Thermal Water Reduces the Inflammatory Process Induced by the SARS-CoV-2 Spike Protein in Human Airway Epithelial Cells In Vitro
Abstract
:1. Introduction
2. Materials and Methods
2.1. Thermal Water Collection
2.2. Cell Culture
2.3. MTT Assay
2.4. Cell Stimulation
2.5. Cytokine Determination
2.6. ACE2 and TMPRSS2 Determination
2.7. ACE2 Activity Assay
2.8. Statistical Analysis
3. Results
3.1. Effect of Thermal Water on Spike-Protein-Induced Cytokine Production
3.2. Effect of Thermal Water on ACE2 and TMPRSS2 Receptor Levels
3.3. Effect of Thermal Water on ACE2 Activity
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Maccarone, M.C.; Magro, G.; Albertin, C.; Barbetta, G.; Barone, S.; Castaldelli, C.; Manica, P.; Marcoli, S.; Mediati, M.; Minuto, D.; et al. Short-time effects of spa rehabilitation on pain, mood and quality of life among patients with degenerative or post-surgery musculoskeletal disorders. Int. J. Biometeorol. 2023, 67, 29–36. [Google Scholar] [CrossRef] [PubMed]
- Cozzi, F.; Ciprian, L.; Carrara, M.; Galozzi, P.; Zanatta, E.; Scanu, A.; Sfriso, P.; Punzi, L. Balneotherapy in chronic inflammatory rheumatic diseases-a narrative review. Int. J. Biometeorol. 2018, 62, 2065–2071. [Google Scholar] [CrossRef] [PubMed]
- Huang, A.; Seité, S.; Adar, T. The use of balneotherapy in dermatology. Clin. Dermatol. 2018, 36, 363–368. [Google Scholar] [CrossRef]
- Cacciapuoti, S.; Luciano, M.A.; Megna, M.; Annunziata, M.C.; Napolitano, M.; Patruno, C.; Scala, E.; Colicchio, R.; Pagliuca, C.; Salvatore, P.; et al. The role of thermal water in chronic skin diseases management: A review of the literature. J. Clin. Med. 2020, 9, 3047. [Google Scholar] [CrossRef] [PubMed]
- Gutenbrunner, C.; Bender, T.; Cantista, P.; Karagülle, Z. A proposal for a worldwide definition of health resort medicine, balneology, medical hydrology and climatology. Int. J. Biometeorol. 2010, 54, 495–507. [Google Scholar] [CrossRef] [PubMed]
- Maccarone, M.C.; Magro, G.; Solimene, U.; Scanu, A.; Masiero, S. From in vitro research to real life studies: An extensive narrative review of the effects of balneotherapy on human immune respons. Sport. Sci. Health 2021, 17, 817–835. [Google Scholar] [CrossRef]
- Cheleschi, S.; Tenti, S.; Seccafico, I.; Gálvez, I.; Fioravanti, A.; Ortega, E. Balneotherapy year in review 2021: Focus on the mechanisms of action of balneotherapy in rheumatic diseases. Environ. Sci. Pollut. Res. Int. 2022, 29, 8054–8073. [Google Scholar] [CrossRef] [PubMed]
- Scanu, A.; Tognolo, L.; Maccarone, M.C.; Masiero, S. Immunological events, emerging pharmaceutical treatments and therapeutic potential of balneotherapy on osteoarthritis. Front. Pharmacol. 2021, 12, 681871. [Google Scholar] [CrossRef] [PubMed]
- Antonelli, M.; Fasano, F.; Veronesi, L.; Donelli, D.; Vitale, M.; Pasquarella, C. Balneotherapy and cortisol levels: An updated systematic review and meta-analysis. Int. J. Biometeorol. 2024, 68, 1909–1922. [Google Scholar] [CrossRef]
- Contoli, M.; Gnesini, G.; Forini, G.; Marku, B.; Pauletti, A.; Padovani, A.; Casolari, P.; Taurino, L.; Ferraro, A.; Chicca, M.; et al. Reducing agents decrease the oxidative burst and improve clinical outcomes in COPD patients: A randomised controlled trial on the effects of sulphurous thermal water inhalation. Sci. World J. 2013, 2013, 927835. [Google Scholar] [CrossRef] [PubMed]
- Viegas, J.; Esteves, A.F.; Cardoso, E.M.; Arosa, F.A.; Vitale, M.; Taborda-Barata, L. Biological effects of thermal water-associated hydrogen sulfide on human airways and associated immune cells: Implications for respiratory diseases. Front. Public Health 2019, 7, 128. [Google Scholar] [CrossRef]
- Zajac, D. Inhalations with thermal waters in respiratory diseases. J. Ethnopharmacol. 2021, 281, 114505. [Google Scholar] [CrossRef] [PubMed]
- Fesyun, A.D.; Solimene, U.; Grishechkina, I.A.; Lobanov, A.A.; Andronov, S.V.; Popov, A.I.; Yakovlev, M.Y.; Ivanova, E.; Sanina, N.P.; Reverchuk, I.V.; et al. Mineral water inhalations for bronchial asthma: A meta-analysis. Eur. J. Transl. Myol. 2023, 33, 11460. [Google Scholar] [CrossRef]
- Varricchio, A.; Giuliano, M.; Capasso, M.; Del Gaizo, D.; Ascione, E.; De Lucia, A.; Avvisati, F.; Capuano, F.; De Rosa, G.; Di Mauro, F.; et al. Salso-sulphide thermal water in the prevention of recurrent respiratory infections in children. Int. J. Immunopathol. Pharmacol. 2013, 26, 941–952. [Google Scholar] [CrossRef]
- Franz, L.; Manica, P.; Claudatus, J.; Frigo, A.C.; Marioni, G.; Staffieri, A. Sulfurous-arsenical-ferruginous thermal water nasal inhalation and irrigation in children with recurrent upper respiratory tract infections: Clinical outcomes and predictive factors. Am. J. Otolaryngol. 2021, 42, 103083. [Google Scholar] [CrossRef] [PubMed]
- Casale, M.; Moffa, A.; Cassano, M.; Carinci, F.; Lopez, M.A.; Trecca, E.M.C.; Torretta, S.; Rinaldi, V.; Pignataro, L. Saline nasal irrigations for chronic rhinosinusitis: From everyday practice to evidence-based medicine. An update. Int. J. Immunopathol. Pharmacol. 2018, 32, 2058738418802676. [Google Scholar] [CrossRef]
- Maccarone, M.C.; Masiero, S. Spa therapy interventions for post respiratory rehabilitation in COVID-19 subjects: Does the review of recent evidence suggest a role? Environ. Sci. Pollut. Res. 2021, 28, 46063–46066. [Google Scholar] [CrossRef] [PubMed]
- Maccarone, M.C.; Coraci, D.; Regazzo, G.; Sarandria, N.; Scanu, A.; Masiero, S. Evolution of musculoskeletal symptoms in Long COVID: Have world health systems been prepared to deal with the Long COVID syndrome? Joint Bone Spine 2023, 91, 105623. [Google Scholar] [CrossRef] [PubMed]
- Girón-Navarro, R.; Linares-Hernández, I.; Castillo-Suárez, L.A. The impact of coronavirus SARS-CoV-2 (COVID-19) in water: Potential risks. Environ. Sci. Pollut. Res. Int. 2021, 28, 52651–52674. [Google Scholar] [CrossRef]
- Marotta, D.; Sica, C. Composizione e classificazione delle acque minerali italiane. Ann. Chim. Appl. 1933, 23, 245–290. [Google Scholar]
- Messini, M.; Guadagnino, G. Acque sulfuree. In Trattato di Idroclimatologia Clinica; Messini, M., Ed.; Cappelli Editore: Bologna, Italy, 1951. [Google Scholar]
- Pellegrini, M.; Fanin, D.; Nowicki, Y.; Guarnieri, G.; Bordin, A.; Faggian, D.; Lebani, M.; Saetta, M.; Maestrelli, P. Effect of inhalation of thermal water on airway inflammation in chronic obstructive pulmonary disease. Respir. Med. 2005, 99, 748–754. [Google Scholar] [CrossRef]
- Pozzi, G.; Masselli, E.; Gobbi, G.; Mirandola, P.; Taborda-Barata, L.; Ampollini, L.; Carbognani, P.; Micheloni, C.; Corazza, F.; Galli, D.; et al. Hydrogen sulfide inhibits TMPRSS2 in human airway epithelial cells: Implications for SARS-CoV-2 infection. Biomedicines 2021, 9, 1273. [Google Scholar] [CrossRef]
- Zhang, H.; Penninger, J.M.; Li, Y.; Zhong, N.; Slutsky, A.S. Angiotensin-converting enzyme 2 (ACE2) as a SARS-CoV-2 receptor: Molecular mechanisms and potential therapeutic target. Intensive Care Med. 2020, 46, 586–590. [Google Scholar] [CrossRef]
- Hoffmann, M.; Kleine-Weber, H.; Schroeder, S.; Krüger, N.; Herrler, T.; Erichsen, S.; Schiergens, T.S.; Herrler, G.; Wu, N.H.; Nitsche, A.; et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell 2020, 181, 271–280.e8. [Google Scholar] [CrossRef]
- Koch, J.; Uckeley, Z.M.; Doldan, P.; Stanifer, M.; Boulant, S.; Lozach, P.Y. TMPRSS2 expression dictates the entry route used by SARS-CoV-2 to infect host cells. EMBO J. 2021, 40, e107821. [Google Scholar] [CrossRef] [PubMed]
- Masiero, S.; Vittadini, F.; Ferroni, C.; Bosco, A.; Serra, R.; Frigo, A.C.; Frizziero, A. The role of thermal balneotherapy in the treatment of obese patient with knee osteoarthritis. Int. J. Biometeorol. 2018, 62, 243–252. [Google Scholar] [CrossRef] [PubMed]
- Li, T.; Yang, Y.; Li, Y.; Wang, Z.; Ma, F.; Luo, R.; Xu, X.; Zhou, G.; Wang, J.; Niu, J.; et al. Platelets mediate inflammatory monocyte activation by SARS-CoV-2 spike protein. J. Clin. Investig. 2022, 132, e150101. [Google Scholar] [CrossRef] [PubMed]
- Water Quality in Padua. Available online: https://www.acegasapsamga.it/servizi/acqua/qualita-acqua-potabile/qualita-acqua-di-padova (accessed on 8 March 2024).
- Scanu, A.; Lorenzin, M.; Luisetto, R.; Galozzi, P.; Ortolan, A.; Oliviero, F.; Doria, A.; Ramonda, R. Identification in synovial fluid of a new potential pathogenic player in arthropathies. Exp. Biol. Med. 2022, 247, 1061–1066. [Google Scholar] [CrossRef]
- Wissing, S.I.; Obeid, R.; Rädle-Hurst, T.; Rohrer, T.; Herr, C.; Schöpe, J.; Geisel, J.; Bals, R.; Abdul-Khaliq, H. Concentrations of soluble angiotensin converting enzyme 2 (sACE2) in children and adults with and without COVID-19. J. Clin. Med. 2022, 11, 6799. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Zhao, H.; An, Y. ACE2 Shedding and the Role in COVID-19. Front. Cell Infect. Microbiol. 2022, 11, 789180. [Google Scholar] [CrossRef]
- Theoharides, T.C. Could SARS-CoV-2 spike protein be responsible for long-COVID syndrome? Mol. Neurobiol. 2022, 59, 1850–1861. [Google Scholar] [CrossRef] [PubMed]
- Haystead, T.; Lee, E.; Cho, K.; Gullickson, G.; Hughes, P.; Krafsur, G.; Freeze, R.; Scarneo, S. Investigation of SARS-CoV-2 individual proteins reveals the in vitro and in vivo immunogenicity of membrane protein. Sci. Rep. 2023, 13, 22873. [Google Scholar] [CrossRef]
- Anand, G.; Perry, A.M.; Cummings, C.L.; St Raymond, E.; Clemens, R.A.; Steed, A.L. Surface proteins of SARS-CoV-2 drive airway epithelial cells to induce IFN-dependent inflammation. J. Immunol. 2021, 206, 3000–3009. [Google Scholar] [CrossRef] [PubMed]
- Ratajczak, M.Z.; Bujko, K.; Ciechanowicz, A.; Sielatycka, K.; Cymer, M.; Marlicz, W.; Kucia, M. SARS-CoV-2 entry receptor ACE2 is expressed on very small CD45-precursors of hematopoietic and endothelial cells and in response to virus spike protein activates the Nlrp3 inflammasome. Stem Cell Rev. Rep. 2021, 17, 266–277. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.G.; Liu, X.J.; Guo, Y.L.; Chen, C.L. SARS-CoV-2 spike protein receptor binding domain promotes IL-6 and IL-8 release via ATP/P2Y2 and ERK1/2 signaling pathways in human bronchial epithelia. Mol. Immunol. 2024, 167, 53–61. [Google Scholar] [CrossRef]
- Bellometti, S.; Bertocco, E.; Galzigna, L. Changes in the Intrabronchial Microflora of Patients with Chronic Bronchitis After Inhaling Mineral Water. Vopr. Kurortol. Fizioter. Lech. Fiz. Kult. 1998, 5, 17–19. [Google Scholar]
- Cantone, E.; Marino, A.; Ferranti, I.; Castagna, G.; Maione, N.; Dirubbo, V.; Lengo, M. Nasal cytological assessment after crenotherapy in the treatment of chronic rhinosinusitis in the elderly. Int. J. Immunopathol. Pharmacol. 2014, 27, 683–687. [Google Scholar] [CrossRef]
- Albertini, M.C.; Dacha, M.; Teodori, L.; Conti, M.E. Drinking mineral waters: Biochemical effects and health implications—The state-of-the-art. Int. J. Environ. Health 2007, 1, 153–169. [Google Scholar] [CrossRef]
- Salami, A.; Dellepiane, M.; Crippa, B.; Mora, F.; Guastini, L.; Jankowska, B.; Mora, R. Sulphurous water inhalations in the prophylaxis of recurrent upper respiratory tract infections. Int. J. Pediatr. Otorhinolaryngol. 2008, 72, 1717–1722. [Google Scholar] [CrossRef] [PubMed]
- La Mantia, I.; Andaloro, C. Effects of salso-bromo-iodine thermal water in children suffering from otitis media with effusion: A randomized controlled pilot study. Clin. Ther. 2018, 169, e10–e13. [Google Scholar]
- La Mantia, I.; Ciprandi, G.; Varricchio, A.; Cupido, F.; Andaloro, C. Salso-bromo-iodine thermal water: A nonpharmacological alternative treatment for postnasal drip-related cough in children with upper respiratory tract infections. J. Biol. Regul. Homeost. Agents 2018, 32 (Suppl. S2), 41–47. [Google Scholar]
- Gao, X.; Zhang, S.; Gou, J.; Wen, Y.; Fan, L.; Zhou, J.; Zhou, G.; Xu, G.; Zhang, Z. Spike-mediated ACE2 down-regulation was involved in the pathogenesis of SARS-CoV-2 infection. J. Infect. 2022, 85, 418–427. [Google Scholar] [CrossRef] [PubMed]
- Sui, Y.; Li, J.; Venzon, D.J.; Berzofsky, J.A. SARS-CoV-2 spike protein suppresses ACE2 and type I interferon expression in primary cells from macaque lung bronchoalveolar lavage. Front. Immunol. 2021, 12, 658428. [Google Scholar] [CrossRef]
- Lu, Y.; Zhu, Q.; Fox, D.M.; Gao, C.; Stanley, S.A.; Luo, K. SARS-CoV-2 down-regulates ACE2 through lysosomal degradation. Mol. Biol. Cell 2022, 33, ar147. [Google Scholar] [CrossRef] [PubMed]
- Lu, J.; Sun, P.D. High affinity binding of SARS-CoV-2 spike protein enhances ACE2 carboxypeptidase activity. J. Biol. Chem. 2020, 295, 18579–18588. [Google Scholar] [CrossRef]
- Patel, S.K.; Juno, J.A.; Lee, W.S.; Wragg, K.M.; Hogarth, P.M.; Kent, S.J.; Burrell, L.M. Plasma ACE2 activity is persistently elevated following SARS-CoV-2 infection: Implications for COVID-19 pathogenesis and consequences. Eur. Respir. J. 2021, 57, 2003730. [Google Scholar] [CrossRef] [PubMed]
- Gottardi, W. Iodine and iodine compounds. In Disinfection, Sterilization, and Preservation, 4th ed.; Block, S., Ed.; Lea & Febiger: Philadelphia, OA, USA, 1991; pp. 152–165. [Google Scholar]
- Sriwilaijaroen, N.; Wilairat, P.; Hiramatsu, H.; Takahashi, T.; Suzuki, T.; Ito, M.; Ito, Y.; Tashiro, M.; Suzuki, Y. Mechanisms of the action of povidone-iodine against human and avian influenza A viruses: Its effects on hemagglutination and sialidase activities. Virol. J. 2009, 6, 124. [Google Scholar] [CrossRef]
- Lee, J.H.; Lee, C.E.; Yoo, Y.; Shin, E.; An, J.; Park, S.Y.; Song, W.-J.; Kwon, H.-S.; Cho, Y.S.; Moon, H.-B.; et al. Soluble ACE2 and TMPRSS2 levels in the serum of asthmatic patients. J. Korean Med. Sci. 2022, 37, e65. [Google Scholar] [CrossRef]
- Afar, D.E.; Vivanco, I.; Hubert, R.S.; Kuo, J.; Chen, E.; Saffran, D.C.; Raitano, A.B.; Jakobovits, A. Catalytic cleavage of the androgen-regulated TMPRSS2 protease results in its secretion by prostate and prostate cancer epithelia. Cancer Res. 2001, 61, 1686–1692. [Google Scholar] [PubMed]
- Lacroix, G.; Koch, W.; Ritter, D.; Gutleb, A.C.; Larsen, S.T.; Loret, T.; Zanetti, F.; Constant, S.; Chortarea, S.; Rothen-Rutishauser, B.; et al. Air-liquid interface in vitro models for respiratory toxicology research: Consensus workshop and recommendations. Appl. In Vitro Toxicol. 2018, 4, 91–106. [Google Scholar] [CrossRef] [PubMed]
- Viegas, J.; Cardoso, E.M.; Bonneau, L.; Esteves, A.F.; Ferreira, C.L.; Alves, G.; Santos-Silva, A.J.; Vitale, M.; Arosa, F.A.; Taborda-Barata, L. A novel bionebulizer approach to study the effects of natural mineral water on a 3D in vitro nasal model from allergic rhinitis patients. Biomedicines 2024, 12, 408. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Scanu, A.; Maccarone, M.C.; Caldara, F.; Regazzo, G.; Luisetto, R.; Masiero, S. Thermal Water Reduces the Inflammatory Process Induced by the SARS-CoV-2 Spike Protein in Human Airway Epithelial Cells In Vitro. Biomedicines 2024, 12, 2917. https://doi.org/10.3390/biomedicines12122917
Scanu A, Maccarone MC, Caldara F, Regazzo G, Luisetto R, Masiero S. Thermal Water Reduces the Inflammatory Process Induced by the SARS-CoV-2 Spike Protein in Human Airway Epithelial Cells In Vitro. Biomedicines. 2024; 12(12):2917. https://doi.org/10.3390/biomedicines12122917
Chicago/Turabian StyleScanu, Anna, Maria Chiara Maccarone, Fabrizio Caldara, Gianluca Regazzo, Roberto Luisetto, and Stefano Masiero. 2024. "Thermal Water Reduces the Inflammatory Process Induced by the SARS-CoV-2 Spike Protein in Human Airway Epithelial Cells In Vitro" Biomedicines 12, no. 12: 2917. https://doi.org/10.3390/biomedicines12122917
APA StyleScanu, A., Maccarone, M. C., Caldara, F., Regazzo, G., Luisetto, R., & Masiero, S. (2024). Thermal Water Reduces the Inflammatory Process Induced by the SARS-CoV-2 Spike Protein in Human Airway Epithelial Cells In Vitro. Biomedicines, 12(12), 2917. https://doi.org/10.3390/biomedicines12122917