Immune Response Against Recent Omicron Sub-Lineages in Persons with HIV Receiving a Protein-Based or mRNA XBB.1.5 SARS-CoV-2 Booster Vaccine
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Allen, H.; Tessier, E.; Turner, C.; Anderson, C.; Blomquist, P.; Simons, D.; Løchen, A.; Jarvis, C.I.; Groves, N.; Capelastegui, F.; et al. Comparative transmission of SARS-CoV-2 Omicron (B.1.1.529) and Delta (B.1.617.2) variants and the impact of vaccination: National cohort study, England. Epidemiol. Infect. 2023, 151, e58. [Google Scholar] [CrossRef]
- Stefanelli, P.; Trentini, F.; Petrone, D.; Mammone, A.; Ambrosio, L.; Manica, M.; Guzzetta, G.; d’Andrea, V.; Marziano, V.; Zardini, A.; et al. Tracking the progressive spread of the SARS-CoV-2 Omicron variant in Italy, December 2021 to January 2022. Eurosurveillance 2022, 27, 2200125. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- RCP Comirnaty Omicron XBB.1.5. Available online: https://www.aifa.gov.it/documents/20142/1279946/RCP_COMIRNATY_XBB.pdf (accessed on 27 March 2025).
- Circolare Ministeriale del 22/2/2022 Indicazione di Utilizzo del Vaccino Anti COVID19 Nuvaxovid (Novavax) nei Soggetti Di età Pari o Superiore ai 18 Anni. Available online: https://www.trovanorme.salute.gov.it/norme/renderNormsanPdf?anno=2022&codLeg=85834&parte=1%20&serie=null (accessed on 27 March 2025).
- Stankov, M.V.; Hoffmann, M.; Jauregui, R.G.; Cossmann, A.; Ramos, G.M.; Graalmann, T.; Winter, E.J.; Friedrichsen, M.; Ravens, I.; Ilievska, T.; et al. Humoral and cellular immune responses following BNT162b2 XBB.1.5 vaccination. Lancet Infect. Dis. 2024, 24, e1–e3. [Google Scholar] [CrossRef]
- Chalkias, S.; McGhee, N.; Whatley, J.L.; Essink, B.; Brosz, A.; Tomassini, J.E.; Girard, B.; Edwards, D.K.; Wu, K.; Nasir, A.; et al. Interim Report of the Reactogenicity and Immunogenicity of Severe Acute Respiratory Syndrome Coronavirus 2 XBB–Containing Vaccines. J. Infect. Dis. 2024, 230, e279–e286. [Google Scholar] [CrossRef]
- Heath, P.T.; Galiza, E.P.; Baxter, D.N.; Boffito, M.; Browne, D.; Burns, F.; Chadwick, D.R.; Clark, R.; Cosgrove, C.A.; Galloway, J.; et al. Safety and Efficacy of the NVX-CoV2373 Coronavirus Disease 2019 Vaccine at Completion of the Placebo-Controlled Phase of a Randomized Controlled Trial. Clin. Infect. Dis. 2023, 76, 398–407. [Google Scholar] [CrossRef]
- Heath, P.T.; Galiza, E.P.; Baxter, D.N.; Boffito, M.; Browne, D.; Burns, F.; Chadwick, D.R.; Clark, R.; Cosgrove, C.; Galloway, J.; et al. Safety and Efficacy of NVX-CoV2373 COVID-19 Vaccine. New Engl. J. Med. 2021, 385, 1172–1183. [Google Scholar] [CrossRef]
- Pal, R.; Ferrari, M.G.; Honda-Okubo, Y.; Wattay, L.; Caple, J.; Navarrete, J.; Andersen, H.; Petrovsky, N. Study of immunogenicity and efficacy against Omicron BA.5 of recombinant protein-based COVID-19 vaccine delivered by intramuscular and mucosal routes in nonhuman primates. Vaccine 2024, 42, 1122–1135. [Google Scholar] [CrossRef]
- Lin, D.-Y.; Du, Y.; Xu, Y.; Paritala, S.; Donahue, M.; Maloney, P. Durability of XBB.1.5 Vaccines against Omicron Subvariants. New Engl. J. Med. 2024, 390, 2124–2127. [Google Scholar] [CrossRef]
- Miller, K.W.; Gandhi, R.T. The severity of COVID-19 across the spectrum of HIV. Curr. Opin. HIV AIDS 2023, 18, 119–125. [Google Scholar] [CrossRef]
- Augello, M.; Bono, V.; Rovito, R.; Tincati, C.; Marchetti, G. Immunologic Interplay Between HIV/AIDS and COVID-19: Adding Fuel to the Flames? Curr. HIV/AIDS Rep. 2023, 20, 51–75. [Google Scholar] [CrossRef]
- Antinori, A.; Cicalini, S.; Meschi, S.; Bordoni, V.; Lorenzini, P.; Vergori, A.; Lanini, S.; De Pascale, L.; Matusali, G.; Mariotti, D.; et al. Humoral and Cellular Immune Response Elicited by mRNA Vaccination Against Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) in People Living With Human Immunodeficiency Virus Receiving Antiretroviral Therapy Based on Current CD4 T-Lymphocyte Count. Clin. Infect. Dis. 2022, 75, e552–e563. [Google Scholar] [CrossRef] [PubMed]
- van Gils, M.J.; Lavell, A.; van der Straten, K.; Appelman, B.; Bontjer, I.; Poniman, M.; Burger, J.A.; Oomen, M.; Bouhuijs, J.H.; van Vught, L.A.; et al. Antibody responses against SARS-CoV-2 variants induced by four different SARS-CoV-2 vaccines in health care workers in the Netherlands: A prospective cohort study. PLoS Med. 2022, 19, e1003991. [Google Scholar] [CrossRef]
- EMA Recommends Approval of Adapted Nuvaxovid COVID-19 Vaccine Targeting Omicron XBB.1.5. Available online: https://www.aifa.gov.it/en/-/ema-raccomanda-l-approvazione-del-vaccino-covid-19-nuvaxovid-adattato-contro-omicron-xbb.1.5 (accessed on 20 February 2025).
- Cromer, D.; Steain, M.; Reynaldi, A.; Schlub, T.E.; Khan, S.R.; Sasson, S.C.; Kent, S.J.; Khoury, D.S.; Davenport, M.P. Predicting vaccine effectiveness against severe COVID-19 over time and against variants: A meta-analysis. Nat. Commun. 2023, 14, 1633. [Google Scholar] [CrossRef] [PubMed]
- Pušnik, J.; Monzon-Posadas, W.O.; Osypchuk, E.; Dubiel, A.E.; Baum, M.; Fehring, P.; Büning, A.; Klant, T.; Streeck, H. Effect of XBB.1.5-adapted booster vaccination on the imprinting of SARS-CoV-2 immunity. npj Vaccines 2024, 9, 231. [Google Scholar] [CrossRef]
- Stuart, A.S.V.; Shaw, R.H.; Liu, X.; Greenland, M.; Aley, P.K.; Andrews, N.J.; Cameron, J.C.; Charlton, S.; Clutterbuck, E.A.; Collins, A.M.; et al. Immunogenicity, safety, and reactogenicity of heterologous COVID-19 primary vaccination incorporating mRNA, viral-vector, and protein-adjuvant vaccines in the UK (Com-COV2): A single-blind, randomised, phase 2, non-inferiority trial. Lancet 2022, 399, 36–49. [Google Scholar] [CrossRef]
- COVID Data Tracker. Available online: https://covid.cdc.gov/covid-data-tracker/#variant-proportions (accessed on 6 July 2024).
- Vergori, A.; Lepri, A.C.; Cicalini, S.; Matusali, G.; Bordoni, V.; Lanini, S.; Meschi, S.; Iannazzo, R.; Mazzotta, V.; Colavita, F.; et al. Immunogenicity to COVID-19 mRNA vaccine third dose in people living with HIV. Nat. Commun. 2022, 13, 4922. [Google Scholar] [CrossRef]
- Kaku, Y.; Yo, M.S.; Tolentino, J.E.; Uriu, K.; Okumura, K.; Ito, J.; Sato, K. Virological characteristics of the SARS-CoV-2 KP.3, LB.1, and KP.2.3 variants. Lancet Infect. Dis. 2024, 24, e482–e483. [Google Scholar] [CrossRef]
- Battistini Garcia, S.A.; Zubair, M.; Guzman, N. CD4 Cell Count and HIV. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2025. Available online: https://www.ncbi.nlm.nih.gov/books/NBK513289/# (accessed on 4 March 2025).
- Matusali, G.; Vergori, A.; Cimini, E.; Mariotti, D.; Mazzotta, V.; Lepri, A.C.; Colavita, F.; Gagliardini, R.; Notari, S.; Meschi, S.; et al. Poor durability of the neutralizing response against XBB sublineages after a bivalent mRNA COVID-19 booster dose in persons with HIV. J. Med. Virol. 2024, 96, e29598. [Google Scholar] [CrossRef]
- Meschi, S.; Colavita, F.; Bordi, L.; Matusali, G.; Lapa, D.; Amendola, A.; Vairo, F.; Ippolito, G.; Capobianchi, M.R.; Castilletti, C.; et al. Performance evaluation of Abbott ARCHITECT SARS-CoV-2 IgG immunoassay in comparison with indirect immunofluorescence and virus microneutralization test. J. Clin. Virol. 2020, 129, 104539. [Google Scholar] [CrossRef]
- Bang, H.; Robins, J.M. Doubly Robust Estimation in Missing Data and Causal Inference Models. Biometrics 2005, 61, 962–973. [Google Scholar] [CrossRef]
- Lunceford, J.K.; Davidian, M. Stratification and weighting via the propensity score in estimation of causal treatment effects: A comparative study. Stat. Med. 2004, 23, 2937–2960. [Google Scholar] [CrossRef] [PubMed]
Type of Vaccine | ||||
---|---|---|---|---|
Characteristic | Nuvaxovid XBB.1.5 n = 25 | Pfizer-BioNTech mRNA XBB.1.5 n = 26 | p-Value * | Total N = 51 |
Age, years, median (IQR) | 60 (52, 64) | 55 (51, 65) | 0.497 | 57 (51, 65) |
CD4 count at T0, cells/mm3, median (IQR) | 622 (503, 771) | 783 (515, 976) | 0.296 | 652 (503, 935) |
Nadir CD4 count, cells/mm3, median (IQR) | 212 (26, 298) | 297 (148, 362) | 0.083 | 226 (95, 340) |
Year of HIV diagnosis, median (IQR) | 2007 (2004, 2011) | 2008 (2004, 2011) | 0.765 | 2008 (2004, 2011) |
Year of current booster dose (post 4th dose), median (IQR) | 2022 (2021, 2022) | 2022 (2022, 2022) | 0.637 | 2022 (2022, 2022) |
Days between boost and T0, median (IQR) | 450 (423, 766) | 447 (378, 631) | 0.243 | 450 (402, 656) |
Days between T0 and T1, median (IQR) | 32 (29, 36) | 30 (28, 33) | 0.127 | 30 (28, 35) |
Previous vaccination (no. doses), n (%) | 0.450 | |||
4 | 8 (32.0) | 5 (19.2) | 13 (25.5) | |
5 | 14 (56.0) | 19 (73.1) | 33 (64.7) | |
6 | 3 (12.0) | 2 (7.7) | 5 (9.8) | |
Humoral immunity at T0, median (IQR) | ||||
anti-N IgG (S/CO) | 1.3 (0.2, 4.0) | 0.5 (0.1, 7.1) | 0.955 | 0.8 (0.1, 5.8) |
anti-RBD IgG (BAU/mL) | 1661 (779.6, 3361) | 1861 (859.7, 3266) | 0.992 | 1727 (779.6, 3361) |
nAbs against D614G | 80.0 (40.0, 320.0) | 60.0 (40.0, 160.0) | 0.171 | 80.0 (40.0, 160.0) |
nAbs against XBB.1.6 | 20.0 (10.0, 40.0) | 20.0 (5.0, 40.0) | 0.462 | 20.0 (5.0, 40.0) |
nAbs against JN.1 | 5.0 (5.0, 10.0) | 5.0 (5.0, 10.0) | 0.702 | 5.0 (5.0, 10.0) |
Humoral immunity at T1, median (IQR) | ||||
anti-N IgG (S/CO) | 1.5 (0.2, 2.2) | 0.5 (0.1, 5.6) | 0.962 | 1.2 (0.2, 5.5) |
anti-RBD IgG (BAU/mL) | 4232 (2008, 8462) | 6942 (4804, 11,360) | 0.027 | 5160 (3481, 11,360) |
nAbs against D614G | 160.0 (80.0, 640.0) | 320.0 (80.0, 1280) | 0.716 | 320.0 (80.0, 640.0) |
nAbs against XBB.1.16 | 160.0 (80.0, 320.0) | 160.0 (80.0, 320.0) | 0.752 | 160.0 (80.0, 320.0) |
nAbs against JN.1 | 40.0 (20.0, 80.0) | 40.0 (20.0, 80.0) | 0.846 | 40.0 (20.0, 80.0) |
T-cell immunity, median (IQR) | ||||
IFN-γ at T0 (pg/mL) | 301.4 (96.6, 564.7) | 286.8 (156.8, 461.1) | 0.886 | 294.1 (150.5, 535.0) |
IFN-γ at T1 (pg/mL) | 347.6 (175.9, 746.4) | 272.7 (180.8, 445.7) | 0.394 | 315.3 (180.8, 485.7) |
Potential Average Change at Post-Vaccine Dose and ATE & from Fitting a Linear Regression Model (log2 Scale) | ||||
---|---|---|---|---|
Mean (log2) in Nuvaxovid XBB.1.5 (95% CI) | Mean (log2) in Pfizer mRNA XBB.1.5 (95% CI) | ATE * (95% CI) | p-Value | |
Causal inference method | Anti-RBD | |||
IPWs | 1.15 (0.77, 1.53) | 2.25 (1.56, 2.95) | −1.10 (−1.88, −0.33) | 0.005 |
Double robust (AIPW) | 1.12 (0.20, 2.05) | 2.15 (1.05, 3.26) | −1.03 (−1.79, −0.27) | 0.008 |
Regression adjustment | 1.15 (0.69, 1.61) | 2.11 (1.11, 3.10) | −0.96 (−2.03, 0.12) | 0.080 |
nAbs against D614G | ||||
IPWs | 1.19 (0.82, 1.56) | 2.70 (1.82, 3.57) | −1.51 (−2.44, −0.58) | 0.001 |
Double robust (AIPW) | 1.15 (0.50, 1.81) | 2.46 (0.90, 4.03) | −1.31 (−2.16, −0.47) | 0.002 |
Regression adjustment | 1.18 (0.72, 1.65) | 2.41 (1.28, 3.53) | −1.22 (−2.42, −0.02) | 0.046 |
nAbs against XBB.1.16 | ||||
IPWs | 2.99 (2.39, 3.60) | 3.39 (2.47, 4.31) | −0.39 (−1.45, 0.67) | 0.466 |
Double robust (AIPW) | 3.05 (1.85, 4.26) | 3.12 (1.56, 4.68) | −0.06 (−1.03, 0.91) | 0.899 |
nAbs against JN.1 | ||||
IPWs | 2.21 (1.78, 2.63) | 2.52 (2.03, 3.01) | −0.31 (−0.94, 0.32) | 0.332 |
Double robust (AIPW) | 2.13 (1.51, 2.75) | 2.36 (1.30, 3.41) | −0.23 (−0.84, 0.39) | 0.473 |
IFN-γ | ||||
IPWs | 0.59 (0.13, 1.04) | 0.11 (−0.62, 0.83) | 0.48 (−0.39, 1.35) | 0.278 |
Double robust (AIPW) | 0.61 (−0.28, 1.50) | 0.25 (−3.70, 4.19) | 0.37 (−0.85, 1.58) | 0.556 |
Regression adjustment | 0.62 (0.00, 1.24) | 0.29 (−0.56, 1.14) | 0.33 (−0.76, 1.42) | 0.551 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vergori, A.; Matusali, G.; Cimini, E.; Cozzi Lepri, A.; Mazzotta, V.; Mariotti, D.; Colavita, F.; Gili, S.; Cristofanelli, F.; Fusto, M.; et al. Immune Response Against Recent Omicron Sub-Lineages in Persons with HIV Receiving a Protein-Based or mRNA XBB.1.5 SARS-CoV-2 Booster Vaccine. Int. J. Mol. Sci. 2025, 26, 3521. https://doi.org/10.3390/ijms26083521
Vergori A, Matusali G, Cimini E, Cozzi Lepri A, Mazzotta V, Mariotti D, Colavita F, Gili S, Cristofanelli F, Fusto M, et al. Immune Response Against Recent Omicron Sub-Lineages in Persons with HIV Receiving a Protein-Based or mRNA XBB.1.5 SARS-CoV-2 Booster Vaccine. International Journal of Molecular Sciences. 2025; 26(8):3521. https://doi.org/10.3390/ijms26083521
Chicago/Turabian StyleVergori, Alessandra, Giulia Matusali, Eleonora Cimini, Alessandro Cozzi Lepri, Valentina Mazzotta, Davide Mariotti, Francesca Colavita, Simona Gili, Flavia Cristofanelli, Marisa Fusto, and et al. 2025. "Immune Response Against Recent Omicron Sub-Lineages in Persons with HIV Receiving a Protein-Based or mRNA XBB.1.5 SARS-CoV-2 Booster Vaccine" International Journal of Molecular Sciences 26, no. 8: 3521. https://doi.org/10.3390/ijms26083521
APA StyleVergori, A., Matusali, G., Cimini, E., Cozzi Lepri, A., Mazzotta, V., Mariotti, D., Colavita, F., Gili, S., Cristofanelli, F., Fusto, M., Gagliardini, R., Paulicelli, J., Cecilia, F., Girardi, E., Maggi, F., & Antinori, A. (2025). Immune Response Against Recent Omicron Sub-Lineages in Persons with HIV Receiving a Protein-Based or mRNA XBB.1.5 SARS-CoV-2 Booster Vaccine. International Journal of Molecular Sciences, 26(8), 3521. https://doi.org/10.3390/ijms26083521