Neutrophil Gelatinase-Associated Lipocalin as a Biomarker in Post-Acute COVID-19 Syndrome
Abstract
:1. Introduction
2. Materials and Methods
- Biochemical markers (ALT, AST, bilirubin, creatinine, ferritin, GGTP, albumins, gamma globulins, INR, D-dimers, CRP, and HbA1c);
- White blood cell, monocyte, and neutrophil count.
3. Results
3.1. General Characteristics of Studied Population
3.2. Symptoms, Comorbidities, COVID-19 Severity, and sNGAL Levels
3.3. The Correlation of Blood Specimen Results with sNGAL Levels
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
- Those who had no PACS symptoms at all vs. those who had any of the PACS symptoms;
- Those who had one of three symptoms at any time of the trial vs. those who did not develop that symptom at all;
- Those who had a certain symptom that resolved between the 3rd and 9th month vs. those for whom the symptom did not resolve and was reported to be present for more than 9 months.
References
- Serwin, N.; Cecerska-Heryć, E.; Pius-Sadowska, E.; Serwin, K.; Niedźwiedź, A.; Wiśniewska, M.; Roszak, M.; Grygorcewicz, B.; Skwirczyńska, E.; Machaliński, B.; et al. Renal and Inflammation Markers-Renalase, Cystatin C, and NGAL Levels in Asymptomatic and Symptomatic SARS-CoV-2 Infection in a One-Month Follow-Up Study. Diagnostics 2022, 12, 108. [Google Scholar] [CrossRef]
- Del Rio, C.; Omer, S.B.; Malani, P.N. Winter of Omicron-The Evolving COVID-19 Pandemic. JAMA 2022, 327, 319–320. [Google Scholar] [CrossRef] [PubMed]
- Soriano, J.B.; Murthy, S.; Marshall, J.C.; Relan, P.; Diaz, J.V.; WHO Clinical Case Definition Working Group on Post-COVID-19 Condition. A Clinical Case Definition of Post-COVID-19 Condition by a Delphi Consensus. Lancet Infect. Dis. 2022, 22, e102–e107. [Google Scholar] [CrossRef]
- Lopez-Leon, S.; Wegman-Ostrosky, T.; Perelman, C.; Sepulveda, R.; Rebolledo, P.A.; Cuapio, A.; Villapol, S. More than 50 Long-Term Effects of COVID-19: A Systematic Review and Meta-Analysis. Sci. Rep. 2021, 11, 16144. [Google Scholar] [CrossRef] [PubMed]
- Zhang, N.-H.; Cheng, Y.-C.; Luo, R.; Zhang, C.-X.; Ge, S.-W.; Xu, G. Recovery of New-Onset Kidney Disease in COVID-19 Patients Discharged from Hospital. BMC Infect. Dis. 2021, 21, 397. [Google Scholar] [CrossRef] [PubMed]
- Nalbandian, A.; Sehgal, K.; Gupta, A.; Madhavan, M.V.; McGroder, C.; Stevens, J.S.; Cook, J.R.; Nordvig, A.S.; Shalev, D.; Sehrawat, T.S.; et al. Post-Acute COVID-19 Syndrome. Nat. Med. 2021, 27, 601–615. [Google Scholar] [CrossRef] [PubMed]
- Schiffl, H.; Lang, S.M. Long-Term Interplay between COVID-19 and Chronic Kidney Disease. Int. Urol. Nephrol. 2023, 55, 1977–1984. [Google Scholar] [CrossRef] [PubMed]
- Nasioudis, D.; Witkin, S.S. Neutrophil Gelatinase-Associated Lipocalin and Innate Immune Responses to Bacterial Infections. Med. Microbiol. Immunol. 2015, 204, 471–479. [Google Scholar] [CrossRef]
- Bolignano, D.; Donato, V.; Coppolino, G.; Campo, S.; Buemi, A.; Lacquaniti, A.; Buemi, M. Neutrophil Gelatinase-Associated Lipocalin (NGAL) as a Marker of Kidney Damage. Am. J. Kidney Dis. 2008, 52, 595–605. [Google Scholar] [CrossRef]
- Bagińska, J.; Korzeniecka-Kozerska, A. Are Tubular Injury Markers NGAL and KIM-1 Useful in Pediatric Neurogenic Bladder? J. Clin. Med. 2021, 10, 2353. [Google Scholar] [CrossRef]
- Menez, S.; Parikh, C.R. COVID-19 and the Kidney: Recent Advances and Controversies. Semin. Nephrol. 2022, 42, 151279. [Google Scholar] [CrossRef] [PubMed]
- Friedl, A.; Stoesz, S.P.; Buckley, P.; Gould, M.N. Neutrophil Gelatinase-Associated Lipocalin in Normal and Neoplastic Human Tissues. Cell Type-Specific Pattern of Expression. Histochem. J. 1999, 31, 433–441. [Google Scholar] [CrossRef] [PubMed]
- Pediatric Intensive Care Unit, University of Health Sciences, Konya City Hospital, Konya, Turkey; Kocaoğlu, Ç. The Utility of Neutrophil Gelatinase-Associated Lipocalin in the Detection of Emerging Lung Injury Due to Mechanical Ventilation in Children: A Preliminary Study. Turk. Arch. Pediatr. 2021, 57, 32–37. [Google Scholar] [CrossRef] [PubMed]
- Son, E.; Cho, W.H.; Jang, J.H.; Kim, T.; Jeon, D.; Kim, Y.S.; Yeo, H.J. Neutrophil Gelatinase-Associated Lipocalin as a Prognostic Biomarker of Severe Acute Respiratory Distress Syndrome. Sci. Rep. 2022, 12, 7909. [Google Scholar] [CrossRef] [PubMed]
- Clinical Management of Severe Acute Respiratory Infection When Novel Coronavirus (nCoV) Infection Is Suspected. Available online: https://www.who.int/publications-detail-redirect/10665-332299 (accessed on 4 March 2023).
- Grudzińska, E.; Grzegorczyn, S.; Czuba, Z.P. Chemokines and Growth Factors Produced by Lymphocytes in the Incompetent Great Saphenous Vein. Mediat. Inflamm. 2019, 2019, 7057303. [Google Scholar] [CrossRef]
- Idzik, M.; Poloczek, J.; Skrzep-Poloczek, B.; Dróżdż, E.; Chełmecka, E.; Czuba, Z.; Jochem, J.; Stygar, D. The Effects of 21-Day General Rehabilitation after Hip or Knee Surgical Implantation on Plasma Levels of Selected Interleukins, VEGF, TNF-α, PDGF-BB, and Eotaxin-1. Biomolecules 2022, 12, 605. [Google Scholar] [CrossRef]
- Gómez-Casado, C.; Roth-Walter, F.; Jensen-Jarolim, E.; Díaz-Perales, A.; Pacios, L.F. Modeling Iron-Catecholates Binding to NGAL Protein. J. Mol. Graph. Model. 2013, 45, 111–121. [Google Scholar] [CrossRef]
- Freund, O.; Breslavsky, A.; Givoli-Vilensky, R.; Zacks, N.; Gershman, E.; Melloul, A.; Wand, O.; Bilenko, N.; Bar-Shai, A. Assessment of a Close Respiratory Follow-up Schedule at 3 and 6 Months after Acute COVID-19 and Its Related Investigations. Respir. Med. 2023, 217, 107367. [Google Scholar] [CrossRef]
- Kunnumakkara, A.B.; Rana, V.; Parama, D.; Banik, K.; Girisa, S.; Henamayee, S.; Thakur, K.K.; Dutta, U.; Garodia, P.; Gupta, S.C.; et al. COVID-19, Cytokines, Inflammation, and Spices: How Are They Related? Life Sci. 2021, 284, 119201. [Google Scholar] [CrossRef]
- Hazeldine, J.; Lord, J.M. Neutrophils and COVID-19: Active Participants and Rational Therapeutic Targets. Front. Immunol. 2021, 12, 680134. [Google Scholar] [CrossRef]
- Abella, V.; Scotece, M.; Conde, J.; Gómez, R.; Lois, A.; Pino, J.; Gómez-Reino, J.J.; Lago, F.; Mobasheri, A.; Gualillo, O. The Potential of Lipocalin-2/NGAL as Biomarker for Inflammatory and Metabolic Diseases. Biomarkers 2015, 20, 565–571. [Google Scholar] [CrossRef]
- Skrypnyk, N.I.; Gist, K.M.; Okamura, K.; Montford, J.R.; You, Z.; Yang, H.; Moldovan, R.; Bodoni, E.; Blaine, J.T.; Edelstein, C.L.; et al. IL-6-Mediated Hepatocyte Production Is the Primary Source of Plasma and Urine Neutrophil Gelatinase–Associated Lipocalin during Acute Kidney Injury. Kidney Int. 2020, 97, 966–979. [Google Scholar] [CrossRef]
- Chakraborty, S.; Kaur, S.; Guha, S.; Batra, S.K. The Multifaceted Roles of Neutrophil Gelatinase Associated Lipocalin (NGAL) in Inflammation and Cancer. Biochim. Biophys. Acta (BBA) Rev. Cancer 2012, 1826, 129–169. [Google Scholar] [CrossRef]
- Buonafine, M.; Martinez-Martinez, E.; Jaisser, F. More than a Simple Biomarker: The Role of NGAL in Cardiovascular and Renal Diseases. Clin. Sci. 2018, 132, 909–923. [Google Scholar] [CrossRef] [PubMed]
- Guo, H.; Jin, D.; Chen, X. Lipocalin 2 Is a Regulator Of Macrophage Polarization and NF-ΚB/STAT3 Pathway Activation. Mol. Endocrinol. 2014, 28, 1616–1628. [Google Scholar] [CrossRef] [PubMed]
- Baggiolini, M.; Clark-Lewis, I. Interleukin-8, a Chemotactic and Inflammatory Cytokine. FEBS Lett. 1992, 307, 97–101. [Google Scholar] [CrossRef] [PubMed]
- Kaiser, R.; Leunig, A.; Pekayvaz, K.; Popp, O.; Joppich, M.; Polewka, V.; Escaig, R.; Anjum, A.; Hoffknecht, M.-L.; Gold, C.; et al. Self-Sustaining IL-8 Loops Drive a Prothrombotic Neutrophil Phenotype in Severe COVID-19. JCI Insight 2021, 6, e150862. [Google Scholar] [CrossRef] [PubMed]
- Can, E.; Oğlak, S.C.; Ölmez, F.; Bulut, H. Serum Neutrophil Gelatinase-Associated Lipocalin Concentrations Are Significantly Associated with the Severity of COVID-19 in Pregnant Patients. Saudi Med. J. 2022, 43, 559–566. [Google Scholar] [CrossRef] [PubMed]
- Flemming, A. Dexamethasone Restrains Neutrophils in Severe COVID-19. Nat. Rev. Immunol. 2022, 22, 5. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Jia, M.; Yan, X.; Cao, L.; Barnes, P.J.; Adcock, I.M.; Huang, M.; Yao, X. Increased Neutrophil Gelatinase-Associated Lipocalin (NGAL) Promotes Airway Remodelling in Chronic Obstructive Pulmonary Disease. Clin. Sci. 2017, 131, 1147–1159. [Google Scholar] [CrossRef] [PubMed]
- Kawagoe, J.; Kono, Y.; Togashi, Y.; Ishiwari, M.; Toriyama, K.; Yajima, C.; Nakayama, H.; Kasagi, S.; Abe, S.; Setoguchi, Y. Serum Neutrophil Gelatinase-Associated Lipocalin (NGAL) Is Elevated in Patients with Asthma and Airway Obstruction. Curr. Med. Sci. 2021, 41, 323–328. [Google Scholar] [CrossRef] [PubMed]
- Hassler, L.; Wysocki, J.; Gelarden, I.; Sharma, I.; Tomatsidou, A.; Ye, M.; Gula, H.; Nicoleascu, V.; Randall, G.; Pshenychnyi, S.; et al. A Novel Soluble ACE2 Protein Provides Lung and Kidney Protection in Mice Susceptible to Lethal SARS-CoV-2 Infection. J. Am. Soc. Nephrol. 2022, 33, 1293–1307. [Google Scholar] [CrossRef] [PubMed]
Comorbidities | No. of Participants with a Comorbidity | % in Study Population | No. of Participants without a Comorbidity | % in Study Population |
---|---|---|---|---|
Arterial hypertension | 44 | 30.1% | 102 | 69.9% |
Myocardial infarction | 17 | 11.6% | 129 | 88.4% |
Asthma | 15 | 10.3% | 131 | 89.7% |
Diabetes mellitus | 12 | 8.2% | 134 | 91.8% |
Autoimmune disease | 9 | 6.2% | 137 | 93.8% |
Neoplasm | 8 | 5.5% | 138 | 94.5% |
COPD | 7 | 4.8% | 139 | 95.2% |
Heart failure | 6 | 4.1% | 140 | 95.9% |
Venous thromboembolism | 3 | 2.1% | 143 | 97.9% |
Viral disease | 3 | 2.1% | 143 | 97.9% |
Symptoms | No. of Participants with a Symptom | % in Study Population | No. of Participants without a Symptom | % in Study Population |
Fever | 115 | 78.8% | 31 | 21.2% |
Fatigue | 110 | 75.3% | 36 | 24.7% |
Muscle and joint pains | 93 | 63.7% | 53 | 36.3% |
Appetite loss | 87 | 59.6% | 59 | 40.4% |
Cough | 85 | 58.2% | 61 | 41.8% |
Disturbances of smell | 69 | 47.3% | 77 | 52.7% |
Nausea and sickness | 58 | 39.7% | 88 | 60.3% |
Headache | 54 | 37.0% | 92 | 63.0% |
Dyspnea | 51 | 34.9% | 95 | 65.1% |
Nasal obstruction | 50 | 34.2% | 96 | 65.8% |
Diarrhea | 42 | 28.8% | 104 | 71.2% |
Sore Throat | 39 | 26.7% | 107 | 73.3% |
Comorbidities | Median (IQR) Value of sNGAL without Comorbidity | Median (IQR) Value of sNGAL with Comorbidity | p Value |
---|---|---|---|
Arterial hypertension | 40.1 (29.6–52.4) | 33.9 (23.9–45.5) | 0.069 |
Myocardial infarction | 27.9 (24.0–43.7) | 36 (25.2–46.1) | 0.328 |
Asthma | 45.9 (35.6–61) | 33.9 (24–44.8) | 0.006 |
Diabetes mellitus | 35.4 (25.2–46.3) | 32.2 (22.4–40.3) | 0.412 |
Autoimmune disease | 33.8 (27.5–51.6) | 35.5 (25–45.9) | 0.925 |
Neoplasm | 38.9 (29–47.3) | 35.4 (25–45.8) | 0.567 |
COPD | 51.6 (45.8–63) | 34 (24.7–45.4) | 0.005 |
Heart failure | 31 (27.6–37.7) | 35.6 (25–46.1) | 0.608 |
Venous thromboembolism | 34 (25.4–44.3) | 35.5 (25.1–46) | 0.834 |
Viral disease | 46 (37–58.7) | 35.4 (25–45.8) | 0.328 |
Symptoms | Median (IQR) Value of sNGAL with Certain Symptoms | Median (IQR) Value of sNGAL without Certain Symptoms | p Value |
Fever | 34.1 (25.1–45.2) | 43.2 (25–52) | 0.238 |
Fatigue | 34.9 (25.5–46.5) | 35.4 (23.2–44.7) | 0.503 |
Muscle and joint pains | 34 (27.5–47.3) | 36 (23.4–45.4) | 0.508 |
Appetite loss | 31.7 (22.7–45.7) | 39.2 (29.6–46.5) | 0.032 |
Cough | 36.3 (27.2–47.3) | 35.3 (22.9–44.8) | 0.365 |
Disturbances of smell | 36.9 (23.9–45.7) | 34.7 (26–47) | 0.713 |
Nausea and sickness | 30.8 (23.5–45) | 37.3 (27.3–46.8) | 0.250 |
Headache | 36.9 (28.8–47.3) | 34.1 (23.5–45.7) | 0.314 |
Dyspnea | 33.3 (25.2–45.9) | 36.5 (24.7–46.2) | 0.727 |
Nasal obstruction | 36.3 (27.5–48.4) | 34.7 (24–45.9) | 0.613 |
Diarrhea | 37.1 (27.5–48.5) | 34.1 (24.4–44.8) | 0.336 |
Sore Throat | 38.3 (26.9–51.8) | 35.3 (24.5–45.5) | 0.435 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Żmudka, K.; Gałeczka-Turkiewicz, A.; Wroniecka, A.; Włosowicz, A.; Sobala-Szczygieł, B.; Mrochem-Kwarciak, J.; Czuba, Z.P.; Jaroszewicz, J. Neutrophil Gelatinase-Associated Lipocalin as a Biomarker in Post-Acute COVID-19 Syndrome. J. Clin. Med. 2024, 13, 1851. https://doi.org/10.3390/jcm13071851
Żmudka K, Gałeczka-Turkiewicz A, Wroniecka A, Włosowicz A, Sobala-Szczygieł B, Mrochem-Kwarciak J, Czuba ZP, Jaroszewicz J. Neutrophil Gelatinase-Associated Lipocalin as a Biomarker in Post-Acute COVID-19 Syndrome. Journal of Clinical Medicine. 2024; 13(7):1851. https://doi.org/10.3390/jcm13071851
Chicago/Turabian StyleŻmudka, Karol, Alicja Gałeczka-Turkiewicz, Aleksandra Wroniecka, Aleksandra Włosowicz, Barbara Sobala-Szczygieł, Jolanta Mrochem-Kwarciak, Zenon P. Czuba, and Jerzy Jaroszewicz. 2024. "Neutrophil Gelatinase-Associated Lipocalin as a Biomarker in Post-Acute COVID-19 Syndrome" Journal of Clinical Medicine 13, no. 7: 1851. https://doi.org/10.3390/jcm13071851
APA StyleŻmudka, K., Gałeczka-Turkiewicz, A., Wroniecka, A., Włosowicz, A., Sobala-Szczygieł, B., Mrochem-Kwarciak, J., Czuba, Z. P., & Jaroszewicz, J. (2024). Neutrophil Gelatinase-Associated Lipocalin as a Biomarker in Post-Acute COVID-19 Syndrome. Journal of Clinical Medicine, 13(7), 1851. https://doi.org/10.3390/jcm13071851