Skip to main content

Advertisement

Log in

Sensitive Detection of SARS-CoV-2 Spike Protein Using an Aptamer Sandwich Assay-Based Electrochemical Biosensor

  • Original Article
  • Published:
BioChip Journal Aims and scope Submit manuscript

Abstract

The coronavirus pandemic has highlighted the urgent need for rapid, sensitive, and accurate diagnostic tests to detect SARS-CoV-2, which causes COVID-19 disease. One promising approach is the use of aptamers, which are synthetic single-stranded DNA or RNA molecules possessing the ability to bind to specific targets with high affinity and specificity. In this study, we developed an aptamer-based electrochemical biosensor to detect the SARS-CoV-2 spike protein, a viral antigen commonly utilized in diagnostic assays in a sandwich assay. To fabricate the electrochemical biosensor, a capture aptamer was immobilized onto a gold electrode. The target protein was introduced with a secondary aptamer-conjugated gold nanoparticle (AuNP) to enhance the electrical signals. AuNPs were prepared by utilizing L-ascorbic acid or hyaluronic acid and were functionalized with a secondary aptamer. The secondary aptamer-conjugated AuNPs were first characterized to identify their physicochemical properties. The biosensor exhibited exceptional sensitivity and specificity, with a detection limit of 0.42 pg/mL, and showed no cross-reactivity with other respiratory viruses. The aptamer-based biosensor, coupled with secondary aptamer-conjugated gold nanoparticles, has significant potential as a rapid, cost-effective, and highly sensitive diagnostic tool for COVID-19, as well as for the detection of other infectious agents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Availability of Data and Material

Data will be made available on request.

References

  1. Gorbalenya, A.E., Baker, S.C., Baric, R.S., de Groot, R.J., Drosten, C., Gulyaeva, A.A., Haagmans, B.L., Lauber, C., Leontovich, A.M., Neuman, B.W., Penzar, D., Perlman, S., Poon, L.L.M., Samborskiy, D.V., Sidorov, I.A., Sola, I., Ziebuhr, J.: The species severe acute respiratory syndrome-related coronavirus: classifying 2019-nCoV and naming it SARS-CoV-2. Nat. Microbiol. 5(4), 536–544 (2020). https://doi.org/10.1038/s41564-020-0695-z

    Article  CAS  Google Scholar 

  2. Chan, J.F., Yuan, S., Kok, K.H., To, K.K., Chu, H., Yang, J., Xing, F., Liu, J., Yip, C.C., Poon, R.W., Tsoi, H.W., Lo, S.K., Chan, K.H., Poon, V.K., Chan, W.M., Ip, J.D., Cai, J.P., Cheng, V.C., Chen, H., Hui, C.K., Yuen, K.Y.: A familial cluster of pneumonia associated with the 2019 novel coronavirus indicating person-to-person transmission: a study of a family cluster. Lancet 395(10223), 514–523 (2020). https://doi.org/10.1016/S0140-6736(20)30154-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Tao, K., Tzou, P.L., Nouhin, J., Gupta, R.K., de Oliveira, T., Kosakovsky Pond, S.L., Fera, D., Shafer, R.W.: The biological and clinical significance of emerging SARS-CoV-2 variants. Nat. Rev. Genet. 22(12), 757–773 (2021). https://doi.org/10.1038/s41576-021-00408-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Jangra, S., Ye, C.J., Rathnasinghe, R., Stadlbauer, D., Krammer, F., Simon, V., Martinez-Sobrido, L., Garcia-Sastre, A., Schotsaert, M.: SARS-CoV-2 spike E484K mutation reduces antibody neutralisation. Lancet Microbe 2(7), E283–E284 (2021). https://doi.org/10.1016/S2666-5247(21)00068-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Plante, J.A., Liu, Y., Liu, J., Xia, H., Johnson, B.A., Lokugamage, K.G., Zhang, X., Muruato, A.E., Zou, J., Fontes-Garfias, C.R., Mirchandani, D., Scharton, D., Bilello, J.P., Ku, Z., An, Z., Kalveram, B., Freiberg, A.N., Menachery, V.D., Xie, X., Plante, K.S., Weaver, S.C., Shi, P.-Y.: Spike mutation D614G alters SARS-CoV-2 fitness. Nature 592(7852), 116–121 (2021). https://doi.org/10.1038/s41586-020-2895-3

    Article  CAS  PubMed  Google Scholar 

  6. Vogels, C.B.F., Brito, A.F., Wyllie, A.L., Fauver, J.R., Ott, I.M., Kalinich, C.C., Petrone, M.E., Casanovas-Massana, A., Catherine Muenker, M., Moore, A.J., Klein, J., Lu, P., Lu-Culligan, A., Jiang, X., Kim, D.J., Kudo, E., Mao, T., Moriyama, M., Oh, J.E., Park, A., Silva, J., Song, E., Takahashi, T., Taura, M., Tokuyama, M., Venkataraman, A., Weizman, O.-E., Wong, P., Yang, Y., Cheemarla, N.R., White, E.B., Lapidus, S., Earnest, R., Geng, B., Vijayakumar, P., Odio, C., Fournier, J., Bermejo, S., Farhadian, S., Dela Cruz, C.S., Iwasaki, A., Ko, A.I., Landry, M.L., Foxman, E.F., Grubaugh, N.D.: Analytical sensitivity and efficiency comparisons of SARS-CoV-2 RT–qPCR primer–probe sets. Nat. Microbiol. 5(10), 1299–1305 (2020). https://doi.org/10.1038/s41564-020-0761-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Liu, R., Han, H., Liu, F., Lv, Z., Wu, K., Liu, Y., Feng, Y., Zhu, C.: Positive rate of RT-PCR detection of SARS-CoV-2 infection in 4880 cases from one hospital in Wuhan, China, from Jan to Feb 2020. Clin. Chim. Acta 505, 172–175 (2020). https://doi.org/10.1016/j.cca.2020.03.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Wang, D., He, S., Wang, X., Yan, Y., Liu, J., Wu, S., Liu, S., Lei, Y., Chen, M., Li, L., Zhang, J., Zhang, L., Hu, X., Zheng, X., Bai, J., Zhang, Y., Zhang, Y., Song, M., Tang, Y.: Rapid lateral flow immunoassay for the fluorescence detection of SARS-CoV-2 RNA. Nat. Biomed. Eng. 4(12), 1150–1158 (2020). https://doi.org/10.1038/s41551-020-00655-z

    Article  CAS  PubMed  Google Scholar 

  9. Bong, J.H., Lee, S.J., Jung, J., Sung, J.S., Kang, M.J., Lee, M., Jose, J., Pyun, J.C.: Surface plasmon resonance (SPR) biosensor for the detection of SARS-CoV-2 using autodisplyaed Fv-antibodies on outer membrane of E. coli. BioChip J. 18(1), 146–159 (2024). https://doi.org/10.1007/s13206-024-00139-1

    Article  CAS  Google Scholar 

  10. Zeng, R., Qiu, M., Wan, Q., Huang, Z., Liu, X., Tang, D., Knopp, D.: Smartphone-based electrochemical immunoassay for point-of-care detection of SARS-CoV-2 nucleocapsid protein. Anal. Chem. 94(43), 15155–15161 (2022). https://doi.org/10.1021/acs.analchem.2c03606

    Article  CAS  PubMed  Google Scholar 

  11. Egger, M., Bundschuh, C., Wiesinger, K., Gabriel, C., Clodi, M., Mueller, T., Dieplinger, B.: Comparison of the Elecsys® anti-SARS-CoV-2 immunoassay with the EDI™ enzyme linked immunosorbent assays for the detection of SARS-CoV-2 antibodies in human plasma. Clin. Chim. Acta 509, 18–21 (2020). https://doi.org/10.1016/j.cca.2020.05.049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Oh, D., Kim, J.S., Hwang, I.K., Park, H.S., Lee, C.S., Kim, T.H.: Real-time detection of SARS-CoV-2 nucleocapsid antigen using data analysis software and IoT-based portable reader with single-walled carbon nanotube field effect transistor. BioChip J. 17(3), 393–401 (2023). https://doi.org/10.1007/s13206-023-00116-0

    Article  CAS  Google Scholar 

  13. Ha, Y., Kim, I.: Recent developments in innovative magnetic nanoparticles-based immunoassays: from improvement of conventional immunoassays to diagnosis of COVID-19. BioChip J. 16(4), 351–365 (2022). https://doi.org/10.1007/s13206-022-00064-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Bukkitgar, S.D., Shetti, N.P., Aminabhavi, T.M.: Electrochemical investigations for COVID-19 detection-A comparison with other viral detection methods. Chem. Eng. J. 420, 127575 (2021). https://doi.org/10.1016/j.cej.2020.127575

    Article  CAS  PubMed  Google Scholar 

  15. Lou, B., Liu, Y., Shi, M., Chen, J., Li, K., Tan, Y., Chen, L., Wu, Y., Wang, T., Liu, X., Jiang, T., Peng, D., Liu, Z.: Aptamer-based biosensors for virus protein detection. Trends Analyt. Chem. 157, 116738 (2022). https://doi.org/10.1016/j.trac.2022.116738

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Wang, L., Wang, X., Wu, Y., Guo, M., Gu, C., Dai, C., Kong, D., Wang, Y., Zhang, C., Qu, D., Fan, C., Xie, Y., Zhu, Z., Liu, Y., Wei, D.: Rapid and ultrasensitive electromechanical detection of ions, biomolecules and SARS-CoV-2 RNA in unamplified samples. Nat. Biomed. Eng. 6(3), 276–285 (2022). https://doi.org/10.1038/s41551-021-00833-7

    Article  CAS  PubMed  Google Scholar 

  17. Zhang, Z., Sen, P., Adhikari, B.R., Li, Y., Soleymani, L.: Development of nucleic-acid-based electrochemical biosensors for clinical applications. Angew. Chem. Int. Ed. Engl. 61(50), e202212496 (2022). https://doi.org/10.1002/anie.202212496

    Article  CAS  PubMed  Google Scholar 

  18. Tieu, M.V., Pham, D.T., Le, H.T.N., Hoang, T.X., Cho, S.B.: Rapid and ultrasensitive detection of staphylococcus aureus using a gold-interdigitated single-wave-shaped electrode (Au-ISWE) electrochemical biosensor. BioChip J. 17(4), 507–516 (2023). https://doi.org/10.1007/s13206-023-00126-y

    Article  CAS  Google Scholar 

  19. Mandal, M., Dutta, N., Dutta, G.: Aptamer-based biosensors and their implications in COVID-19 diagnosis. Anal. Methods 13(45), 5400–5417 (2021). https://doi.org/10.1039/d1ay01519b

    Article  CAS  PubMed  Google Scholar 

  20. Svobodova, M., Skouridou, V., Jauset-Rubio, M., Vieitez, I., Fernandez-Villar, A., Cabrera Alvargonzalez, J.J., Poveda, E., Bofill, C.B., Sans, T., Bashammakh, A., Alyoubi, A.O., O’Sullivan, C.K.: Aptamer sandwich assay for the detection of SARS-CoV-2 spike protein antigen. ACS Omega 6(51), 35657–35666 (2021). https://doi.org/10.1021/acsomega.1c05521

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kumar, N., Shetti, N.P., Jagannath, S., Aminabhavi, T.M.: Electrochemical sensors for the detection of SARS-CoV-2 virus. Chem. Eng. J. 430, 132966 (2022). https://doi.org/10.1016/j.cej.2021.132966

    Article  CAS  PubMed  Google Scholar 

  22. Song, S., Wang, L., Li, J., Fan, C., Zhao, J.: Aptamer-based biosensors. TrAC Trends in Anal. Chem. 27(2), 108–117 (2008). https://doi.org/10.1016/j.trac.2007.12.004

    Article  CAS  Google Scholar 

  23. Zhang, Y., Juhas, M., Kwok, C.K.: Aptamers targeting SARS-CoV-2: a promising tool to fight against COVID-19. Trends Biotechnol. 41(4), 528–544 (2023). https://doi.org/10.1016/j.tibtech.2022.07.012

    Article  CAS  PubMed  Google Scholar 

  24. Abrego-Martinez, J.C., Jafari, M., Chergui, S., Pavel, C., Che, D., Siaj, M.: Aptamer-based electrochemical biosensor for rapid detection of SARS-CoV-2: nanoscale electrode-aptamer-SARS-CoV-2 imaging by photo-induced force microscopy. Biosens. Bioelectron. 195, 113595 (2022). https://doi.org/10.1016/j.bios.2021.113595

    Article  CAS  PubMed  Google Scholar 

  25. Kang, H., Buchman, J.T., Rodriguez, R.S., Ring, H.L., He, J., Bantz, K.C., Haynes, C.L.: Stabilization of silver and gold nanoparticles: preservation and improvement of plasmonic functionalities. Chem. Rev. 119, 664–699 (2019). https://doi.org/10.1021/acs.chemrev.8b00341

    Article  CAS  PubMed  Google Scholar 

  26. Alexandridis, P.: Gold nanoparticle synthesis, morphology control, and stabilization facilitated by functional polymers. Chem. Eng. Technol. 34(1), 15–28 (2011). https://doi.org/10.1002/ceat.201000335

    Article  CAS  Google Scholar 

  27. Kim, E.J., Yeum, J.H., Choi, J.H.: Effects of polymeric stabilizers on the synthesis of gold nanoparticles. J. Mater. Sci. Technol. 30(2), 107–111 (2014). https://doi.org/10.1016/j.jmst.2013.11.012

    Article  CAS  Google Scholar 

  28. Daruich De Souza, C., Ribeiro Nogueira, B., Rostelato, M.E.C.M.: Review of the methodologies used in the synthesis gold nanoparticles by chemical reduction. J. Alloy. Compd. 798, 714–740 (2019). https://doi.org/10.1016/j.jallcom.2019.05.153

    Article  CAS  Google Scholar 

  29. Boca, S.C., Potara, M., Toderas, F., Stephan, O., Baldeck, P.L., Astilean, S.: Uptake and biological effects of chitosan-capped gold nanoparticles on Chinese hamster ovary cells. Mater. Sci. Eng. C-Mater. Biol. Appl. 31(2), 184–189 (2011). https://doi.org/10.1016/j.msec.2010.08.015

    Article  CAS  Google Scholar 

  30. Kim, H.M., Park, J.H., Choi, Y.J., Oh, J.M., Park, J.: Hyaluronic acid-coated gold nanoparticles as a controlled drug delivery system for poorly water-soluble drugs. RSC Adv. 13(8), 5529–5537 (2023). https://doi.org/10.1039/d2ra07276a

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Annur, S., Santosa, S.J., Hidayat, A.N.: pH dependence of size control in gold nanoparticles synthesized at room temperature. Orient. J. Chem. 34(5), 2305–2312 (2018). https://doi.org/10.13005/ojc/340510

    Article  CAS  Google Scholar 

  32. Shrivastava, A.: Introduction to plastics engineering. William Andrew, Cambridge, MA (2018). https://doi.org/10.1016/C2014-0-03688-X

    Book  Google Scholar 

  33. Tian, J., Liang, Z., Hu, O., He, Q., Sun, D., Chen, Z.: An electrochemical dual-aptamer biosensor based on metal-organic frameworks MIL-53 decorated with Au@Pt nanoparticles and enzymes for detection of COVID-19 nucleocapsid protein. Electrochim. Acta 387, 138553 (2021). https://doi.org/10.1016/j.electacta.2021.138553

    Article  CAS  Google Scholar 

  34. Fabiani, L., Saroglia, M., Galatà, G., De Santis, R., Fillo, S., Luca, V., Faggioni, G., D’Amore, N., Regalbuto, E., Salvatori, P., Terova, G., Moscone, D., Lista, F., Arduini, F.: Magnetic beads combined with carbon black-based screen-printed electrodes for COVID-19: a reliable and miniaturized electrochemical immunosensor for SARS-CoV-2 detection in saliva. Biosens. Bioelectron. 171, 112686 (2021). https://doi.org/10.1016/j.bios.2020.112686

    Article  CAS  PubMed  Google Scholar 

  35. Yakoh, A., Pimpitak, U., Rengpipat, S., Hirankarn, N., Chailapakul, O., Chaiyo, S.: Paper-based electrochemical biosensor for diagnosing COVID-19: detection of SARS-CoV-2 antibodies and antigen. Biosens. Bioelectron. 176, 112912 (2021). https://doi.org/10.1016/j.bios.2020.112912

    Article  CAS  PubMed  Google Scholar 

  36. Amouzadeh Tabrizi, M., Acedo, P.: An electrochemical impedance spectroscopy-based aptasensor for the determination of SARS-CoV-2-RBD using a carbon nanofiber-gold nanocomposite modified screen-printed electrode. Biosensors-Basel 12(3), 142 (2022). https://doi.org/10.3390/bios12030142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the Korea Institute of Industrial Technology as ‘Development of fiber-based technology for reduction of hazardous substances in the air (KITECH EO-23-0005)’ and by the Gachon University research fund of 2023(GCU-202401120001).

Funding

Korea Institute of Industrial Technology, KITECH EO-23-0005, Junghun Park,Gachon University, GCU-202401120001, Junghun Park.

Author information

Authors and Affiliations

Authors

Contributions

Hyoung-Mi Kim: Conceptualization, Methodology, Formal analysis, Validation, Investigation, Data Curation, Writing—Original Draft. Junghun Park: Conceptualization, Methodology, Investigation, Resources, Writing—Original Draft, Writing—Review & Editing, Supervision, Funding acquisition.

Corresponding author

Correspondence to Junghun Park.

Ethics declarations

Conflict of Interest

The authors declare that they have no competing financial interests or personal relationships that may have influenced the work reported in this study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 130 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, HM., Park, J. Sensitive Detection of SARS-CoV-2 Spike Protein Using an Aptamer Sandwich Assay-Based Electrochemical Biosensor. BioChip J 18, 622–632 (2024). https://doi.org/10.1007/s13206-024-00174-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13206-024-00174-y

Keywords