Transmissible Gastroenteritis Virus (TGEV) and Porcine Respiratory Coronavirus (PRCV): Epidemiology and Molecular Characteristics—An Updated Overview
Abstract
:1. Introduction
2. Epidemiology of TGEV and PRCV
2.1. TGEV in Europe
2.2. TGEV in America and Asia
- Lack of routine testing: While TGEV is considered rare in most regions, its true prevalence remains uncertain due to insufficient surveillance.
- Misdiagnosis: Serological tests do not always distinguish PRCV from TGEV, leading to potential misinterpretation of results. TGEV shares clinical signs with other enteric diseases, such as porcine epidemic diarrhea (PED) and rotavirus infections, making them clinically indistinguishable.
- Impact of PRCV on TGEV prevalence: The emergence of PRCV has been linked to a decrease in the number of animals infected with TGEV, but the exact mechanisms behind this decline require further study.
- Environmental stability: More research is needed on how long TGEV survives under different environmental conditions. TGEV is often associated with winter outbreaks, but the exact environmental or management factors affecting seasonality require further research.
- Wildlife reservoirs: The role of wild boars in the spread of TGEV is not well examined.
- There is a lack of epidemiological models for TGEV spread that integrate key factors (e.g., environmental conditions, wildlife interactions, virus evolution, biosecurity).
2.3. PRCV in Europe
2.4. PRCV in Asia and America
- Underreporting of PRCV: Prevalence studies are outdated or limited to specific regions, making it difficult to assess the current global incidence of PRCV. Many PRCV infections are mild or subclinical, leading to underreporting of PRCV cases.
- Regional Variability: Some countries report high seroprevalence of PRCV, but exact infection rates and transmission dynamics remain unclear.
- Misdiagnosis: Serological tests do not always differentiate PRCV from TGEV, leading to potential misinterpretation of results.
- Wildlife Reservoirs: The role of wild boars as potential reservoirs for PRCV is not well examined.
- Coinfections with Other Respiratory Pathogens: PRCV often occurs in combination with other respiratory pathogens, such as PRRSV, Actinobacillus pleuropneumonia and Mycoplasma hyopneumonia. The role of co-infection in disease progression and severity is an area that requires more in-depth research.
- Cross-protection against TGEV: Exposure to PRCV may induce partial immunity to TGEV, but the extent and duration of this protection requires further study.
- Seasonal occurrence: In some herds, PRCV can be isolated from pigs year-round, while in others PRCV temporarily disappears during the summer months, therefore the survival of PRCV in the environment affecting its spread is unclear.
3. Molecular Biology of TGEV/PRCV
- Since PRCV is a mutant of TGEV, the functions of PRCV encoded proteins are primarily inferred from TGEV studies rather than studied directly.
- PRCV likely uses APN as a receptor, similar to TGEV, but how the truncated S protein affects binding affinity and viral entry is not fully understood.
- The role of the nucleocapsid (N) protein in RNA genome packaging and its interactions with membrane (M) and envelope (E) proteins needs further elucidation.
- While some nsps have been studied in other coronaviruses, the function of TGEV/PRCV nsps is not well studied.
- The exact role of accessory genes (ORF3, ORF4, and ORF7) needs further investigation.
- The molecular details of interactions between the structural and nonstructural proteins of PRCV/TGEV with host immune factors, such as interferon responses and neutralizing antibodies, remain poorly understood.
4. Genetic and Phylogenetic Diversity of TGEV and PRCV
4.1. TGEV
4.2. PRCV
- Most phylogenetic studies focus on the spike (S) gene or other viral genes rather than full-genome sequences.
- The availability of full-genome sequences from different geographical regions and time points is scarce, limiting accurate phylogenetic studies and understanding of the long-term evolution of TGEV and PRCV. While the majority of the TGEV/PRCV sequences are from Europe, North America and China, sequences of these strains from, e.g., Africa and South America are missing or very limited.
- PRCV is believed to have evolved from TGEV via a large deletion in the S gene, but the exact timeline and geographic origin of this event remain uncertain.
- Specific mutations defining TGEV variants (traditional versus variant; Purdue versus Miller) are not well documented.
- The genetic differences between U.S. and European PRCV strains have been observed, but the specific mutations that define these regional variants are not well characterized. More phylogenetic and molecular analyses are needed to confirm these regional differences.
5. Molecular Features Related to Virulence and Tissue Tropism
- Specific deletions or mutations in TGEV/PRCV have mostly been identified in comparative studies, and their actual functional impact is often hypothetical but not experimentally confirmed using reverse genetics systems. This is a major knowledge gap that limits our understanding of how specific genetic changes affect virulence and tissue tropism.
- ORF3 has been suggested to play a role in viral replication and virulence, but its exact function remains poorly defined. The exact contribution of other structural and nonstructural proteins to TGEV/PRCV virulence remains poorly characterized and requires further research.
- Specific mutations defining TGEV variants (traditional versus variant; Purdue versus Miller) are not well documented.
- The exact genetic or molecular differences that make some PRCV strains more virulent than others are not well understood. European and U.S. PRCV strains may differ in genetic makeup and virulence, but detailed comparative studies are lacking.
- Comparing PRCV sequences from feces and nasal swabs could provide insights into viral replication sites, transmission dynamics and potential dual tropism. However, significant knowledge gaps exist in this area, limiting our understanding of PRCV pathogenesis and evolution.
- Intraspecies recombination between different TGEVs and recombination between TGEV and other enteric viruses raises concerns about the emergence of new, highly pathogenic strains. However, there are significant gaps in knowledge about the frequency, mechanisms and consequences of these recombination events. More whole-genome sequencing of field strains is needed to identify recombination events in pig populations.
- The relationship between TGEV/PRCV and other alphacoronaviruses (e.g., feline coronavirus, canine coronavirus) needs deeper analysis.
- Limited information exists on the potential impact of TGEV on human health, either directly or indirectly through zoonotic transmission or as a source of genetic material for coronaviruses infecting humans. Understanding any potential human health risks associated with TGEV is a key area for further research.
- Although PRCV is closely related to TGEV, its potential to infect other species, including humans, has not been studied.
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wesley, R.D.; Lager, K.M. Increased litter survival rates, reduced clinical illness and better lactogenic immunity against TGEV in gilts that were primed as neonates with porcine respiratory coronavirus (PRCV). Vet. Microbiol. 2003, 95, 175–186. [Google Scholar] [CrossRef] [PubMed]
- Pensaert, M.; Callebaut, P.; Vergote, J. Isolation of a porcine respiratory, non-enteric coronavirus related to transmissible gastroenteritis. Vet. Q. 1986, 8, 257–261. [Google Scholar] [CrossRef] [PubMed]
- Usami, Y.; Fukai, K.; Ichikawa, Y.; Okuda, Y.; Shibata, I.; Motoyama, C.; Imai, K.; Kirisawa, R. Virological and serological studies of porcine respiratory coronavirus infection on a Japanese farm. J. Vet. Med. Sci. 2008, 70, 929–936. [Google Scholar] [CrossRef] [PubMed]
- Bedsted, A.E.; Goecke, N.B.; Hjulsager, C.K.; Ryt-Hansen, P.; Larsen, K.C.; Rasmussen, T.B.; Bøtner, A.; Larsen, L.E.; Belsham, G.J. High-throughput screening for respiratory pathogens within pigs in Denmark; analysis of circulating porcine respiratory coronaviruses and their association with other pathogens. Virus Res. 2024, 350, 199501. [Google Scholar] [CrossRef]
- Jung, K.; Renukaradhya, G.J.; Alekseev, K.P.; Fang, Y.; Tang, Y.; Saif, L.J. Porcine reproductive and respiratory syndrome virus modifies innate immunity and alters disease outcome in pigs subsequently infected with porcine respiratory coronavirus: Implications for respiratory viral co-infections. J. Gen. Virol. 2009, 90 Pt 11, 2713–2723. [Google Scholar] [CrossRef]
- Liu, Q.; Wang, H.Y. Porcine enteric coronaviruses: An updated overview of the pathogenesis, prevalence, and diagnosis. Vet. Res. Commun. 2021, 45, 75–86. [Google Scholar] [CrossRef]
- Saif, L.J.; Wang, Q.; Vlasova, A.N.; Jung, K.; Xiao, S. Coronaviruses. Dis. Swine 2019, 488–523. [Google Scholar] [CrossRef]
- Oh, Y.I.; Yang, D.K.; Cho, S.D.; Kang, H.K.; Choi, S.K.; Kim, Y.J.; Hyun, B.H.; Song, J.Y. Sero-surveillance of transmissible gastroenteritis virus (TGEV) and porcine respiratory coronavirus (PRCV) in South Korea. J. Bacteriol. Virol. 2011, 41, 189–193. [Google Scholar]
- Chae, C.; Kim, O.; Min, K.; Choi, C.; Kim, J.; Cho, W. Seroprevalence of porcine respiratory coronavirus in selected Korean pigs. Prev. Vet. Med. 2000, 46, 293–296. [Google Scholar] [CrossRef]
- Carman, S.; Josephson, G.; McEwen, B.; Maxie, G.; Antochi, M.; Eernisse, K.; Nayar, G.; Halbur, P.; Erickson, G.; Nilsson, E. Field validation of a commercial blocking ELISA to differentiate antibody to transmissible gastroenteritis virus (TGEV) and porcine respiratory coronavirus and to identify TGEV-infected swine herds. J. Vet. Diagn. Investig. 2002, 14, 97–105. [Google Scholar] [CrossRef]
- Magtoto, R.; Poonsuk, K.; Baum, D.; Zhang, J.; Chen, Q.; Ji, J.; Piñeyro, P.; Zimmerman, J.; Giménez-Lirola, L.G. Evaluation of the Serologic Cross-Reactivity between Transmissible Gastroenteritis Coronavirus and Porcine Respiratory Coronavirus Using Commercial Blocking Enzyme-Linked Immunosorbent Assay Kits. mSphere 2019, 4, e00017-19. [Google Scholar] [CrossRef] [PubMed]
- Callebaut, P.; Pensaert, M.B.; Hooyberghs, J. A competitive inhibition ELISA for the differentiation of serum antibodies from pigs infected with transmissible gastroenteritis virus (TGEV) or with the TGEV-related porcine respiratory coronavirus. Vet. Microbiol. 1989, 20, 9–19. [Google Scholar] [CrossRef] [PubMed]
- Simkins, R.A.; Weilnau, P.A.; Van Cott, J.; Brim, T.A.; Saif, L.J. Competition ELISA, using monoclonal antibodies to the transmissible gastroenteritis virus (TGEV) S protein, for serologic differentiation of pigs infected with TGEV or porcine respiratory coronavirus. Am. J. Vet. Res. 1993, 54, 254–259. [Google Scholar] [PubMed]
- Antas, M.; Olech, M. First report of transmissible gastroenteritis virus (TGEV) and porcine respiratory coronavirus (PRCV) in pigs from Poland. BMC Vet. Res. 2024, 20, 517. [Google Scholar] [CrossRef]
- Costantini, V.; Lewis, P.; Alsop, J.; Templeton, C.; Saif, L.J. Respiratory and fecal shedding of porcine respiratory coronavirus (PRCV) in sentinel weaned pigs and sequence of the partial S-gene of the PRCV isolates. Arch. Virol. 2004, 149, 957–974. [Google Scholar] [CrossRef]
- Kim, L.; Chang, K.O.; Sestak, K.; Parwani, A.; Saif, L.J. Development of a reverse transcription-nested polymerase chain reaction assay for differential diagnosis of transmissible gastroenteritis virus and porcine respiratory coronavirus from feces and nasal swabs of infected pigs. J. Vet. Diagn. Investig. 2000, 12, 385–388. [Google Scholar] [CrossRef]
- Ogawa, H.; Taira, O.; Hirai, T.; Takeuchi, H.; Nagao, A.; Ishikawa, Y.; Tuchiya, K.; Nunoya, T.; Ueda, S. Multiplex PCR and multiplex RT-PCR for inclusive detection of major swine DNA and RNA viruses in pigs with multiple infections. J. Virol. Methods 2009, 160, 210–214. [Google Scholar] [CrossRef]
- Pensaert, M.; Cox, E.; van Deun, K.; Callebaut, P. A sero-epizootiological study of porcine respiratory coronavirus in Belgian swine. Vet. Q. 1993, 15, 16–20. [Google Scholar] [CrossRef]
- Lőrincz, M.; Biksi, I.; Andersson, S.; Cságola, A.; Tuboly, T. Sporadic re-emergence of enzootic porcine transmissible gastroenteritis in Hungary. Acta Vet. Hung. 2014, 62, 125–133. [Google Scholar] [CrossRef]
- Valkó, A.; Bálint, Á.; Bozsa, Á.; Cságola, A. Prevalence of antibodies against transmissible gastroenteritis virus (TGEV) in Hungary. Vet. Anim. Sci. 2019, 7, 100042. [Google Scholar] [CrossRef]
- Ferrara, G.; D’Anza, E.; Rossi, A.; Improda, E.; Iovane, V.; Pagnini, U.; Iovane, G.; Montagnaro, S. A Serological Investigation of Porcine Reproductive and Respiratory Syndrome and Three Coronaviruses in the Campania Region, Southern Italy. Viruses 2023, 15, 300. [Google Scholar] [CrossRef] [PubMed]
- Vidal, A.; Martín-Valls, G.E.; Tello, M.; Mateu, E.; Martín, M.; Darwich, L. Prevalence of enteric pathogens in diarrheic and non-diarrheic samples from pig farms with neonatal diarrhea in the North East of Spain. Vet. Microbiol. 2019, 237, 108419. [Google Scholar] [CrossRef] [PubMed]
- Puente, H.; Argüello, H.; Mencía-Ares, Ó.; Gómez-García, M.; Rubio, P.; Carvajal, A. Detection and Genetic Diversity of Porcine Coronavirus Involved in Diarrhea Outbreaks in Spain. Front. Vet. Sci. 2021, 8, 651999. [Google Scholar] [CrossRef] [PubMed]
- Mesonero-Escuredo, S.; Strutzberg-Minder, K.; Casanovas, C.; Segalés, J. Viral and bacterial investigations on the aetiology of recurrent pig neonatal diarrhoea cases in Spain. Porc. Health Manag. 2018, 4, 5. [Google Scholar] [CrossRef]
- Salamunova, S.; Jackova, A.; Mandelik, R.; Novotny, J.; Vlasakova, M.; Vilcek, S. Molecular detection of enteric viruses and the genetic characterization of porcine astroviruses and sapoviruses in domestic pigs from Slovakian farms. BMC Vet. Res. 2018, 14, 313. [Google Scholar] [CrossRef]
- Bedsted, A.E.; Rasmussen, T.B.; Martinenghi, L.D.; Bøtner, A.; Nauwynck, H.; Belsham, G.J. Porcine respiratory coronavirus genome sequences; comparisons and relationships to transmissible gastroenteritis viruses. Virology 2024, 595, 110072. [Google Scholar] [CrossRef]
- Sedlak, K.; Bartova, E.; Machova, J. Antibodies to selected viral disease agents in wild boars from the Czech Republic. J. Wildl. Dis. 2008, 44, 777–780. [Google Scholar] [CrossRef]
- Kaden, V.; Lange, E.; Hänel, A.; Hlinak, A.; Mewes, L.; Hergarten, G.; Irsch, B.; Dedek, J.; Bruer, W. Retrospective serological survey on selected viral pathogens in wild boar populations in Germany. Eur. J. Wildl. Res. 2009, 55, 153. [Google Scholar] [CrossRef]
- Ferrara, G.; Nocera, F.P.; Longobardi, C.; Ciarcia, R.; Fioretti, A.; Damiano, S.; Iovane, G.; Pagnini, U.; Montagnaro, S. Retrospective Serosurvey of Three Porcine Coronaviruses among the Wild Boar (Sus scrofa) Population in the Campania Region of Italy. J. Wildl. Dis. 2022, 58, 887–891. [Google Scholar] [CrossRef]
- Roic, B.; Jemersic, L.; Terzic, S.; Keros, T.; Balatinec, J.; Florijancic, T. Prevalence of antibodies to selected viral pathogens in wild boars (Sus scrofa) in Croatia in 2005-06 and 2009-10. J. Wildl. Dis. 2012, 48, 131–137. [Google Scholar] [CrossRef]
- Hälli, O.; Ala-Kurikka, E.; Nokireki, T.; Skrzypczak, T.; Raunio-Saarnisto, M.; Peltoniemi, O.A.; Heinonen, M. Prevalence of and risk factors associated with viral and bacterial pathogens in farmed European wild boar. Vet. J. 2012, 194, 98–101. [Google Scholar] [CrossRef] [PubMed]
- Vengust, G.; Valencak, Z.; Bidovec, A. A serological survey of selected pathogens in wild boar in Slovenia. J. Vet. Med. B Infect. Dis. Vet. Public Health 2006, 53, 24–27. [Google Scholar] [CrossRef] [PubMed]
- Jabrane, A.; Elazhary, Y.; Talbot, B.G.; Ethier, R.; Dubuc, C.; Assaf, R. Porcine respiratory coronavirus in Quebec: Serological studies using a competitive inhibition enzyme-linked immunosorbent assay. Can. Vet. J. 1992, 33, 727–733. [Google Scholar] [PubMed]
- Chen, F.; Knutson, T.P.; Rossow, S.; Saif, L.J.; Marthaler, D.G. Decline of transmissible gastroenteritis virus and its complex evolutionary relationship with porcine respiratory coronavirus in the United States. Sci. Rep. 2019, 9, 3953. [Google Scholar] [CrossRef]
- Rawal, G.; Yim-Im, W.; Aljets, E.; Halbur, P.G.; Zhang, J.; Opriessnig, T. Porcine Respiratory Coronavirus (PRCV): Isolation and Characterization of a Variant PRCV from USA Pigs. Pathogens 2023, 12, 1097. [Google Scholar] [CrossRef]
- Piñeyro, P.E.; Lozada, M.I.; Alarcón, L.V.; Sanguinetti, R.; Cappuccio, J.A.; Pérez, E.M.; Vannucci, F.; Armocida, A.; Madson, D.M.; Perfumo, C.J.; et al. First retrospective studies with etiological confirmation of porcine transmissible gastroenteritis virus infection in Argentina. BMC Vet. Res. 2018, 14, 292. [Google Scholar] [CrossRef]
- Winter, M.; Marfil, M.J.; La Sala, L.F.; Suarez, M.; Maidana, C.; Rodriguez, C.; Mesplet, M.; Abate, S.; Rosas, C.; Peña Martinez, J.; et al. Serological survey suggests circulation of coronavirus on wild Suina from Argentina, 2014–2017. Ecohealth 2022, 19, 159–163. [Google Scholar] [CrossRef]
- McGregor, G.F.; Gottschalk, M.; Godson, D.L.; Wilkins, W.; Bollinger, T.K. Disease risks associated with free-ranging wild boar in Saskatchewan. Can. Vet. J. 2015, 56, 839–844. [Google Scholar]
- Barrera Valle, M.; Díaz de Arce Landa, H.; Acevedo Beiras, A.; Cuello Portal, S.; Rodríguez Batista, E.; Vega Redondo, A.; Urquiaga Varela, R.; Frías Lepoureau, M. Transmissible gastroenteritis in Cuba: Experimental reproduction of the disease and molecular characterization of the virus. Span. J. Agric. Res. 2005, 3, 267–274. [Google Scholar] [CrossRef]
- de la Fé Rodríguez, P.Y.; Martin, L.O.; Muñoz, E.C.; Imberechts, H.; Butaye, P.; Goddeeris, B.M.; Cox, E. Several enteropathogens are circulating in suckling and newly weaned piglets suffering from diarrhea in the province of Villa Clara, Cuba. Trop. Anim. Health Prod. 2013, 45, 435–440. [Google Scholar] [CrossRef]
- Miyazaki, A.; Fukuda, M.; Kuga, K.; Takagi, M.; Tsunemitsu, H. Prevalence of antibodies against transmissible gastroenteritis virus and porcine respiratory coronavirus among pigs in six regions in Japan. J. Vet. Med. Sci. 2010, 72, 943–946. [Google Scholar] [CrossRef] [PubMed]
- Albayrak, H.; Ozan, E.; Cavunt, A. A serological survey of selected pathogens in wild boar (Sus scrofa) in northern Turkey. Eur. J. Wildl. Res. 2013, 59, 893–897. [Google Scholar] [CrossRef] [PubMed]
- Sookhoo, J.R.V.; Brown-Jordan, A.; Blake, L.; Holder, R.B.; Brookes, S.M.; Essen, S.; Carrington, C.V.F.; Brown, I.H.; Oura, C.A.L. Seroprevalence of economically important viral pathogens in swine populations of Trinidad and Tobago, West Indies. Trop. Anim. Health Prod. 2017, 49, 1117–1124. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.H.; Park, J.; Lee, D.K.; Kim, W.I.; Lyoo, Y.S.; Park, C.K.; Kim, H.R. Prevalence and Genetic Characterization of Porcine Respiratory Coronavirus in Korean Pig Farms. Animals 2024, 14, 1698. [Google Scholar] [CrossRef]
- Guo, R.; Fan, B.; Chang, X.; Zhou, J.; Zhao, Y.; Shi, D.; Yu, Z.; He, K.; Li, B. Characterization and evaluation of the pathogenicity of a natural recombinant transmissible gastroenteritis virus in China. Virology 2020, 545, 24–32. [Google Scholar] [CrossRef]
- Zhang, X.; Zhu, Y.; Zhu, X.; Shi, H.; Chen, J.; Shi, D.; Yuan, J.; Cao, L.; Liu, J.; Dong, H.; et al. Identification of a natural recombinant transmissible gastroenteritis virus between Purdue and Miller clusters in China. Emerg. Microbes Infect. 2017, 6, e74. [Google Scholar] [CrossRef]
- Hu, X., Jr.; Li, N., Jr.; Tian, Z., Jr.; Yin, X., Jr.; Qu, L.; Qu, J. Molecular characterization and phylogenetic analysis of transmissible gastroenteritis virus HX strain isolated from China. BMC Vet. Res. 2015, 11, 72. [Google Scholar] [CrossRef]
- Chen, S.; Zhang, H.; Chu, M.; Cheng, W.; Zhai, J.; Wang, H.; Chen, X.; Qi, Y. Prevalence of transmissible gastroenteritis among swine populations in China during 1983-2022: A systematic review and meta-analysis. Microb. Pathog. 2023, 183, 106320. [Google Scholar] [CrossRef]
- Zhang, X.; Zhu, Y.; Zhu, X.; Chen, J.; Shi, H.; Shi, D.; Dong, H.; Feng, L. ORF3a deletion in field strains of porcine-transmissible gastroenteritis virus in China: A hint of association with porcine respiratory coronavirus. Transbound. Emerg. Dis. 2017, 64, 698–702. [Google Scholar] [CrossRef]
- Zhang, F.; Luo, S.; Gu, J.; Li, Z.; Li, K.; Yuan, W.; Ye, Y.; Li, H.; Ding, Z.; Song, D.; et al. Prevalence and phylogenetic analysis of porcine diarrhea associated viruses in southern China from 2012 to 2018. BMC Vet. Res. 2019, 15, 470. [Google Scholar] [CrossRef]
- Zhang, F.; Luo, Y.; Lin, C.; Tan, M.; Wan, P.; Xie, B.; Xiong, L.; Ji, H. Epidemiological monitoring and genetic variation analysis of pathogens associated with porcine viral diarrhea in southern China from 2021 to 2023. Front. Microbiol. 2024, 15, 1303915. [Google Scholar] [CrossRef] [PubMed]
- Yuan, D.; Yan, Z.; Li, M.; Wang, Y.; Su, M.; Sun, D. Isolation and Characterization of a Porcine Transmissible Gastroenteritis Coronavirus in Northeast China. Front. Vet. Sci. 2021, 8, 611721. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; Dai, H.B.; Luo, Z.P.; Zhu, L.; Zhao, J.; Lee, F.; Liu, Z.Y.; Nie, M.; Wang, X.; Zhou, Y.; et al. Characterization and Evaluation of the Pathogenicity of a Natural Gene-Deleted Transmissible Gastroenteritis Virus in China. Transbound. Emerg. Dis. 2023, 2652850. [Google Scholar] [CrossRef]
- Henningsen, A.; Mousing, J.; Aalund, O. Porcint corona virus i Danmark. En epidemiologisk tv~esersnitanalyse baseret pa screening-omrade sporgeskema data. Dan. Vettidsskr. 1988, 71, 1168–1177. [Google Scholar]
- Valenčak, Z. The pig health control in Slovenia. In Proceedings of the 17th International Pig Veterinary Society Congress, Ames, IA, USA, 2–5 June 2002; Volume 2, p. 301. [Google Scholar]
- Martín-Valls, G.E.; Li, Y.; Díaz, I.; Cano, E.; Sosa-Portugal, S.; Mateu, E. Diversity of respiratory viruses present in nasal swabs under influenza suspicion in respiratory disease cases of weaned pigs. Front. Vet. Sci. 2022, 9, 1014475. [Google Scholar] [CrossRef]
- Grøntvedt, C.A.; Nordstoga, A.B.; Hopp, P. The Surveillance Programme for Specific Viral Infections in Swine Herds in Norway 2022; Surveillance Program Report; Veterinærinstituttet © Norwegian Veterinary Institute: Arboretveien, Norway, 2023. [Google Scholar]
- Saif, L.J.; Jung, K. Comparative Pathogenesis of Bovine and Porcine Respiratory Coronaviruses in the Animal Host Species and SARS-CoV-2 in Humans. J. Clin. Microbiol. 2020, 58, e01355-20. [Google Scholar] [CrossRef]
- Vaughn, E.M.; Paul, P.S. Antigenic and biological diversity among transmissible gastroenteritis virus isolates of swine. Vet. Microbiol. 1993, 36, 333–347. [Google Scholar] [CrossRef]
- Kamogawa, O.; Tomita, Y.; Kaneko, M.; Yamada, S.; Kubo, M.; Shimizu, M. Isolation of porcine respiratory coronavirus from pigs affected with porcine reproductive and respiratory syndrome. J. Vet. Med. Sci. 1996, 58, 385–388. [Google Scholar] [CrossRef]
- Alonso, S.; Izeta, A.; Sola, I.; Enjuanes, L. Transcription regulatory sequences and mRNA expression levels in the coronavirus transmissible gastroenteritis virus. J. Virol. 2002, 76, 1293–1308. [Google Scholar] [CrossRef]
- Masters, P.S. The molecular biology of coronaviruses. Adv. Virus Res. 2006, 66, 193–292. [Google Scholar] [CrossRef]
- Züst, R.; Cervantes-Barragán, L.; Kuri, T.; Blakqori, G.; Weber, F.; Ludewig, B.; Thiel, V. Coronavirus nonnon-structural protein 1 is a major pathogenicity factor: Implications for the rational design of coronavirus vaccines. PLoS Pathog. 2007, 3, e109. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.; Lokugamage, K.G.; Rozovics, J.M.; Narayanan, K.; Semler, B.L.; Makino, S. Alphacoronavirus transmissible gastroenteritis virus nsp1 protein suppresses protein translation in mammalian cells and in cell-free HeLa cell extracts but not in rabbit reticulocyte lysate. J. Virol. 2011, 85, 638–643. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Qiao, X.; Zhang, S.; Qin, Y.; Guo, T.; Hao, Z.; Sun, L.; Wang, X.; Wang, Y.; Jiang, Y.; et al. Porcine transmissible gastroenteritis virus nonstructural protein 2 contributes to inflammation via NF-κB activation. Virulence 2018, 9, 1685–1698. [Google Scholar] [CrossRef] [PubMed]
- Putics, Á.; Gorbalenya, A.E.; Ziebuhr, J. Identification of protease and ADP-ribose 1″-monophosphatase activities associated with transmissible gastroenteritis virus non-structural protein 3. J. Gen. Virol. 2006, 87 Pt 3, 651–656. [Google Scholar] [CrossRef]
- Wojdyla, J.A.; Manolaridis, I.; van Kasteren, P.B.; Kikkert, M.; Snijder, E.J.; Gorbalenya, A.E.; Tucker, P.A. Papain-like protease 1 from transmissible gastroenteritis virus: Crystal structure and enzymatic activity toward viral and cellular substrates. J. Virol. 2010, 84, 10063–10073. [Google Scholar] [CrossRef]
- Clementz, M.A.; Kanjanahaluethai, A.; O’Brien, T.E.; Baker, S.C. Mutation in murine coronavirus replication protein nsp4 alters assembly of double membrane vesicles. Virology 2008, 375, 118–129. [Google Scholar] [CrossRef]
- Zhu, X.; Wang, D.; Zhou, J.; Pan, T.; Chen, J.; Yang, Y.; Lv, M.; Ye, X.; Peng, G.; Fang, L.; et al. Porcine Deltacoronavirus nsp5 Antagonizes Type I Interferon Signaling by Cleaving STAT2. J. Virol. 2017, 91, e00003–e00017. [Google Scholar] [CrossRef]
- Ricciardi, S.; Guarino, A.M.; Giaquinto, L.; Polishchuk, E.V.; Santoro, M.; Di Tullio, G.; Wilson, C.; Panariello, F.; Soares, V.C.; Dias, S.S.G.; et al. The role of NSP6 in the biogenesis of the SARS-CoV-2 replication organelle. Nature 2022, 606, 761–768. [Google Scholar] [CrossRef]
- Hartenian, E.; Nandakumar, D.; Lari, A.; Ly, M.; Tucker, J.M.; Glaunsinger, B.A. The molecular virology of coronaviruses. J. Biol. Chem. 2020, 295, 12910–12934. [Google Scholar] [CrossRef]
- Nogales, A.; Márquez-Jurado, S.; Galán, C.; Enjuanes, L.; Almazán, F. Transmissible gastroenteritis coronavirus RNA-dependent RNA polymerase and nonstructural proteins 2, 3, and 8 are incorporated into viral particles. J. Virol. 2012, 86, 1261–1266. [Google Scholar] [CrossRef]
- Zhang, X.; Hasoksuz, M.; Spiro, D.; Halpin, R.; Wang, S.; Stollar, S.; Janies, D.; Hadya, N.; Tang, Y.; Ghedin, E.; et al. Complete genomic sequences, a key residue in the spike protein and deletions in nonstructural protein 3b of US strains of the virulent and attenuated coronaviruses, transmissible gastroenteritis virus and porcine respiratory coronavirus. Virology 2007, 358, 424–435. [Google Scholar] [CrossRef] [PubMed]
- Ortego, J.; Sola, I.; Almazán, F.; Ceriani, J.E.; Riquelme, C.; Balasch, M.; Plana, J.; Enjuanes, L. Transmissible gastroenteritis coronavirus gene 7 is not essential but influences in vivo virus replication and virulence. Virology 2003, 308, 13–22. [Google Scholar] [CrossRef] [PubMed]
- Artika, I.M.; Dewantari, A.K.; Wiyatno, A. Molecular biology of coronaviruses: Current knowledge. Heliyon 2020, 6, e04743. [Google Scholar] [CrossRef] [PubMed]
- Almazán, F.; Galán, C.; Enjuanes, L. The nucleoprotein is required for efficient coronavirus genome replication. J. Virol. 2004, 78, 12683–12688. [Google Scholar] [CrossRef]
- Zúñiga, S.; Cruz, J.L.; Sola, I.; Mateos-Gómez, P.A.; Palacio, L.; Enjuanes, L. Coronavirus nucleocapsid protein facilitates template switching and is required for efficient transcription. J. Virol. 2010, 84, 2169–2175. [Google Scholar] [CrossRef]
- Lu, X.; Pan, J.; Tao, J.; Guo, D. SARS-CoV nucleocapsid protein antagonizes IFN-β response by targeting initial step of IFN-β induction pathway, and its C-terminal region is critical for the antagonism. Virus Genes 2011, 42, 37–45. [Google Scholar] [CrossRef]
- Wang, P.H.; Nawal Bahoussi, A.; Tariq Shah, P.; Guo, Y.Y.; Wu, C.; Xing, L. Genetic comparison of transmissible gastroenteritis coronaviruses. Front. Vet. Sci. 2023, 10, 1146648. [Google Scholar] [CrossRef]
- Schultze, B.; Krempl, C.; Ballesteros, M.L.; Shaw, L.; Schauer, R.; Enjuanes, L.; Herrler, G. Transmissible gastroenteritis coronavirus, but not the related porcine respiratory coronavirus, has a sialic acid (N-glycolylneuraminic acid) binding activity. J. Virol. 1996, 70, 5634–5637. [Google Scholar] [CrossRef]
- Peng, J.Y.; Punyadarsaniya, D.; Shin, D.L.; Pavasutthipaisit, S.; Beineke, A.; Li, G.; Wu, N.H.; Herrler, G. The Cell Tropism of Porcine Respiratory Coronavirus for Airway Epithelial Cells Is Determined by the Expression of Porcine Aminopeptidase N. Viruses 2020, 12, 1211. [Google Scholar] [CrossRef]
- Gelhaus, S.; Thaa, B.; Eschke, K.; Veit, M.; Schwegmann-Weßels, C. Palmitoylation of the Alphacoronavirus TGEV spike protein S is essential for incorporation into virus-like particles but dispensable for S-M interaction. Virology 2014, 464–465, 397–405. [Google Scholar] [CrossRef]
- Reguera, J.; Ordoño, D.; Santiago, C.; Enjuanes, L.; Casasnovas, J.M. Antigenic modules in the N-terminal S1 region of the transmissible gastroenteritis virus spike protein. J. Gen. Virol. 2011, 92 Pt 5, 1117–1126. [Google Scholar] [CrossRef] [PubMed]
- Rawal, G.; Zhang, J.; Halbur, P.G.; Gauger, P.C.; Wang, C.; Opriessnig, T. Experimental Infection of Pigs with a Traditional or a Variant Porcine Respiratory Coronavirus (PRCV) Strain and Impact on Subsequent Influenza A Infection. Pathogens 2023, 12, 1031. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.; Liang, R.; Liu, Z.; Shen, Z.; Shi, J.; Shi, Y.; Deng, F.; Xiao, S.; Fu, Z.F.; Peng, G. The N-Terminal Domain of Spike Protein Is Not the Enteric Tropism Determinant for Transmissible Gastroenteritis Virus in Piglets. Viruses 2019, 11, 313. [Google Scholar] [CrossRef] [PubMed]
- Moon, S.H.; Park, G.N.; Choe, S.; Song, S.; Le, V.P.; Cho, Y.S.; An, D.J. Molecular and phylogenetic analysis of transmissible gastroenteritis virus strain VET-16, isolated from piglets in Vietnam. Arch. Virol. 2024, 169, 183. [Google Scholar] [CrossRef]
- Cheng, S.; Wu, H.; Chen, Z. Evolution of Transmissible Gastroenteritis Virus (TGEV): A Codon Usage Perspective. Int. J. Mol. Sci. 2020, 21, 7898. [Google Scholar] [CrossRef]
- Chen, Y.; Zhang, Y.; Wang, X.; Zhou, J.; Ma, L.; Li, J.; Yang, L.; Ouyang, H.; Yuan, H.; Pang, D. Transmissible Gastroenteritis Virus: An Update Review and Perspective. Viruses 2023, 15, 359. [Google Scholar] [CrossRef]
- Zhao, S.; Gao, Q.; Qin, T.; Yin, Y.; Lin, J.; Yu, Q.; Yang, Q. Effects of virulent and attenuated transmissible gastroenteritis virus on the ability of porcine dendritic cells to sample and present antigen. Vet. Microbiol. 2014, 171, 74–86. [Google Scholar] [CrossRef]
- Sola, I.; Alonso, S.; Zúñiga, S.; Balasch, M.; Plana-Durán, J.; Enjuanes, L. Engineering the transmissible gastroenteritis virus genome as an expression vector inducing lactogenic immunity. J. Virol. 2003, 77, 4357–4369. [Google Scholar] [CrossRef]
- Krempl, C.; Schultze, B.; Laude, H.; Herrler, G. Point mutations in the S protein connect the sialic acid binding activity with the enteropathogenicity of transmissible gastroenteritis coronavirus. J. Virol. 1997, 71, 3285–3287. [Google Scholar] [CrossRef]
- Zuñiga, S.; Pascual-Iglesias, A.; Sanchez, C.M.; Sola, I.; Enjuanes, L. Virulence factors in porcine coronaviruses and vaccine design. Virus Res. 2016, 226, 142–151. [Google Scholar] [CrossRef]
- Bálint, Á.; Farsang, A.; Zádori, Z.; Hornyák, Á.; Dencso, L.; Almazán, F.; Enjuanes, L.; Belák, S. Molecular characterization of feline infectious peritonitis virus strain DF-2 and studies of the role of ORF3abc in viral cell tropism. J. Virol. 2012, 86, 6258–6267. [Google Scholar] [CrossRef] [PubMed]
- Kim, L.; Hayes, J.; Lewis, P.; Parwani, A.V.; Chang, K.O.; Saif, L.J. Molecular characterization and pathogenesis of transmissible gastroenteritis coronavirus (TGEV) and porcine respiratory coronavirus (PRCV) field isolates co-circulating in a swine herd. Arch. Virol. 2000, 145, 1133–1147. [Google Scholar] [CrossRef] [PubMed]
- Weiwei, H.; Qinghua, Y.; Liqi, Z.; Haofei, L.; Shanshan, Z.; Qi, G.; Kongwang, H.; Qian, Y. Complete genomic sequence of the coronavirus transmissible gastroenteritis virus SHXB isolated in China. Arch. Virol. 2014, 159, 2295–2302. [Google Scholar] [CrossRef] [PubMed]
- Li, J.Q.; Cheng, J.; Lan, X.; Li, X.R.; Li, W.; Yin, X.P.; Li, B.Y.; Yang, B.; Li, Z.Y.; Zhang, Y.; et al. Complete genomic sequence of transmissible gastroenteritis virus TS and 3′ end sequence characterization following cell culture. Virol. Sin. 2010, 25, 213–224. [Google Scholar] [CrossRef]
- Ballesteros, M.L.; Sánchez, C.M.; Enjuanes, L. Two amino acid changes at the N-terminus of transmissible gastroenteritis coronavirus spike protein result in the loss of enteric tropism. Virology 1997, 227, 378–388. [Google Scholar] [CrossRef]
- Sánchez, C.M.; Gebauer, F.; Suñé, C.; Mendez, A.; Dopazo, J.; Enjuanes, L. Genetic evolution and tropism of transmissible gastroenteritis coronaviruses. Virology 1992, 190, 92–105. [Google Scholar] [CrossRef]
- Sanchez, C.M.; Pascual-Iglesias, A.; Sola, I.; Zuñiga, S.; Enjuanes, L. Minimum Determinants of Transmissible Gastroenteritis Virus Enteric Tropism Are Located in the N-Terminus of Spike Protein. Pathogens 2019, 9, 2. [Google Scholar] [CrossRef]
- Galán, C.; Enjuanes, L.; Almazán, F. A point mutation within the replicase gene differentially affects coronavirus genome versus minigenome replication. J. Virol. 2005, 79, 15016–15026. [Google Scholar] [CrossRef]
- Shen, Z.; Wang, G.; Yang, Y.; Shi, J.; Fang, L.; Li, F.; Xiao, S.; Fu, Z.F.; Peng, G. A conserved region of nonstructural protein 1 from alphacoronaviruses inhibits host gene expression and is critical for viral virulence. J. Biol. Chem. 2019, 294, 13606–13618. [Google Scholar] [CrossRef]
- Cruz, J.L.; Becares, M.; Sola, I.; Oliveros, J.C.; Enjuanes, L.; Zúñiga, S. Alphacoronavirus protein 7 modulates host innate immune response. J. Virol. 2013, 87, 9754–9767. [Google Scholar] [CrossRef]
- Keep, S.; Carr, B.V.; Lean, F.Z.X.; Fones, A.; Newman, J.; Dowgier, G.; Freimanis, G.; Vatzia, E.; Polo, N.; Everest, H.; et al. Porcine Respiratory Coronavirus as a Model for Acute Respiratory Coronavirus Disease. Front. Immunol. 2022, 13, 867707. [Google Scholar] [CrossRef] [PubMed]
- Halbur, P.G.; Pallarés, F.J.; Opriessnig, T.; Vaughn, E.M.; Paul, P.S. Pathogenicity of three isolates of porcine respiratory coronavirus in the USA. Vet. Rec. 2003, 152, 358–361. [Google Scholar] [CrossRef] [PubMed]
- Akimkin, V.; Beer, M.; Blome, S.; Hanke, D.; Höper, D.; Jenckel, M.; Pohlmann, A. New Chimeric Porcine Coronavirus in Swine Feces, Germany, 2012. Emerg. Infect. Dis. 2016, 22, 1314–1315. [Google Scholar] [CrossRef] [PubMed]
- Belsham, G.J.; Rasmussen, T.B.; Normann, P.; Vaclavek, P.; Strandbygaard, B.; Bøtner, A. Characterization of a Novel Chimeric Swine Enteric Coronavirus from Diseased Pigs in Central Eastern Europe in 2016. Transbound. Emerg. Dis. 2016, 63, 595–601. [Google Scholar] [CrossRef]
- Boniotti, M.B.; Papetti, A.; Lavazza, A.; Alborali, G.; Sozzi, E.; Chiapponi, C.; Faccini, S.; Bonilauri, P.; Cordioli, P.; Marthaler, D. Porcine Epidemic Diarrhea Virus and Discovery of a Recombinant Swine Enteric Coronavirus, Italy. Emerg. Infect. Dis. 2016, 22, 83–87. [Google Scholar] [CrossRef]
- de Nova, P.J.G.; Cortey, M.; Díaz, I.; Puente, H.; Rubio, P.; Martín, M.; Carvajal, A. A retrospective study of porcine epidemic diarrhoea virus (PEDV) reveals the presence of swine enteric coronavirus (SeCoV) since 1993 and the recent introduction of a recombinant PEDV-SeCoV in Spain. Transbound. Emerg. Dis. 2020, 67, 2911–2922. [Google Scholar] [CrossRef]
- Guo, J.; Lai, Y.; Yang, Z.; Song, W.; Zhou, J.; Li, Z.; Su, W.; Xiao, S.; Fang, L. Coinfection and nonrandom recombination drive the evolution of swine enteric coronaviruses. Emerg. Microbes Infect. 2024, 13, 2332653. [Google Scholar] [CrossRef]
- Sestak, K.; Saif, L.J. Porcine coronavirus. In Trends in Emerging Viral Infection of Swine; Iowa State Press: Ames, IA, USA, 2002; pp. 321–330. [Google Scholar]
- Man, C.; Yu, X. Cloning and Sequence Analysis of N Gene of Transmissible Gastroenteritis Virus HYM-09 Isolated from Dog in China. Indian J. Virol. 2012, 23, 364–367. [Google Scholar] [CrossRef]
- Decaro, N.; Mari, V.; Campolo, M.; Lorusso, A.; Camero, M.; Elia, G.; Martella, V.; Cordioli, P.; Enjuanes, L.; Buonavoglia, C. Recombinant canine coronaviruses related to transmissible gastroenteritis virus of Swine are circulating in dogs. J. Virol. 2009, 83, 1532–1537. [Google Scholar] [CrossRef]
- Saif, L.J.; Sestak, K. Transmissible gastroenteritis virus and porcine respiratory coronavirus. In Diseases of Swine, 9th ed.; Straw, B.E., Zimmerman, J.J., D’Allaire, S., Taylor, D.J., Eds.; Iowa State University Press: Ames, IA, USA, 2006; pp. 489–516. [Google Scholar]
- Vlasova, A.N.; Diaz, A.; Damtie, D.; Xiu, L.; Toh, T.H.; Lee, J.S.; Saif, L.J.; Gray, G.C. Novel Canine Coronavirus Isolated from a Hospitalized Patient With Pneumonia in East Malaysia. Clin. Infect. Dis. 2022, 74, 446–454. [Google Scholar] [CrossRef]
- Lednicky, J.A.; Tagliamonte, M.S.; White, S.K.; Blohm, G.M.; Alam, M.M.; Iovine, N.M.; Salemi, M.; Mavian, C.; Morris, J.G. Isolation of a Novel Recombinant Canine Coronavirus From a Visitor to Haiti: Further Evidence of Transmission of Coronaviruses of Zoonotic Origin to Humans. Clin. Infect. Dis. 2022, 75, e1184–e1187. [Google Scholar] [CrossRef] [PubMed]
- Wesley, R. Neutralizing antibody decay and lack of contact transmission after inoculation of 3- and 4-day-old piglets with porcine respiratory coronavirus. J. Vet. Diagn. Investig. 2002, 14, 525–527. [Google Scholar] [CrossRef]
- Laude, H.; Van Reeth, K.; Pensaert, M. Porcine respiratory coronavirus: Molecular features and virus-host interactions. Vet. Res. 1993, 24, 125–150. [Google Scholar] [PubMed]
- Splíchal, I.; Reháková, Z.; Sinkora, M.; Sinkora, J.; Trebichavský, I.; Laude, H.; Charley, B. In vivo study of interferon-alpha-secreting cells in pig foetal lymphohaematopoietic organs following in utero TGEV coronavirus injection. Res. Immunol. 1997, 148, 247–256. [Google Scholar] [CrossRef]
- Wang, Y.; Sun, A.; Sun, Y.; Zhang, S.; Xia, T.; Guo, T.; Hao, Z.; Sun, L.; Jiang, Y.; Qiao, X.; et al. Porcine transmissible gastroenteritis virus inhibits NF-κB activity via nonstructural protein 3 to evade host immune system. Virol. J. 2019, 16, 97. [Google Scholar] [CrossRef]
Strain | Isolate | Variation | Site | Effect | References |
---|---|---|---|---|---|
Purdue | Purdue P115, WH-1, HX, SC-Y, PUR46-MAD, SHXB, HQ2016 | 6 nt deletion (TATGAT) at position 1123–1128 (aa deletion of Y at position 375 and D at position 376) | spike | Reduced virulence/viral attenuation (Exception: SHXB, HQ2016, HX) | [45,46] |
Miller | Attenuated H, H16, AHHF, Miller M60 | 3 nt deletion (TTG) at 2387–2389 (aa 796V) | spike | Unclear effect; found in both virulent and attenuated strains | [46] |
- | TGEV mutant | 224 aa deletion at positions 17–240 of S protein | spike | * Mildly reduced virulence, no impact on tropism | [85] |
Miller | Attenuated H, H16, Miller M60, Miller M6, JS2012, PRCV-ISU-1 | 16 nt deletion (TCTGCTAGAGAATTTT) and 29 nt deletion (CAATAGTCATATAGTTGTTTAATATCATT) | ORF3a/b | Reduced virulence | [45] |
Purdue | PUR46-MAD full-length cDNA clone | 872 nt deletion at positions 24,822–25,693 | ORF3a/b | * Limited reduction in virulence | [90] |
Purdue, Miller | VET-16, H16, Purdue 115, Miller M60, attenuated H, AHHF, SHXB, HQ2016, PUR-46-MAD, WH-1, SC-Y, PRCV-ISU-1 | 1753 nt T to G (585 aa S to A) | spike | Reduced virulence (Exception: AHHF, SHXB and HQ2016 strains) | [45,73] |
Purdue, Miller | VET-16, Miller M6, H16, Miller M60, attenuated H, PRCV | 214 nt G-to-A (72 aa D to N) | spike | Reduced virulence, loss of intestinal tropism | [97] |
Purdue | VET-16, NEB72-RT, PUR-46-MAD, PRCV | 655 nt G to T (219 aa A to S) | spike | Reduced virulence, loss of intestinal tropism | [97,99] |
- | TGEV full-length cDNA clone and TGEV-derived minigenomes | 637 nt G-to-A (108 aa G to V) | ORF1 | * Affected papain-like protease 1-mediated cleavage in vitro | [100] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Olech, M.; Antas, M. Transmissible Gastroenteritis Virus (TGEV) and Porcine Respiratory Coronavirus (PRCV): Epidemiology and Molecular Characteristics—An Updated Overview. Viruses 2025, 17, 493. https://doi.org/10.3390/v17040493
Olech M, Antas M. Transmissible Gastroenteritis Virus (TGEV) and Porcine Respiratory Coronavirus (PRCV): Epidemiology and Molecular Characteristics—An Updated Overview. Viruses. 2025; 17(4):493. https://doi.org/10.3390/v17040493
Chicago/Turabian StyleOlech, Monika, and Marta Antas. 2025. "Transmissible Gastroenteritis Virus (TGEV) and Porcine Respiratory Coronavirus (PRCV): Epidemiology and Molecular Characteristics—An Updated Overview" Viruses 17, no. 4: 493. https://doi.org/10.3390/v17040493
APA StyleOlech, M., & Antas, M. (2025). Transmissible Gastroenteritis Virus (TGEV) and Porcine Respiratory Coronavirus (PRCV): Epidemiology and Molecular Characteristics—An Updated Overview. Viruses, 17(4), 493. https://doi.org/10.3390/v17040493