Skip to main content

Advertisement

Log in

Harris extended inverted Kumaraswamy distribution: Properties and applications to COVID-19 data

  • Regular Paper
  • Published:
International Journal of Data Science and Analytics Aims and scope Submit manuscript

Abstract

Statistical probability distributions are frequently used in real-world data analysis. However, data from fields such as environmental science, finance, and biomedical sciences may not always fit in classical distributions. This usually requires the development of new distributions that better reflect data behavior in a variety of situations. In this paper, we introduce a new four-parameter distribution termed the Harris extended inverted Kumaraswamy (HEIK) distribution is proposed and analyzed in detail. This generalization accommodates well-known submodels including MOEIK, GIK, EIK, IK and MOLL as observed in this study. The study includes the basic properties of the observed probabilistic model. Explicit expressions for major mathematical properties of this distribution such as quantile function, complete moments, incomplete moments, conditional moments, inverted moments, mean deviation, moment generating function, inequality measure, mean residual life and mean inactivity time are derived. The various entropy measures, extropy and order statistics are derived. The maximum likelihood estimation method is used to estimate the parameters. Simulation studies are conducted for different parameter values and compare the performance of the HEIK distribution. Three illustrative examples involving COVID-19 datasets from three countries are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

Data Availability Statement

Three datasets are contained within the article.

References

  1. Ahsan-ul-Haq, M., Ahmed, M., Zafar, J., Ramos, P.L.: Modeling of COVID-19 cases in Pakistan using lifetime probability distributions. Ann. Data Sci. 9(1), 141–152 (2022). https://doi.org/10.1007/s40745-021-00338-9

    Article  Google Scholar 

  2. Liu, X., Ahmad, Z., Gemeay, A.M., Abdulrahman, A.T., Hafez, E.H., Khalil, N.: Modeling the survival times of the COVID-19 patients with a new statistical model: a case study from China. PLoS ONE 16(7), 1–31 (2021). https://doi.org/10.1371/journal.pone.0254999

    Article  Google Scholar 

  3. Pathak, A., Kumar, M., Singh, S.K., Singh, U.: Statistical inferences: based on exponentiated exponential model to assess novel corona virus (COVID-19) Kerala patient data. Ann. Data Sci. 9(1), 101–119 (2022). https://doi.org/10.1007/s40745-021-00348-7

    Article  Google Scholar 

  4. Nagy, M., Almetwally, E.M., Gemeay, A.M., Mohammed, H.S., Jawa, T.M., Sayed-Ahmed, N., Muse, A.H.: The new novel discrete distribution with application on COVID-19 mortality numbers in Kingdom of Saudi Arabia and Latvia. Complexity 2021(1), 7192833 (2021). https://doi.org/10.1155/2021/7192833

    Article  Google Scholar 

  5. Riad, F.H., Alruwaili, B., Gemeay, A.M., Hussam, E.: Statistical modeling for COVID-19 virus spread in Kingdom of Saudi Arabia and Netherlands. Alex. Eng. J. 61(12), 9849–9866 (2022). https://doi.org/10.1016/j.aej.2022.03.015

    Article  Google Scholar 

  6. Dubey, S.D.: Compound gamma, beta and F distributions. Metrika 16(1), 27–31 (1970). https://doi.org/10.1007/BF02613934

    Article  MathSciNet  Google Scholar 

  7. Gh Voda, V.: On the inverse Rayleigh distributed random variable. Rep. Stat. Appl. Res. 19(4), 13–21 (1972)

    MathSciNet  Google Scholar 

  8. Folks, J.L., Chhikara, R.S.: The inverse Gaussian distribution and its statistical application-a review. J. R. Stat. Soc. Ser. B Stat Methodol. 40(3), 263–275 (1978). https://doi.org/10.1111/j.2517-6161.1978.tb01039.x

    Article  MathSciNet  Google Scholar 

  9. Calabria, R., Pulcini, G.: On the maximum likelihood and least-squares estimation in the inverse Weibull distribution. Stat. Appl. 2(1), 53–66 (1990)

    Google Scholar 

  10. Sharma, V.K., Singh, S.K., Singh, U., Agiwal, V.: The inverse Lindley distribution: a stress-strength reliability model with application to head and neck cancer data. J. Ind. Prod. Eng. 32(3), 162–173 (2015). (https://api.semanticscholar.org/CorpusID:88520025)

    Google Scholar 

  11. Kumaraswamy, P.: A generalized probability density function for double-bounded random processes. J. Hydrol. 46(1–2), 79–88 (1980). https://doi.org/10.1016/0022-1694(80)90036-0

    Article  Google Scholar 

  12. Jones, M.C.: Kumaraswamy’s distribution: a beta-type distribution with some tractability advantages. Stat. Methodol. 6(1), 70–81 (2009). https://doi.org/10.1016/j.stamet.2008.04.001

    Article  MathSciNet  Google Scholar 

  13. Pinho, L.G.B., Cordeiro, G.M., Nobre, J.S.: The Harris extended exponential distribution. Commun. Stat. Theory Methods 44(16), 3486–3502 (2015). https://doi.org/10.1080/03610926.2013.851221

    Article  MathSciNet  Google Scholar 

  14. Gholizadeh, R., Shirazi, A.M., Mosalmanza, S.: Classical and Bayesian estimations on the Kumaraswamy distribution using grouped and un-grouped data under difference loss functions. J. Appl. Sci. 11(12), 2154–2162 (2011). (https://scialert.net/abstract/?doi=jas.2011.2154.2162)

    Article  Google Scholar 

  15. Sindhu, T.N., Feroze, N., Aslam, M.: Bayesian analysis of the Kumaraswamy distribution under failure censoring sampling scheme. Int. J. Adv. Sci. Technol. 51, 39–58 (2013). (https://api.semanticscholar.org/CorpusID:18457909)

    Google Scholar 

  16. El-Deen, M.M., Al-Dayian, G.R., El-Helbawy, A.A.: Statistical inference for Kumaraswamy distribution based on generalized order statistics with applications. Br. J. Math. Comput. Sci. 4(12), 1710–1743 (2014). https://doi.org/10.9734/BJMCS/2014/9193

    Article  Google Scholar 

  17. Iqbal, Z., Tahir, M.M., Riaz, N., Ali, S.A., Ahmad, M.: Generalized inverted Kumaraswamy distribution: properties and application. Open J. Stat. 7(4), 645–662 (2017). https://doi.org/10.4236/ojs.2017.74045

    Article  Google Scholar 

  18. Abd AL-Fattah, A.M., El-Helbawy, A.A., Al-Dayian, G.R.: Inverted Kumaraswamy distribution: properties and estimation. Pak. J. Stat. vol. 33, no. 1, (2017)

  19. Aly, E.-E.A.A., Benkherouf, L.: A new family of distributions based on probability generating functions. Sankhya B 73, 70–80 (2011). https://doi.org/10.1007/s13571-011-0017-9

    Article  MathSciNet  Google Scholar 

  20. Harris, T.E.: Branching processes. Ann. Math. Stat. pp. 474–494, (1948)

  21. Ashkar, F., El Adlouni, S.: Correcting confidence intervals for quantiles of a heavy-tailed distribution: case of the two-parameter Kappa distribution. J. Hydrol. 512, 498–505 (2014). https://doi.org/10.1016/j.jhydrol.2014.03.025

    Article  Google Scholar 

  22. Li, C., Singh, V.P., Mishra, A.K.: A bivariate mixed distribution with a heavy-tailed component and its application to single-site daily rainfall simulation. Water Resour. Res. 49(2), 767–789 (2013). https://doi.org/10.1002/wrcr.20063

    Article  Google Scholar 

  23. Ogunde, A.A., Laoye, V.E., Ezichi, O.N., Balogun, K.O.: Harris extended power Lomax distribution: properties, inference and applications. Int. J. Stat. Probab. 10(4), 77–95 (2021). https://doi.org/10.5539/ijsp.v10n4p77

    Article  Google Scholar 

  24. Thomas, S.P., Tomy, L., Jose, K.K.: Harris extended two parameter Lindley distribution and applications in reliability. Reliab. Theory Appl. 16(63), 302–321 (2021)

    Google Scholar 

  25. Tomy, L., Veena, G., Chesneau, C.: A new three-parameter lifetime distribution for environmental data analysis: the Harris extended modified Lindley distribution. Int. J. Data Sci. Anal. 5, 1–16 (2024). https://doi.org/10.1007/s41060-024-00505-0

    Article  Google Scholar 

  26. Usman, R.M., Ul Haq, M.A.: The Marshall-Olkin extended inverted Kumaraswamy distribution: theory and applications. J. King Saud Univ. Sci. 32(1), 356–365 (2020)

    Article  Google Scholar 

  27. Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Series, and Products. Academic Press, New York (2014)

    Google Scholar 

  28. Almetwally, E.M., Alharbi, R., Alnagar, D., Hafez, E.H.: A new inverted Topp-Leone distribution: applications to the COVID-19 mortality rate in two different countries. Axioms 10(1), 25 (2021). https://doi.org/10.3390/axioms10010025

    Article  Google Scholar 

  29. Almongy, H.M., Almetwally, E.M., Aljohani, H.M., Alghamdi, A.S., Hafez, E.H.: A new extended Rayleigh distribution with applications of COVID-19 data. Results Phys. 23, 104012 (2021). https://doi.org/10.1016/j.rinp.2021.104012

    Article  Google Scholar 

  30. Fatima, K., Jan, U., Ahmad, S.P.: Statistical properties and applications of the exponentiated inverse Kumaraswamy distribution. J. Reliab. Stat. Stud. 11(2), 93–102 (2018)

    Google Scholar 

  31. Gui, W.: Marshall-Olkin extended log-logistic distribution and its application in minification processes. Appl. Math. Sci. 7(77-80), 3947–3961, (2013). https://doi.org/10.12988/ams.2013.35268

  32. Suleiman, A.A., Daud, H., Ishaq, A.I., Othman, M., Sokkalingam, R., Usman, A., Osi, A.A.: The odd beta prime inverted Kumaraswamy distribution with application to COVID-19 mortality rate in Italy. Eng. Proc. 56(1), 218 (2023). https://doi.org/10.3390/ASEC2023-16310

    Article  Google Scholar 

  33. Hassan, A.S., Almetwally, E.M., Ibrahim, G.M.: Kumaraswamy Inverted Topp-Leone Distribution with Applications to COVID-19 Data. Comput. Mater. Continua 68(1), (2021). https://doi.org/10.32604/cmc.2021.013971

  34. El-Helbawy, A.A., Hegazy, M.A., Al-Dayian, G.R., Abd EL-Kader, R.E.: A discrete analog of the inverted Kumaraswamy distribution: properties and estimation with application to COVID-19 data. Pak. J. Stat. Oper. Res. 18(1), 297–328, (2022). https://doi.org/10.18187/pjsor.v18i1.3634

  35. Opone, F., Karakaya, K., Ubaka, N.: Statistical Analysis of COVID-19 Data using the Odd Log Logistic Kumaraswamy Distribution. Stat. Optim. Inf. Comput. 12(1), 210–230 (2024). https://doi.org/10.19139/soic-2310-5070-1572

    Article  MathSciNet  Google Scholar 

  36. Shannon, C.E.: A mathematical theory of communication. Bell Syst. Tech. J. 27, 379–423 (1948). https://doi.org/10.1002/j.1538-7305.1948.tb01338.x

    Article  MathSciNet  Google Scholar 

  37. Rényi, A.: On measures of entropy and information. Proc. Fourth Berkeley Symp. Math. Stat. Probab. vol. 1, pp. 547–561, (1960)

  38. Campbell, L.L.: Exponential entropy as a measure of extent of a distribution. Z. Wahrscheinlichkeitstheorie verw. Gebiete 5, 217–225 (1966). https://doi.org/10.1007/BF00533058

    Article  MathSciNet  Google Scholar 

  39. Tsallis, C.: Possible generalization of Boltzmann-Gibbs statistics. J. Stat. Phys. 52, 479–487 (1988). https://doi.org/10.1007/BF01016429

    Article  MathSciNet  Google Scholar 

  40. Havrda, J., Charvát, F.: Quantification method of classification processes, concept of structural a-entropy. Kybernetika 3, 30–35 (1967)

    MathSciNet  Google Scholar 

  41. Arimoto, S.: Information-theoretical considerations on estimation problems. Inf. Control 19, 181–194 (1971). https://doi.org/10.1016/S0019-9958(71)90065-9

    Article  MathSciNet  Google Scholar 

  42. Lad, F., Sanfilippo, G., Agrò, G.: Extropy: complementary dual of entropy. Statist. Sci. 30, 40–58 (2015). https://doi.org/10.1214/14-STS430

    Article  MathSciNet  Google Scholar 

  43. Agosto, A., Campmas, A., Giudici, P., Renda, A.: Monitoring COVID-19 contagion growth. Statist. Med. 40(18), 4150–4160 (2021). https://doi.org/10.1002/sim.9020

    Article  MathSciNet  Google Scholar 

  44. Bussmann, N., Enzmann, R., Giudici, P., Raffinetti, E.: Shapley-Lorenz values for credit risk management. In Proc. Sci. Meet. Classification Data Anal. Group Ital. Stat. Soc. pp. 121–132, (2021). https://doi.org/10.1007/978-3-031-30164-3_10

  45. Batsidis, A., Lemonte, A.J.: On the Harris extended family of distributions. Statist. 49(6), 1400–1421 (2014). https://doi.org/10.1080/02331888.2014.969732

  46. Cerchiello, P., Giudici, P.: Big data analysis for financial risk management. J. Big Data, 3(18), (2016). https://doi.org/10.1186/s40537-016-0053-4

  47. Giudici, P., Raffinetti, E.: Explainable AI methods in cyber risk management. Qual. Reliab. Eng. Int. 38(3), 1318–1326, (2022). https://doi.org/10.1002/qre.2939

  48. Giudici, P., Mezzetti, M., Muliere, P.: Mixtures of products of Dirichlet processes for variable selection in survival analysis. J. Stat. Plan. Inference 111(1–2), 101–115 (2003). https://doi.org/10.1016/S0378-3758(02)00291-4

    Article  MathSciNet  Google Scholar 

  49. Foss, S., Korshunov, D., Zachary, S.: Heavy-tailed and long-tailed distributions. An Introduction to Heavy-Tailed and Subexponential Distributions, pp. 7–42, (2013). https://doi.org/10.1007/978-1-4614-7101-1_2

  50. Klüppelberg, C.: Subexponential distributions and integrated tails. J. Appl. Probab. 25(1), 132–141 (1988). https://doi.org/10.2307/3214240

    Article  MathSciNet  Google Scholar 

Download references

Funding

The author received no specific funding for this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jabir Bengalath.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bengalath, J., Punathumparambath, B. Harris extended inverted Kumaraswamy distribution: Properties and applications to COVID-19 data. Int J Data Sci Anal (2024). https://doi.org/10.1007/s41060-024-00639-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41060-024-00639-1

Keywords