological Landscape, Immune Escape, and Therapies. Viruses 2023, 15, 167. [Google Scholar] [CrossRef]
- Asghar, A.; Imran, H.M.; Bano, N.; Maalik, S.; Mushtaq, S.; Hussain, A.; Varjani, S.; Aleya, L.; Iqbal, H.M.N.; Bilal, M. SARS-COV-2/COVID-19: Scenario, epidemiology, adaptive mutations, and environmental factors. Environ. Sci. Pollut. Res. Int. 2022, 29, 69117–69136. [Google Scholar] [CrossRef]
- Siddique, A.I.; Sarmah, N.; Bali, N.K.; Nausch, N.; Borkakoty, B. Differential Gene Expression and Transcriptomics Reveal High M-Gene Expression in JN.1 and KP.1/2 Omicron Sub-Variants of SARS-CoV-2: Implications for Developing More Sensitive Diagnostic Tests. J. Med. Virol. 2024, 96, e70074. [Google Scholar] [CrossRef]
- Farhud, D.D.; Mojahed, N. SARS-CoV-2 Notable Mutations and Variants: A Review Article. Iran. J. Public Health 2022, 51, 1494–1501. [Google Scholar] [CrossRef]
- Li, L.; Liao, H.; Meng, Y.; Li, W.; Han, P.; Liu, K.; Wang, Q.; Li, D.; Zhang, Y.; Wang, L.; et al. Structural basis of human ACE2 higher binding affinity to currently circulating Omicron SARS-CoV-2 sub-variants BA.2 and BA.1.1. Cell 2022, 185, 2952–2960.e2910. [Google Scholar] [CrossRef] [PubMed]
- Bhattacharya, M.; Sharma, A.R.; Dhama, K.; Agoramoorthy, G.; Chakraborty, C. Omicron variant (B.1.1.529) of SARS-CoV-2: Understanding mutations in the genome, S-glycoprotein, and antibody-binding regions. Geroscience 2022, 44, 619–637. [Google Scholar] [CrossRef] [PubMed]
- Qian, J.; Zhang, S.; Wang, F.; Li, J.; Zhang, J. What makes SARS-CoV-2 unique? Focusing on the spike protein. Cell Biol. Int. 2024, 48, 404–430. [Google Scholar] [CrossRef] [PubMed]
- Carabelli, A.M.; Peacock, T.P.; Thorne, L.G.; Harvey, W.T.; Hughes, J.; Consortium, C.-G.U.; Peacock, S.J.; Barclay, W.S.; de Silva, T.I.; Towers, G.J.; et al. SARS-CoV-2 variant biology: Immune escape, transmission and fitness. Nat. Rev. Microbiol. 2023, 21, 162–177. [Google Scholar] [CrossRef]
- Chakraborty, C.; Bhattacharya, M.; Sharma, A.R. Emerging mutations in the SARS-CoV-2 variants and their role in antibody escape to small molecule-based therapeutic resistance. Curr. Opin. Pharmacol. 2022, 62, 64–73. [Google Scholar] [CrossRef]
- Cui, Z.; Liu, P.; Wang, N.; Wang, L.; Fan, K.; Zhu, Q.; Wang, K.; Chen, R.; Feng, R.; Jia, Z.; et al. Structural and functional characterizations of infectivity and immune evasion of SARS-CoV-2 Omicron. Cell 2022, 185, 860–871.e813. [Google Scholar] [CrossRef]
- Cao, Y.; Yisimayi, A.; Jian, F.; Song, W.; Xiao, T.; Wang, L.; Du, S.; Wang, J.; Li, Q.; Chen, X.; et al. BA.2.12.1, BA.4 and BA.5 escape antibodies elicited by Omicron infection. Nature 2022, 608, 593–602. [Google Scholar] [CrossRef]
- Senevirathne, T.H.; Wekking, D.; Swain, J.W.R.; Solinas, C.; De Silva, P. COVID-19: From emerging variants to vaccination. Cytokine Growth Factor Rev. 2024, 76, 127–141. [Google Scholar] [CrossRef]
- Lin, D.-Y.; Xu, Y.; Gu, Y.; Zeng, D.; Wheeler, B.; Young, H.; Sunny, S.K.; Moore, Z. Effectiveness of Bivalent Boosters against Severe Omicron Infection. N. Engl. J. Med. 2023, 388, 764–766. [Google Scholar] [CrossRef]
- Tang, C.Y.; Gao, C.; Prasai, K.; Li, T.; Dash, S.; McElroy, J.A.; Hang, J.; Wan, X.F. Prediction models for COVID-19 disease outcomes. Emerg. Microbes Infect. 2024, 13, 2361791. [Google Scholar] [CrossRef]
- Misra, G.; Manzoor, A.; Chopra, M.; Upadhyay, A.; Katiyar, A.; Bhushan, B.; Anvikar, A. Genomic epidemiology of SARS-CoV-2 from Uttar Pradesh, India. Sci. Rep. 2023, 13, 14847. [Google Scholar] [CrossRef] [PubMed]
TaqMan | Delta | Non-Delta | Total | |
---|---|---|---|---|
AccuPower | ||||
Delta | 149 (68.0) | 4 (1.8) | 153 | |
Non-Delta | 17 * (7.8) | 49 (22.4) | 66 | |
Total | 156 | 53 | 219 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Na, D.; Hong, Y.; Lee, C.; Kim, M. Tracing Emergence of SARS-CoV-2 Variants: Insights from Comprehensive Assessment Using Reverse Transcription Polymerase Chain Reaction and Whole Genome Sequencing. Microorganisms 2025, 13, 311. https://doi.org/10.3390/microorganisms13020311
Na D, Hong Y, Lee C, Kim M. Tracing Emergence of SARS-CoV-2 Variants: Insights from Comprehensive Assessment Using Reverse Transcription Polymerase Chain Reaction and Whole Genome Sequencing. Microorganisms. 2025; 13(2):311. https://doi.org/10.3390/microorganisms13020311
Chicago/Turabian StyleNa, Duyeon, Yuna Hong, Chaeyeon Lee, and Myungshin Kim. 2025. "Tracing Emergence of SARS-CoV-2 Variants: Insights from Comprehensive Assessment Using Reverse Transcription Polymerase Chain Reaction and Whole Genome Sequencing" Microorganisms 13, no. 2: 311. https://doi.org/10.3390/microorganisms13020311
APA StyleNa, D., Hong, Y., Lee, C., & Kim, M. (2025). Tracing Emergence of SARS-CoV-2 Variants: Insights from Comprehensive Assessment Using Reverse Transcription Polymerase Chain Reaction and Whole Genome Sequencing. Microorganisms, 13(2), 311. https://doi.org/10.3390/microorganisms13020311