Structure-Based Identification of SARS-CoV-2 nsp10-16 Methyltransferase Inhibitors Using Molecular Dynamics Insights
Abstract
:1. Introduction
2. Materials and Methods
2.1. Protein Crystal Structure Retrieval
2.2. Molecular Docking Simulation
2.3. Estimation of Pharmacokinetic, Drug-Likeness, and Physicochemical Profiles
2.4. Molecular Dynamics Simulations
2.5. Protein Stability Assessment
2.6. Amino Acid Fluctuations and Structural Density Analysis
2.7. Principal Component Analysis (PCA)
2.8. Hydrogen Bond Analysis
2.9. Binding Free Energy Calculations
2.10. Data Examination and Visualization
3. Results and Discussion
3.1. Protein Crystal Structure
3.2. Molecular Docking Simulations
3.3. Molecular Interactions
3.4. ADMET and Drug-Likeness Analyses of the Selected Compounds
3.5. MD Simulation Stability Analysis
Residue Fluctuation Analysis
3.6. Protein Compactness Analysis
3.7. Protein Dominant Motions via Principal Component Analysis (PCA)
3.8. Hydrogen Bond Analysis
3.9. Binding Free Energy Calculations
Complex | MM-GBSA Calculations (All in kcal/mol)Differences (Complex–Receptor–Ligand) | ||||||
---|---|---|---|---|---|---|---|
ΔEVDW | ΔEEL | ΔEGB | ΔESASA | ΔGGAS | ΔGSOLV | ΔGTOTAL | |
8BSD | −28.90 ± 0.06 | −54.25 ± 0.61 | 63.01 ± 0.12 | −3.75 ± 0.002 | −82.95 ± 0.22 | 59.35 ± 0.17 | −23.90 ± 0.06 |
Z1 | −32.57 ± 0.07 | −54.47 ± 0.22 | 59.04 ± 0.17 | −4.54 ± 0.004 | −86.04 ± 0.016 | 54.49 ± 0.12 | −32.55 ± 0.04 |
Z2 | −39.78 ± 0.05 | −42.44 ± 0.10 | 55.43 ± 0.07 | −5.44 ± 0.011 | −83.23 ± 0.12 | 49.99 ± 0.08 | −32.24 ± 0.07 |
Z3 | −38.83 ± 0.07 | −22.42 ± 0.27 | 29.93 ± 0.24 | −3.74 ± 0.008 | −59.26 ± 0.19 | 26.19 ± 0.18 | −35.06 ± 0.05 |
Z4 | −49.70 ± 0.11 | −37.20 ± 0.47 | 53.32 ± 0.22 | −3.87 ± 0.007 | −86.71 ± 0.61 | 49.45 ± 0.49 | −37.81 ± 0.12 |
Z5 | −42.08 ± 0.12 | −22.18 ± 0.34 | 33.30 ± 0.36 | −4.68 ± 0.009 | −63.27 ± 0.32 | 28.62 ± 0.36 | −35.41 ± 0.07 |
Z6 | −36.54 ± 0.09 | −32.76 ± 0.22 | 37.53 ± 0.34 | −4.44 ± 0.010 | −68.31 ± 0.34 | 33.08 ± 0.29 | −36.44 ± 0.06 |
Z7 | −48.13 ± 0.07 | −50.47 ± 0.10 | 69.59 ± 0.18 | −5.34 ± 0.010 | −99.61 ± 0.14 | 64.24 ± 0.12 | −34.37 ± 0.08 |
3.10. Limitations
4. Conclusions
Supplementary Materials
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Marks, M.; O’Hara, G.; Houlihan, C.; Bell, L.; Heightman, M.; Hart, N. Severe acute respiratory syndrome coronavirus 2. In Encyclopedia of Respiratory Medicine; Academic Press: Cambridge, MA, USA, 2021; pp. 231–242. [Google Scholar]
- Gorla, U.S.; Rao, G. SARS-CoV-2: The prominent role of non-structural proteins (nsps) in COVID-19. Indian J. Pharm. Educ. Res. 2020, 54, S381–S389. [Google Scholar] [CrossRef]
- Avila-Bonilla, R.G.; Macias, S. The molecular language of RNA 5’ ends: Guardians of RNA identity and immunity. RNA 2024, 30, 327–336. [Google Scholar] [CrossRef] [PubMed]
- Vithani, N.; Ward, M.D.; Zimmerman, M.I.; Novak, B.; Borowsky, J.H.; Singh, S.; Bowman, G.R. SARS-CoV-2 Nsp16 activation mechanism and a cryptic pocket with pan-coronavirus antiviral potential. Biophys. J. 2021, 120, 2880–2889. [Google Scholar] [CrossRef] [PubMed]
- Dohnálková, M. Exploring the Extended mRNA Cap Structure: Roles of CMTR1 and CMTR2 in Mammalian Development. Ph.D. Thesis, University of Geneva, Geneva, Switzerland, 2023. [Google Scholar]
- Decroly, E.; Debarnot, C.; Ferron, F.; Bouvet, M.; Coutard, B.; Imbert, I.; Gluais, L.; Papageorgiou, N.; Sharff, A.; Bricogne, G. Crystal structure and functional analysis of the SARS-coronavirus RNA cap 2’-O-methyltransferase nsp10/nsp16 complex. PLoS Pathog. 2011, 7, e1002059. [Google Scholar] [CrossRef]
- Kremling, V.; Falke, S.; Fernandez-Garcia, Y.; Ehrt, C.; Kiene, A.; Klopprogge, B.; Scheer, T.E.S.; Barthels, F.; Middendorf, P.; Kuehn, S. SARS-CoV-2 methyltransferase nsp10-16 in complex with natural and drug-like purine analogs for guiding structure-based drug discovery. bioRxiv 2024. [Google Scholar] [CrossRef]
- Emrani, J.; Ahmed, M.; Jeffers-Francis, L.; Teleha, J.C.; Mowa, N.; Newman, R.H.; Thomas, M.D. SARS-CoV-2, infection, transmission, transcription, translation, proteins, and treatment: A review. Int. J. Biol. Macromol. 2021, 193, 1249–1273. [Google Scholar] [CrossRef]
- Shamsi, A.; Mohammad, T.; Anwar, S.; Amani, S.; Khan, M.S.; Husain, F.M.; Rehman, M.T.; Islam, A.; Hassan, M.I. Potential drug targets of SARS-CoV-2: From genomics to therapeutics. Int. J. Biol. Macromol. 2021, 177, 1–9. [Google Scholar] [CrossRef]
- Rosas-Lemus, M.; Minasov, G.; Shuvalova, L.; Inniss, N.L.; Kiryukhina, O.; Brunzelle, J.; Satchell, K.J. High-resolution structures of the SARS-CoV-2 2′-O-methyltransferase reveal strategies for structure-based inhibitor design. Sci. Signal. 2020, 13, eabe1202. [Google Scholar] [CrossRef]
- Talukdar, A.; Mukherjee, A.; Bhattacharya, D. Fascinating transformation of SAM-competitive protein methyltransferase inhibitors from nucleoside analogues to non-nucleoside analogues. J. Med. Chem. 2022, 65, 1662–1684. [Google Scholar] [CrossRef]
- Mahalapbutr, P.; Kongtaworn, N.; Rungrotmongkol, T. Structural insight into the recognition of S-adenosyl-L-homocysteine and sinefungin in SARS-CoV-2 Nsp16/Nsp10 RNA cap 2′-O-Methyltransferase. Comput. Struct. Biotechnol. J. 2020, 18, 2757–2765. [Google Scholar] [CrossRef]
- Fritch, E.J. Leveraging Transcriptomics and Proteomics to Identify Novel Coronavirus Genomic Elements and Host Kinase Determinants of Replication. Ph.D. Thesis, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA, 2022. [Google Scholar]
- Gomes, J.P.A.; de Oliveira Rocha, L.; Leal, C.E.Y.; de Alencar Filho, E.B. Virtual screening of molecular databases for potential inhibitors of the NSP16/NSP10 methyltransferase from SARS-CoV-2. J. Mol. Struct. 2022, 1261, 132951. [Google Scholar] [CrossRef] [PubMed]
- Ward, M.D. Combining Computer Simulations and Deep Learning to Understand and Predict Protein Structural Dynamics. Ph.D. Thesis, Washington University in St. Louis, St. Louis, MO, USA, 2022. [Google Scholar]
- Carp, T.-N.; Metoudi, M.; Ojha, V. Infection-Simulator, Immunostimulatory and Immunomodulatory Effects of Interferons I and III in Biological Systems: A New Era in Vaccinology and Therapeutics Possible? Preprints 2024. [Google Scholar] [CrossRef]
- Abdelsattar, A.S.; Mansour, Y.; Aboul-ela, F. The Perturbed Free-Energy Landscape: Linking Ligand Binding to Biomolecular Folding. ChemBioChem 2021, 22, 1499–1516. [Google Scholar] [CrossRef]
- Faisal, S.; Badshah, S.L.; Kubra, B.; Sharaf, M.; Emwas, A.-H.; Jaremko, M.; Abdalla, M. Identification and inhibition of the druggable allosteric site of SARS-CoV-2 NSP10/NSP16 methyltransferase through computational approaches. Molecules 2022, 27, 5241. [Google Scholar] [CrossRef] [PubMed]
- Mercurio, F.A.; Vincenzi, M.; Leone, M. Hunting for novel routes in anticancer drug discovery: Peptides against Sam-Sam interactions. Int. J. Mol. Sci. 2022, 23, 10397. [Google Scholar] [CrossRef]
- Grassmann, G.; Miotto, M.; Desantis, F.; Di Rienzo, L.; Tartaglia, G.G.; Pastore, A.; Ruocco, G.; Monti, M.; Milanetti, E. Computational Approaches to Predict Protein–Protein Interactions in Crowded Cellular Environments. Chem. Rev. 2024, 124, 3932–3977. [Google Scholar] [CrossRef]
- Di, L.; Kerns, E.H. Drug-like Properties: Concepts, Structure Design and Methods from ADME to Toxicity Optimization; Academic Press: Cambridge, MA, USA, 2015. [Google Scholar]
- Kiriiri, G.K.; Njogu, P.M.; Mwangi, A.N. Exploring different approaches to improve the success of drug discovery and development projects: A review. Future J. Pharm. Sci. 2020, 6, 1–12. [Google Scholar] [CrossRef]
- Chemical Computing Group ULC (CCG). Molecular Operating Environment (MOE), 2022.02; Chemical Computing Group ULC: Montreal, QC, Canada, 2022. [Google Scholar]
- Gerber, P.R.; Muller, K. MAB, a generally applicable molecular force field for structure modelling in medicinal chemistry. J. Comput. Aided Mol. Des. 1995, 9, 251–268. [Google Scholar] [CrossRef]
- Maier, J.A.; Martinez, C.; Kasavajhala, K.; Wickstrom, L.; Hauser, K.E.; Simmerling, C. ff14SB: Improving the Accuracy of Protein Side Chain and Backbone Parameters from ff99SB. J. Chem. Theory Comput. 2015, 11, 3696–3713. [Google Scholar] [CrossRef]
- Myung, Y.; de Sá, A.G.; Ascher, D.B. Deep-PK: Deep learning for small molecule pharmacokinetic and toxicity prediction. Nucleic Acids Res. 2024, 52, W469–W475. [Google Scholar] [CrossRef]
- Liu, X.; Shi, D.; Zhou, S.; Liu, H.; Liu, H.; Yao, X. Molecular dynamics simulations and novel drug discovery. Expert Opin. Drug Discov. 2018, 13, 23–37. [Google Scholar] [CrossRef] [PubMed]
- Case, D.A.; Aktulga, H.M.; Belfon, K.; Cerutti, D.S.; Cisneros, G.A.; Cruzeiro, V.W.D.; Forouzesh, N.; Giese, T.J.; Götz, A.W.; Gohlke, H. AmberTools. J. Chem. Inf. Model. 2023, 63, 6183–6191. [Google Scholar] [CrossRef]
- Tian, C.; Kasavajhala, K.; Belfon, K.A.; Raguette, L.; Huang, H.; Migues, A.N.; Bickel, J.; Wang, Y.; Pincay, J.; Wu, Q. ff19SB: Amino-acid-specific protein backbone parameters trained against quantum mechanics energy surfaces in solution. J. Chem. Theory Comput. 2019, 16, 528–552. [Google Scholar] [CrossRef]
- Sengupta, A.; Li, Z.; Song, L.F.; Li, P.; Merz, K.M., Jr. Parameterization of monovalent ions for the OPC3, OPC, TIP3P-FB, and TIP4P-FB water models. J. Chem. Inf. Model. 2021, 61, 869–880. [Google Scholar] [CrossRef]
- Wang, B.; Merz, K.M. A fast QM/MM (quantum mechanical/molecular mechanical) approach to calculate nuclear magnetic resonance chemical shifts for macromolecules. J. Chem. Theory Comput. 2006, 2, 209–215. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Wang, W.; Kollman, P.A.; Case, D.A. Antechamber: An accessory software package for molecular mechanical calculations. J. Am. Chem. Soc 2001, 222, 2001. [Google Scholar]
- Kräutler, V.; Van Gunsteren, W.F.; Hünenberger, P.H. A fast SHAKE algorithm to solve distance constraint equations for small molecules in molecular dynamics simulations. J. Comput. Chem. 2001, 22, 501–508. [Google Scholar] [CrossRef]
- Harris, J.A.; Liu, R.; Martins de Oliveira, V.; Vázquez-Montelongo, E.A.; Henderson, J.A.; Shen, J. GPU-accelerated all-atom particle-mesh Ewald continuous constant pH molecular dynamics in Amber. J. Chem. Theory Comput. 2022, 18, 7510–7527. [Google Scholar] [CrossRef]
- Press, W.H.; Flannery, B.P.; Teukolsky, S.A.; Vetterling, W.T.; Kramer, P.B. Numerical recipes: The art of scientific computing. Phys. Today 1987, 40, 120. [Google Scholar] [CrossRef]
- Sindhikara, D.J.; Kim, S.; Voter, A.F.; Roitberg, A.E. Bad seeds sprout perilous dynamics: Stochastic thermostat induced trajectory synchronization in biomolecules. J. Chem. Theory Comput. 2009, 5, 1624–1631. [Google Scholar] [CrossRef]
- Roe, D.R.; Cheatham, T.E., III. PTRAJ and CPPTRAJ: Software for processing and analysis of molecular dynamics trajectory data. J. Chem. Theory Comput. 2013, 9, 3084–3095. [Google Scholar] [CrossRef] [PubMed]
- Halim, S.A.; Waqas, M.; Khan, A.; Ogaly, H.A.; Othman, G.; Al-Harrasi, A. Identification of potential agonist-like molecules for α2-adrenergic receptor by multi-layer virtual screening to combat sinusitis. Comput. Biol. Med. 2023, 167, 107693. [Google Scholar] [CrossRef]
- Greene, D.; Botello-Smith, W.M.; Follmer, A.; Xiao, L.; Lambros, E.; Luo, R. Modeling Membrane Protein-Ligand Binding Interactions: The Human Purinergic Platelet Receptor. J. Phys. Chem. B 2016, 120, 12293–12304. [Google Scholar] [CrossRef]
- Kollman, P.A.; Massova, I.; Reyes, C.; Kuhn, B.; Huo, S.; Chong, L.; Lee, M.; Lee, T.; Duan, Y.; Wang, W. Calculating structures and free energies of complex molecules: Combining molecular mechanics and continuum models. Acc. Chem. Res. 2000, 33, 889–897. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Donini, O.; Reyes, C.M.; Kollman, P.A. Biomolecular simulations: Recent developments in force fields, simulations of enzyme catalysis, protein-ligand, protein-protein, and protein-nucleic acid noncovalent interactions. Annu. Rev. Biophys. Biomol. Struct. 2001, 30, 211–243. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Hou, T.; Xu, X. Recent advances in free energy calculations with a combination of molecular mechanics and continuum models. Curr. Comput. Aided Drug Des. 2006, 2, 287–306. [Google Scholar] [CrossRef]
- Waqas, M.; Ullah, S.; Ullah, A.; Halim, S.A.; Rehman, N.U.; Khalid, A.; Ali, A.; Khan, A.; Gibbons, S.; Csuk, R. Disrupting protease and deubiquitinase activities of SARS-CoV-2 papain-like protease by natural and synthetic products discovered through multiple computational and biochemical approaches. Int. J. Biol. Macromol. 2024, 277, 134476. [Google Scholar] [CrossRef]
- Waqas, M.; Ullah, S.; Halim, S.A.; Rehman, N.U.; Ali, A.; Jan, A.; Muhsinah, A.B.; Khan, A.; Al-Harrasi, A. Targeting papain-like protease by natural products as novel therapeutic potential SARS-CoV-2. Int. J. Biol. Macromol. 2024, 258, 128812. [Google Scholar] [CrossRef]
- Onufriev, A.; Bashford, D.; Case, D.A. Exploring protein native states and large-scale conformational changes with a modified generalized born model. Proteins: Struct. Funct. Bioinform. 2004, 55, 383–394. [Google Scholar] [CrossRef]
- Origin(Pro); OriginLab-Corporation: Northampton, MA, USA, 2021.
Code | ZINC ID | SMILES | Docking Score (kcal/mol) | RMSD Refined |
---|---|---|---|---|
Z1 | ZINC544166 | O=C(O)[C@@](NC(=O)[C@@](NC(=O)CCC=1C(=O)Oc2c(C=1C)cc1c(C)c(C)oc1c2)C)Cc1c2c([nH]c1)cccc2 | −8.15 | 3.63 |
Z2 | ZINC2087193 | O=C(NCCc1c2c([nH]c1)ccc(OC)c2)Nc1c(C(=O)OC)cc(OC)c(OC)c1 | −8.08 | 1.50 |
Z3 | ZINC2109321 | O=C(N[C@](C(=O)O)c1ccccc1)/C(/NC(=O)c1ccccc1)=C/c1cc(OC)c(OC)c(OC)c1 | −8.08 | 1.49 |
Z4 | ZINC2111032 | O=C(OC(C)(C)C)N[C@](C(=O)Oc1cc(O)c2C(=O)C=C(c3ccccc3)Oc2c1)Cc1c2c([nH]c1)cccc2 | −7.97 | 1.28 |
Z5 | ZINC2111034 | Fc1ccc(-c2c3c(c(C)c4OC(=O)C(CC(=O)N[C@](C(=O)O)CCCNC(=O)N)=C(C)c4c3)oc2)cc1 | −7.87 | 2.34 |
Z6 | ZINC2112495 | O=C(O)[C@](NC(=O)[C@@](NC(=O)CCC=1C(=O)Oc2c(C=1C)cc1c(C)c(C)oc1c2)C)Cc1c2c([nH]c1)cccc2 | −7.56 | 3.09 |
Z7 | ZINC2112958 | O=C(N[C@](C(=O)O)Cc1ccccc1)Nc1c(OC)cc(OC)cc1 | −7.40 | 3.62 |
8BSD | tubercidin | OCC1C(O)C(O)C(n2ccc3c(N)ncnc23)O1 | −6.62 | 0.51 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alharbi, A.M. Structure-Based Identification of SARS-CoV-2 nsp10-16 Methyltransferase Inhibitors Using Molecular Dynamics Insights. Curr. Issues Mol. Biol. 2025, 47, 198. https://doi.org/10.3390/cimb47030198
Alharbi AM. Structure-Based Identification of SARS-CoV-2 nsp10-16 Methyltransferase Inhibitors Using Molecular Dynamics Insights. Current Issues in Molecular Biology. 2025; 47(3):198. https://doi.org/10.3390/cimb47030198
Chicago/Turabian StyleAlharbi, Ahmad M. 2025. "Structure-Based Identification of SARS-CoV-2 nsp10-16 Methyltransferase Inhibitors Using Molecular Dynamics Insights" Current Issues in Molecular Biology 47, no. 3: 198. https://doi.org/10.3390/cimb47030198
APA StyleAlharbi, A. M. (2025). Structure-Based Identification of SARS-CoV-2 nsp10-16 Methyltransferase Inhibitors Using Molecular Dynamics Insights. Current Issues in Molecular Biology, 47(3), 198. https://doi.org/10.3390/cimb47030198