Muscle Radiodensity Reduction in COVID-19 Survivors Is Independent of NLR Levels During Acute Infection Phase
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Physical, Clinical, and Laboratory Data
2.3. Inflammatory Level: Neutrophil-to-Lymphocyte Ratio
2.4. Skeletal Muscle Phenotyping and Adipose Tissue Characterization
2.5. Statistical Analysis
3. Results
3.1. Characteristics of Patients During Hospitalization
3.2. Characteristics of Patients During Follow-Up
3.3. Skeletal Muscle Phenotyping and Adipose Tissue Characterization
3.4. Linear Regression
4. Discussion
Study Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sharma, A.; Ahmad-Farouk, I.; Lal, S.K. COVID-19: A review on the novel coronavirus disease evolution, transmission, detection, control and prevention. Viruses 2021, 13, 202. [Google Scholar] [CrossRef] [PubMed]
- Ochani, R.K.; Asad, A.; Yasmin, F.; Shaikh, S.; Khalid, H.; Batra, S.; Sohail, M.R.; Mahmood, S.F.; Ochani, R.; Arshad, M.H.; et al. COVID-19 pandemic: From origins to outcomes. A comprehensive review of viral pathogenesis, clinical manifestations, diagnostic evaluation, and management. Infez. Med. 2021, 29, 20–36. Available online: https://www.infezmed.it/index.php/article?Anno=2021&numero=1&ArticoloDaVisualizzare=Vol_29_1_2021_20 (accessed on 1 March 2025). [PubMed]
- Huang, C.; Huang, L.; Wang, Y.; Li, X.; Ren, L.; Gu, X.; Kang, L.; Guo, L.; Liu, M.; Zhou, X.; et al. 6-month consequences of COVID-19 in patients discharged from hospital: A cohort study. Lancet 2021, 397, 220–232. [Google Scholar] [CrossRef]
- Altmann, D.M.; Whettlock, E.M.; Liu, S.; Arachchillage, D.J.; Boyton, R.J. The immunology of long COVID. Nat. Rev. Immunol. 2023, 23, 618–634. [Google Scholar] [CrossRef]
- Astin, R.; Banerjee, A.; Baker, M.R.; Dani, M.; Ford, E.; Hull, J.H.; Lim, P.B.; McNarry, M.; Morten, K.; O’Sullivan, O.; et al. Long COVID: Mechanisms, risk factors and recovery. Exp. Physiol. 2023, 108, 12–27. [Google Scholar] [CrossRef]
- Davis, H.E.; McCorkell, L.; Vogel, J.M.; Tropol, E.J. Long COVID: Major findings, mechanisms and recommendations. Nat. Rev. Microbiol. 2023, 21, 133–146. [Google Scholar] [CrossRef] [PubMed]
- Silva, C.C.; Bichara, C.N.C.; Carneiro, F.R.O.; Palacios, V.R.d.C.M.; Berg, A.V.S.V.D.; Quaresma, J.A.S.; Falcão, L.F.M. Muscle dysfunction in the long coronavirus disease 2019 syndrome: Pathogenesis and clinical approach. Rev. Med. Virol. 2022, 32, e2355. [Google Scholar] [CrossRef]
- Mcauley, H.J.C.; Evans, R.A.; Bolton, C.E.; Brightling, C.E.; Chalmers, J.D.; Docherty, A.B.; Elneima, O.; Greenhaff, P.L.; Gupta, A.; Harris, V.C.; et al. Prevalence of physical frailty, including risk factors, up to 1 year after hospitalisation for COVID-19 in the UK: A multicentre, longitudinal cohort study. EClinicalMedicine 2023, 57, 101896. [Google Scholar] [CrossRef]
- Disser, N.P.; De Micheli, A.J.; Schonk, M.M.; Konnaris, M.A.; Piacentini, A.N.; Edon, D.L.; Toresdahl, B.G.; Rodeo, S.A.; Casey, E.K.; Mendias, C.L. Musculoskeletal consequences of COVID-19. J. Bone Surg. Am. 2020, 102, 1197–1204. [Google Scholar] [CrossRef]
- Carson, J.A.; Baltgalvis, K.A. Interleukin 6 as a key regulator of muscle mass during cachexia. Exerc. Sport Sci. Rev. 2010, 38, 168–176. [Google Scholar] [CrossRef]
- Cooney, R.N.; Shumate, M. The inhibitory effects of interleukin-1 on growth hormone action during catabolic illness. Vitam. Horm. 2006, 74, 317–340. [Google Scholar] [CrossRef]
- Appelman, B.; Charlton, B.T.; Goulding, R.P.; Kerkhoff, T.J.; Breedveld, E.A.; Noort, W.; Offringa, C.; Bloemers, F.W.; van Weeghel, M.; Schomakers, B.V.; et al. Muscle abnormalities worsen after post-exertional malaise in long COVID. Nat. Commun. 2024, 15, 17. [Google Scholar] [CrossRef] [PubMed]
- Gil, S.; Gualano, B.; de Araújo, A.L.; Júnior, G.N.d.O.; Damiano, R.F.; Pinna, F.; Imamura, M.; Rocha, V.; Kallas, E.; Batistella, L.R.; et al. Post-acute sequelae of SARS-CoV-2 associates with physical inactivity in a cohort of COVID-19 survivors. Sci. Rep. 2023, 13, 215. [Google Scholar] [CrossRef]
- Bedock, D.; Lassen, P.B.; Mathian, A.; Moreau, P.; Couffignal, J.; Ciangura, C.; Poitou-Bernert, C.; Jeannin, A.-C.; Mosbah, H.; Fadlallah, J.; et al. Prevalence and severity of malnutrition in hospitalized COVID-19 patients. Clin. Nutr. ESPEN 2020, 40, 214–219. [Google Scholar] [CrossRef]
- Hinojosa-Gutiérrez, L.R.; González-Sánchez, A.L.; Rios-Muñoz, J.A.; Aguilar-Guerrero, R.; Macías-Cervantes, H.E. Visceral fat as the main tomographic risk factor for COVID-19 mortality. Heart Lung 2025, 70, 191–196. [Google Scholar] [CrossRef] [PubMed]
- Montes-Ibarra, M.; Oliveira, C.L.; Orsso, C.E.; Landi, F.; Marzetti, E.; Prado, C.M. The impact of long COVID-19 on muscle health. Clin. Geriatr. Med. 2022, 38, 545–557. [Google Scholar] [CrossRef]
- Padilha, D.M.H.; Mendes, M.C.; Takahashi, M.E.; Lascala, F.; Silveira, M.N.; Pozzuto, L.; Carrilho, L.A.; Guerra, L.D.; Moreira, R.C.; Branbilla, S.R.; et al. Subcutaneous adipose tissue radiodensity: An emerging risk factor for severe COVID-19. Nutrition 2024, 128, 112561. [Google Scholar] [CrossRef] [PubMed]
- Padilha, D.M.H.; Mendes, M.C.S.; Lascala, F.; Silveira, M.N.; Pozzuto, L.; Santos, L.A.O.; Guerra, L.D.; Moreira, R.C.L.; Branbilla, S.R.; Junior, A.D.C.; et al. Low skeletal muscle radiodensity and neutrophil-to-lymphocyte ratio as predictors of poor outcome in patients with COVID-19. Sci. Rep. 2022, 12, 15718. [Google Scholar] [CrossRef]
- Mourtzakis, M.; Prado, C.M.; Lieffers, J.R.; Reiman, T.; McCargar, L.J.; Baracos, V.E. A practical and precise approach to quantifcation of body composition in cancer patients using computed tomography images acquired during routine care. Appl. Physiol. Nutr. Metab. 2008, 33, 997–1006. [Google Scholar] [CrossRef]
- Mitsiopoulos, N.; Baumgartner, R.N.; Heymsfield, S.B.; Lyons, W.; Gallagher, D.; Ross, R. Cadaver validation of skeletal muscle measurement by magnetic resonance imaging and computerized tomography. J. Appl. Physiol. 1998, 85, 115–122. [Google Scholar] [CrossRef]
- Heymsfeld, S.B.; Smith, R.; Autlet, M.; Bensen, B.; Lichtman, S.; Wang, J.; Pierson, R.N., Jr. Appendicular skeletal muscle mass: Measurement by dual-photon absorptiometry. Am. J. Clin. Nutr. 1990, 52, 214–218. [Google Scholar] [CrossRef] [PubMed]
- Heymsfeld, S.B.; Wang, Z.; Baumgartner, R.N.; Ross, R. Human body composition: Advances in models and methods. Annu. Rev. Nutr. 1997, 17, 527–558. [Google Scholar] [CrossRef]
- Cruz-Jentoft, A.J.; Bahat, G.; Bauer, J.; Boirie, Y.; Bruyère, O.; Cederholm, T.; Cooper, C.; Landi, F.; Rolland, Y.; Sayer, A.A.; et al. Sarcopenia: Revised European consensus on definition and diagnosis. Age Ageing 2019, 48, 16–31. [Google Scholar] [CrossRef]
- Besutti, G.; Pellegrini, M.; Ottone, M.; Bonelli, E.; Monelli, F.; Farì, R.; Milic, J.; Dolci, G.; Fasano, T.; Canovi, S.; et al. Modifications of chest CT body composition parameters at three and six months after severe COVID-19 pneumonia: A retrospective cohort study. Nutrients 2022, 14, 3764. [Google Scholar] [CrossRef]
- Puthucheary, Z.; Montgomery, H.; Moxham, J.; Harridge, S.; Hart, N. Structure to function: Muscle failure in critically ill patients. J. Physiol. 2010, 588, 4641–4648. [Google Scholar] [CrossRef]
- Aschman, T.; Schneider, J.; Greuel, S.; Meinhardt, J.; Streit, S.; Goebel, H.-H.; Büttnerova, I.; Elezkurtaj, S.; Scheibe, F.; Radke, J.; et al. Association Between SARS-CoV-2 Infection and Immune-Mediated Myopathy in Patients Who Have Died. JAMA Neurol. 2021, 78, 948–960. [Google Scholar] [CrossRef] [PubMed]
- Kang, M.K.; Lee, Y.-R.; Song, J.-E.; Kweon, Y.-O.; Tak, W.-Y.; Jang, S.-Y.; Park, J.-G.; Park, S.-Y. Prognostic impact of myosteatosis on mortality in hospitalized patients with COVID-19. Diagnostics 2022, 12, 2255. [Google Scholar] [CrossRef] [PubMed]
- Cheng, K.Y.K.; Bao, Z.; Long, Y.; Liu, C.; Huang, T.; Cui, C.; Chow, S.K.-H.; Wong, R.M.Y.; Cheung, W.-H. Sarcopenia and ageing. Subcell. Biochem. 2023, 103, 95–120. [Google Scholar] [CrossRef]
- Girolamo, F.; Fiotti, N.; Sisto, U.G.; Nunnari, A.; Colla, S.; Mearelli, F.; Vinci, P.; Schincariol, P.; Biolo, G. Skeletal muscle in hypoxia and Inflammation: Insights on the COVID-19 pandemic. Front. Nutr. 2022, 9, 865402. [Google Scholar] [CrossRef]
- Buchman, A.L. Side effects of corticosteroid therapy. J. Cin. Gastroenterol. 2001, 33, 289–294. [Google Scholar] [CrossRef]
Low NLR n = 20 | High NLR n = 40 | p Value | |
---|---|---|---|
Physical and clinical parameters | |||
Age (years) | 63.4 ± 11.5 | 53.4 ± 13.5 | 0.006 a |
Male | 12 (60) | 14 (35) | 0.06 c |
Comorbidities | |||
None | 0 (0) | 2 (5) | 0.34 d |
1 comorbidity | 8 (40) | 19 (47.5) | |
2 comorbidities | 9 (45) | 9 (22.5) | |
3 or more comorbidities | 3 (15) | 10 (25) | |
Hypertension | 12 (60) | 14 (40) | 0.07 c |
Diabetes | 6 (30) | 7 (17.5) | 0.27 c |
Dyslipidemia | 3 (15) | 2 (5) | 0.19 c |
Obesity | 7 (35) | 17 (42) | 0.58 c |
Other Diseases | 15 (75) | 23 (58) | 0.18 c |
Smoke | |||
Never | 10 (50) | 20 (52.6) | 0.99 c |
Current or former smoker | 6 (30) | 11 (28.9) | |
No information | 4 (20) | 7 (18.4) | |
Laboratory parameters | |||
Hemoglobin (g/dL) | 14.1 ± 1.5 | 14.0 ± 1.6 | 0.92 a |
Hematocrit (%) | 42.2 ± 4.2 | 41.7 ± 4.3 | 0.72 a |
Leukocytes (×103/µL) | 5.7 (4.9–8.0) | 9.6 (7.4–11.0) | <0.001 b |
Neutrophils (×103/µL) | 3.5 (2.9–5.9) | 7.8 (5.4–9.2) | <0.001 b |
Lymphocytes (×103/µL) | 1.6 (1.4–1.9) | 0.8 (0.4–0.6) | <0.001 b |
Platelets (×103/µL) | 181 (163–225) | 213 (169–287) | 0.17 b |
CRP (mg/L) | 48 (28–79) | 87 (31–130) | 0.15 b |
Troponin (ng/L) | 7.4 (4.8–12) | 7.3 (5.1–11) | 0.94 b |
LDH (U/L) | 273 ± 60 | 304 ± 92 | 0.16 b |
D-dimer (ng/mL) | 542(450–838) | 796 (583–1457) | 0.03 b |
Glucose (mg/dL) | 115 (107–167) | 134 (115–180) | 0.16 b |
ALT (U/L) | 36 (22–65) | 41 (25–51) | 0.71 b |
AST (U/L) | 36 (28–55) | 39 (27–53) | 0.91 b |
Creatinine (mg/dL) | 1.0 (0.8–1.1) | 0.9 (0.8–1.1) | 0.81 b |
Urea (mg/dL) | 35 (29–43) | 36 (27–46) | 0.98 b |
Lactate (mmol/L) | 1.6 (1.2–2.2) | 1.7 (1.2–2.1) | 0.80 b |
PH | 7.4 (7.4–7.5) | 7.4 (7.4–7.5) | 0.29 b |
Arterial blood gas analysis | |||
PaO2 (mmHg) | 64 (55–75) | 71 (55–80) | 0.29 b |
PaCO2 (mmHg) | 35 (32–39) | 33 (30–35) | 0.18 b |
Bicarbonate (mmol/L) | 23 (22–24) | 23 (22–24) | 0.59 b |
Treatment parameters | |||
Total days without mechanical ventilation | 4.5 (2.8–8) | 7 (5–10) | 0.06 |
Number of adverse events | 1 (1–2) | 2 (1–2) | 0.08 |
Hospitalization days | 8 (4.8–9.5) | 12 (9.0–15) | <0.001 b |
Oxygen requirement | 18 (90) | 37 (95) | 0.60 d |
ICU requirement | 2 (10) | 19 (47.5) | 0.004 c |
Low NLR n = 20 | High NLR n = 40 | p Value | |
---|---|---|---|
Anthropometric parameters | |||
Weight (kg) | 84.5 (76.3–96.3) | 81.0 (71.0–97.5) | 0.475 b |
Height (m) | 1.67 (1.6–1.73) | 1.70 (1.62–1.75) | 0.379 b |
BMI (kg/m2) | 31.0 (27.8–37.3) | 29 (26.0–33.0) | 0.177 b |
Follow-up evaluation time | 117 (94–143) | 108 (92–145) | 0.60 b |
Functional capacity | |||
Grip strength | 26 (23–37) | 32 (25–39) | 0.55 b |
Hospitalization | Follow-Up | p Value | |||||
---|---|---|---|---|---|---|---|
Low NLR n = 20 | High NLR n = 40 | Low NLR n = 20 | High NLR n = 40 | Time | Group | Interaction | |
Skeletal Muscle | |||||||
SMA (cm2) | 126 ± 29 | 127 ± 33 | 126 ± 32 | 132 ± 30 | 0.111 | 0.685 | 0.218 |
SMI (cm2/m2) | 47 ± 9.9 | 45.0 ± 10.6 | 47 ± 9.9 | 46 ± 9.0 | 0.231 | 0.491 | 0.162 |
SMR (HU) | 37 ± 8.4 | 39 ± 9.8 | 33 ± 8.3 | 36 ± 8.3 | 0.011 | 0.210 | 0.593 |
Intramuscular Adipose Tissue | |||||||
IMATA (cm2) | 11 ± 6.5 | 10.5 ± 6.3 | 15 ± 8.8 | 13 ± 9.2 | <0.001 | 0.704 | 0.594 |
IMATI (cm2/m2) | 4.3 ± 2.6 | 3.8 ± 2.3 | 5.7 ± 3.2 | 4.8 ± 3.6 | <0.001 | 0.354 | 0.523 |
IMATR (HU) | −62 ± 6.5 | −61 ± 6.5 | −64 ± 8.5 | −61 ± 5.5 | 0.363 | 0.182 | 0.241 |
Visceral Adipose Tissue | |||||||
VATA (cm2) | 154 ± 81 | 165 ± 67 | 155 ± 70 | 174 ± 78 | 0.318 | 0.439 | 0.341 |
VATI (cm2/m2) | 55 ± 30 | 59 ± 22 | 56 ± 26 | 62 ± 25 | 0.283 | 0.503 | 0.542 |
VATR (HU) | −96 ± 3.1 | −94 ± 9.1 | −97 ± 5.7 | −95.4 ± 6.6 | 0.285 | 0.333 | 0.774 |
Subcutaneous Adipose Tissue | |||||||
SATA (cm2) | 164 ± 73 | 177 ± 118 | 168 ± 74 | 187 ± 122 | 0.079 | 0.537 | 0.704 |
SATI (cm2/m2) | 63 ± 35 | 65 ± 43 | 67 ± 36 | 68.6 ± 45 | 0.118 | 0.992 | 0.428 |
SATR (HU) | −94 ± 8.8 | −93 ± 11.1 | −98 ± 7.9 | −90 ± 29 | 0.694 | 0.439 | 0.490 |
Variables | β | 95% IC | Adjusted r2 | p-Value |
---|---|---|---|---|
Physical and Clinical Parameters | ||||
Age, y | −0.379 | −0.381–−0.083 | 0.129 | 0.003 |
Sex (m/f) | −4.308 | −12.046–−4.403 | 0.229 | <0.001 |
NLR, units | 0.311 | 0.041–0.372 | 0.081 | 0.015 |
Diseases | - | - | - | 0.074 |
Smoking | - | - | - | 0.365 |
Drinking | - | - | - | 0.138 |
Skeletal Muscle | ||||
SMA (cm2) | 0.306 | 0.015–0.148 | 0.078 | 0.017 |
SMI (cm2/m2) | - | - | - | 0.138 |
Intramuscular Adipose Tissue | ||||
IMATA (cm2) | −0.476 | −0.925–−0.320 | 0.213 | <0.001 |
IMATI (cm2/m2) | 0.277 | 0.032–0.683 | 0.061 | 0.032 |
IMATR (HU) | −0.514 | −2.612–−0.942 | 0.249 | <0.001 |
Visceral Adipose Tissue | ||||
VATA (cm2) | - | - | - | 0.478 |
VATI (cm2/m2) | - | - | - | 0.350 |
VATR (HU) | - | - | - | 0.449 |
Subcutaneous Adipose Tissue | ||||
SATA (cm2) | −0.321 | −0.046–−0.006 | 0.087 | 0.013 |
SATI (cm2/m2) | - | - | - | 0.064 |
SATR (HU) | −0.386 | −0.132–−0.026 | 0.132 | 0.004 |
Treatment Outcomes | ||||
Total days without mechanical ventilation | - | - | - | 0.214 |
Number of adverse events | - | - | - | 0.132 |
Hospitalization days | - | - | - | 0.094 |
Variables | β | 95% IC | p-Value |
---|---|---|---|
Age, years | −0.328 | −0.343–−0.058 | 0.007 |
Sex, (m/f) | −0.208 | −10.167–3.220 | 0.303 |
NLR, units | 0.067 | −0.100–0.l89 | 0.540 |
SMA (cm2) | 0.093 | −0.069–0.119 | 0.600 |
IMATA (cm2) | −0.493 | −1.121–−0.169 | 0.009 |
IMATR (HU) | −0.262 | −0.747–0.071 | 0.103 |
SATA (cm2) | −0.122 | −0.039 −0.020 | 0.507 |
Variables | β | 95% IC | p-Value |
---|---|---|---|
Age, y | −0.310 | −0.338–−0.038 | 0.015 |
Sex (m/f) | −0.222 | −8.327–0.995 | 0.120 |
NLR, units | 0.048 | −0.118–0.178 | 0.681 |
IMATI (cm2/m2) | −0.568 | −3.478–−0.452 | 0.012 |
IMATR (HU) | −0.345 | −0.874–0.013 | 0.057 |
SATI (cm2/m2) | −0.121 | −0.097–0.047 | 0.493 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alves, M.A.P.; Juliani, F.L.; Goes-Santos, B.R.; Mendes, M.C.S.; Pereira, M.C.; Carvalheira, J.B.C.; Antunes-Correa, L.M. Muscle Radiodensity Reduction in COVID-19 Survivors Is Independent of NLR Levels During Acute Infection Phase. Int. J. Environ. Res. Public Health 2025, 22, 521. https://doi.org/10.3390/ijerph22040521
Alves MAP, Juliani FL, Goes-Santos BR, Mendes MCS, Pereira MC, Carvalheira JBC, Antunes-Correa LM. Muscle Radiodensity Reduction in COVID-19 Survivors Is Independent of NLR Levels During Acute Infection Phase. International Journal of Environmental Research and Public Health. 2025; 22(4):521. https://doi.org/10.3390/ijerph22040521
Chicago/Turabian StyleAlves, Mônica Aparecida Prata, Fabiana Lascala Juliani, Beatriz Rafaelle Goes-Santos, Maria Carolina Santos Mendes, Mônica Corso Pereira, José Barreto Campello Carvalheira, and Lígia M. Antunes-Correa. 2025. "Muscle Radiodensity Reduction in COVID-19 Survivors Is Independent of NLR Levels During Acute Infection Phase" International Journal of Environmental Research and Public Health 22, no. 4: 521. https://doi.org/10.3390/ijerph22040521
APA StyleAlves, M. A. P., Juliani, F. L., Goes-Santos, B. R., Mendes, M. C. S., Pereira, M. C., Carvalheira, J. B. C., & Antunes-Correa, L. M. (2025). Muscle Radiodensity Reduction in COVID-19 Survivors Is Independent of NLR Levels During Acute Infection Phase. International Journal of Environmental Research and Public Health, 22(4), 521. https://doi.org/10.3390/ijerph22040521