Robust COVID-19 Vaccine Responses Despite Filarial Co-Infection: Insights from a Lymphatic Filariasis Cohort in Ghana
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Clinical Characteristics of Participants
2.2. Quantification of SARS-CoV-2-Specific Antibodies
2.3. Quantification of Ascaris Lumbricoides Specific IgG
2.4. Quantification of Human Filarial-Specific Antibodies
2.5. Quantification of SARS-CoV-2 Neutralizing Antibody Levels
2.6. Quantification of Systemic Cytokine and Chemokine Levels
2.7. Statistics
3. Results
3.1. High SARS-CoV-2 Seroprevalence Among COVID-19 Unvaccinated and Vaccinated Individuals in Ghana
3.2. Robust SARS-CoV-2-Specific Antibody Response in Lymphatic Filariasis Patients After Incomplete and Complete COVID-19 Vaccination
3.3. Increased Neutralizing Antibody Levels Towards Variants of Concern in COVID-19 Vaccinated Filaria Seropositive Individuals
3.4. Diminished SARS-CoV-2-Specific IgA Response in Ascaris Seropositive Individuals
3.5. No Influence of Doxycycline Treatment 36-Months Before Blood Sampling of Lymphatic Filariasis Individuals with Lymphoedema Pathology Compared to the Placebo Control Group
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
CFA | Circulating Filarial Antigen |
COVID-19 | Coronavirus Disease 2019 |
LE | Lymphoedema |
LF | Lymphatic Filariasis |
NCP | Nucleocapsid |
SARS-CoV-2 | Severe acute respiratory syndrome coronavirus 2 |
VoC | Variant of concern |
WT | Wildtype |
References
- Venkatesh, A.; Edirappuli, S. Social distancing in covid-19: What are the mental health implications? BMJ 2020, 369, m1379. [Google Scholar] [CrossRef] [PubMed]
- Freeman, T.; Baum, F.; Musolino, C.; Flavel, J.; McKee, M.; Chi, C.; Giugliani, C.; Falcao, M.Z.; De Ceukelaire, W.; Howden-Chapman, P.; et al. Illustrating the impact of commercial determinants of health on the global COVID-19 pandemic: Thematic analysis of 16 country case studies. Health Policy 2023, 134, 104860. [Google Scholar] [CrossRef] [PubMed]
- Hsieh, E.; Dey, D.; Grainger, R.; Li, M.; Machado, P.M.; Ugarte-Gil, M.F.; Yazdany, J. Global Perspective on the Impact of the COVID-19 Pandemic on Rheumatology and Health Equity. Arthritis Care Res. 2024, 76, 22–31. [Google Scholar] [CrossRef] [PubMed]
- Lau, J.; Koh, W.L.; Ng, J.S.; Ming-Gui Khoo, A.; Tan, K.K. Understanding the mental health impact of COVID-19 in the elderly general population: A scoping review of global literature from the first year of the pandemic. Psychiatry Res. 2023, 329, 115516. [Google Scholar] [CrossRef]
- Rahman, M.A.; Cronmiller, S.; Victoros, E.; Shanjana, Y.; Islam, M.R. The WHO has terminated global public health emergency for COVID-19 by the IHR Emergency Committee recommendation: Potential impact analysis. Ann. Med. Surg. 2023, 85, 3755–3756. [Google Scholar] [CrossRef]
- Shaikh, B.T.; Abdullah, M.A.; Sattar, N.Y.; Shaikh, W.Q. COVID-19 Pandemic and Its Global Impact on the Accessibility and Provision of Maternal and Child Health Care Services. Asia Pac. J. Public Health 2024, 36, 511–512. [Google Scholar] [CrossRef]
- WHO. WHO COVID-19 Deaths Dashbord. 2024. Available online: https://data.who.int/dashboards/covid19/deaths?n=c (accessed on 11 January 2025).
- Li, Q.; Wang, Y.; Sun, Q.; Knopf, J.; Herrmann, M.; Lin, L.; Jiang, J.; Shao, C.; Li, P.; He, X.; et al. Immune response in COVID-19: What is next? Cell Death Differ. 2022, 29, 1107–1122. [Google Scholar] [CrossRef]
- Noor, F.M.; Islam, M.M. Prevalence and Associated Risk Factors of Mortality Among COVID-19 Patients: A Meta-Analysis. J. Community Health 2020, 45, 1270–1282. [Google Scholar] [CrossRef]
- Fang, X.; Li, S.; Yu, H.; Wang, P.; Zhang, Y.; Chen, Z.; Li, Y.; Cheng, L.; Li, W.; Jia, H.; et al. Epidemiological, comorbidity factors with severity and prognosis of COVID-19: A systematic review and meta-analysis. Aging 2020, 12, 12493–12503. [Google Scholar] [CrossRef]
- Peckham, H.; de Gruijter, N.; Raine, C.; Radziszewska, A.; Ciurtin, C.; Wedderburn, L.R.; Rosser, E.C.; Webb, K.; Deakin, C.T. Male sex identified by global COVID-19 meta-analysis as a risk factor for death and ITU admission. Nat. Commun. 2020, 11, 6317. [Google Scholar] [CrossRef]
- Herrera-Esposito, D.; de Los Campos, G. Age-specific rate of severe and critical SARS-CoV-2 infections estimated with multi-country seroprevalence studies. BMC Infect. Dis. 2022, 22, 311. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, E.; Parikh, A.; Lopez-Ruiz, A.; Carrilo, M.; Goldberg, J.; Cearras, M.; Fernainy, K.; Andersen, S.; Mercado, L.; Guan, J.; et al. ICU outcomes and survival in patients with severe COVID-19 in the largest health care system in central Florida. PLoS ONE 2021, 16, e0249038. [Google Scholar] [CrossRef] [PubMed]
- Tay, M.Z.; Meng Poh, C.; Renia, L.; MacAry, P.A.; Ng, L.F.P. The trinity of COVID-19: Immunity, inflammation and intervention. Nat. Rev. Immunol. 2020, 20, 363–374. [Google Scholar] [CrossRef] [PubMed]
- Blanco-Melo, D.; Nilsson-Payant, B.E.; Liu, W.C.; Uhl, S.; Hoagland, D.; Moller, R.; Jordan, T.X.; Oishi, K.; Panis, M.; Sachs, D.; et al. Imbalanced Host Response to SARS-CoV-2 Drives Development of COVID-19. Cell 2020, 181, 1036–1045.e9. [Google Scholar] [CrossRef]
- Vabret, N.; Britton, G.J.; Gruber, C.; Hedge, S.; Kim, J.; Kuksin, M.; Levantovsky, R.; Malle, L.; Moreira, A.; Park, M.D.; et al. Immunology of COVID-19: Current State of the Science. Immunity 2020, 52, 910–941. [Google Scholar] [CrossRef]
- Coveney, C.; Tellier, M.; Lu, F.; Maleki-Toyserkani, S.; Jones, R.; Bart, V.M.T.; Pring, E.; Alrubayyi, A.; Richter, F.C.; Scourfield, D.O.; et al. Innate immunology in COVID-19-a living review. Part I: Viral entry, sensing and evasion. Oxf. Open Immunol. 2020, 1, iqaa004. [Google Scholar] [CrossRef]
- Li, G.; Fan, Y.; Lai, Y.; Han, T.; Li, Z.; Zhou, P.; Pan, P.; Wang, W.; Hu, D.; Liu, X.; et al. Coronavirus infections and immune responses. J. Med. Virol. 2020, 92, 424–432. [Google Scholar] [CrossRef]
- Vafaeinezhad, A.; Atashzar, M.R.; Baharlou, R. The Immune Responses against Coronavirus Infections: Friend or Foe? Int. Arch. Allergy Immunol. 2021, 182, 863–876. [Google Scholar] [CrossRef]
- Okuyama, R. mRNA and Adenoviral Vector Vaccine Platforms Utilized in COVID-19 Vaccines: Technologies, Ecosystem, and Future Directions. Vaccines 2023, 11, 1737. [Google Scholar] [CrossRef]
- Adjobimey, T.; Meyer, J.; Sollberg, L.; Bawolt, M.; Berens, C.; Kovacevic, P.; Trudic, A.; Parcina, M.; Hoerauf, A. Comparison of IgA, IgG, and Neutralizing Antibody Responses Following Immunization With Moderna, BioNTech, AstraZeneca, Sputnik-V, Johnson and Johnson, and Sinopharm’s COVID-19 Vaccines. Front. Immunol. 2022, 13, 917905. [Google Scholar] [CrossRef]
- Edouard Mathieu, H.R.; Rodés-Guirao, L.; Appel, C.; Giattino, C.; Hasell, J.; Macdonald, B.; Dattani, S.; Beltekian, D.; Ortiz-Ospina, E.; Roser, M. Coronavirus Pandemic (COVID-19). 2020. Available online: https://ourworldindata.org/covid-vaccinations (accessed on 11 January 2025).
- Oduro-Mensah, D.; Oduro-Mensah, E.; Quashie, P.; Awandare, G.; Okine, L. Explaining the unexpected COVID-19 trends and potential impact across Africa. F1000Research 2021, 10, 1177. [Google Scholar] [CrossRef] [PubMed]
- Bwire, G.; Ario, A.R.; Eyu, P.; Ocom, F.; Wamala, J.F.; Kusi, K.A.; Ndeketa, L.; Jambo, K.C.; Wanyenze, R.K.; Talisuna, A.O. The COVID-19 pandemic in the African continent. BMC Med. 2022, 20, 167. [Google Scholar]
- Habibzadeh, F. Malaria and the incidence of COVID-19 in Africa: An ecological study. BMC Infect. Dis. 2023, 23, 66. [Google Scholar] [CrossRef]
- Adjobimey, T.; Meyer, J.; Hennenfent, A.; Bara, A.J.; Lagnika, L.; Kocou, B.; Adjagba, M.; Laleye, A.; Hoerauf, A.; Parcina, M. Negative association between ascaris lumbricoides seropositivity and Covid-19 severity: Insights from a study in Benin. Front. Immunol. 2023, 14, 1233082. [Google Scholar] [CrossRef]
- Adjobimey, T.; Meyer, J.; Terkes, V.; Parcina, M.; Hoerauf, A. Helminth antigens differentially modulate the activation of CD4(+) and CD8(+) T lymphocytes of convalescent COVID-19 patients in vitro. BMC Med. 2022, 20, 241. [Google Scholar] [CrossRef]
- Tan, L.Y.; Komarasamy, T.V.; Balasubramaniam, V.R. Hyperinflammatory Immune Response and COVID-19: A Double Edged Sword. Front. Immunol. 2021, 12, 742941. [Google Scholar] [CrossRef]
- Natukunda, A.; Zirimenya, L.; Nassuuna, J.; Nkurunungi, G.; Cose, S.; Elliot, A.M.; Webb, E.L. The effect of helminth infection on vaccine responses in humans and animal models: A systematic review and meta-analysis. Parasite Immunol. 2022, 44, e12939. [Google Scholar] [CrossRef]
- Pastor, A.F.; Silva, M.R.; Dos Santos, W.J.T.; Rego, T.; Brandao, E.; de-Melo-Neto, O.P.; Rocha, A. Recombinant antigens used as diagnostic tools for lymphatic filariasis. Parasit. Vectors 2021, 14, 474. [Google Scholar] [CrossRef]
- WHO. WHO Lymphatic Filariasis; WHO: Geneva, Switzerland, 2024.
- Babu, S.; Nutman, T.B. Immunology of lymphatic filariasis. Parasite Immunol. 2014, 36, 338–346. [Google Scholar] [CrossRef]
- WHO. Soil-Transmitted Helminth Infections. 2023. Available online: https://www.who.int/news-room/fact-sheets/detail/soil-transmitted-helminth-infections (accessed on 11 January 2025).
- Debrah, L.B.; Klarmann-Schulz, U.; Osei-Mensah, J.; Kuehlwein, J.M.; Mubarik, Y.; Nadal, J.; Ayisi-Boateng, N.K.; Ricchiuto, A.; Serwaa Opoku, V.; Sullivan, S.M.; et al. Adherence to Hygiene Protocols and Doxycycline Therapy in Ameliorating Lymphatic Filariasis Morbidity in an Endemic Area Post-Interruption of Disease Transmission in Ghana. Am. J. Trop. Med. Hyg. 2024, 111 (Suppl. S4), 66–82. [Google Scholar] [CrossRef]
- Plotkin, S. History of vaccination. Proc. Natl. Acad. Sci. USA 2014, 111, 12283–12287. [Google Scholar] [CrossRef] [PubMed]
- Poland, G.A.; Ovsyannikova, I.G.; Kennedy, R.B. SARS-CoV-2 immunity: Review and applications to phase 3 vaccine candidates. Lancet 2020, 396, 1595–1606. [Google Scholar] [CrossRef] [PubMed]
- Mohammed, I.; Nauman, A.; Paul, P.; Ganesan, S.; Chen, K.H.; Saad Jalil, S.M.; Jaouni, S.H.; Kawas, H.; Khan, W.A.; Vattoth, A.L.; et al. The efficacy and effectiveness of the COVID-19 vaccines in reducing infection, severity, hospitalization, and mortality: A systematic review. Hum. Vaccines Immunother. 2022, 18, 2027160. [Google Scholar] [CrossRef]
- Watson, O.J.; Barnsley, G.; Toor, J.; Hogan, A.B.; Winskill, P.; Ghani, A.C. Global impact of the first year of COVID-19 vaccination: A mathematical modelling study. Lancet Infect. Dis. 2022, 22, 1293–1302. [Google Scholar] [CrossRef]
- Maizels, R.M.; McSorley, H.J. Regulation of the host immune system by helminth parasites. J. Allergy Clin. Immunol. 2016, 138, 666–675. [Google Scholar] [CrossRef]
- McCarthy, J.S.; Nutman, T.B. Perspective: Prospects for development of vaccines against human helminth infections. J. Infect. Dis. 1996, 174, 1384–1390. [Google Scholar] [CrossRef]
- Storey, H.L.; Singa, B.; Naulikha, J.; Horton, H.; Richardson, B.A.; John-Stewart, G.; Walson, J.L. Soil transmitted helminth infections are not associated with compromised antibody responses to previously administered measles and tetanus vaccines among HIV-1 infected, ART naïve Kenyan adults. Parasite Epidemiol. Control 2017, 2, 13–20. [Google Scholar] [CrossRef]
- Adetifa, I.M.O.; Uyoga, S.; Gitonga, J.N.; Mugo, D.; Otiende, M.; Nyagwange, J.; Karanja, H.K.; Tuju, J.; Wanjiku, P.; Aman, R.; et al. Temporal trends of SARS-CoV-2 seroprevalence during the first wave of the COVID-19 epidemic in Kenya. Nat. Commun. 2021, 12, 3966. [Google Scholar] [CrossRef]
- Uyoga, S.; Adetifa, I.M.O.; Karanja, H.K.; Nyagwange, J.; Tuju, J.; Wanjiku, P.; Aman, R.; Mwangangi, M.; Amoth, P.; Kasera, K.; et al. Seroprevalence of anti-SARS-CoV-2 IgG antibodies in Kenyan blood donors. Science 2021, 371, 79–82. [Google Scholar] [CrossRef]
- Voysey, M.; Costa Clemens, S.A.; Madhi, S.A.; Weckx, L.Y.; Folegatti, P.M.; Aley, P.K.; Angus, B.; Baillie, V.L.; Barnabas, S.L.; Bhorat, Q.E.; et al. Safety and efficacy of the ChAdOx1 nCoV-19 vaccine (AZD1222) against SARS-CoV-2: An interim analysis of four randomised controlled trials in Brazil, South Africa, and the UK. Lancet 2021, 397, 99–111. [Google Scholar] [CrossRef]
- Ewer, K.J.; Barret, J.R.; Belij-Rammerstorfer, S.; Sharpe, H.; Makinson, R.; Morter, R.; Flaxman, A.; Wright, D.; Bellamy, D.; Bittaye, M.; et al. Author Correction: T cell and antibody responses induced by a single dose of ChAdOx1 nCoV-19 (AZD1222) vaccine in a phase 1/2 clinical trial. Nat. Med. 2021, 27, 1116. [Google Scholar] [PubMed]
- Folegatti, P.M.; Ewer, K.J.; Aley, P.K.; Angus, B.; Becker, S.; Belij-Rammerstorfer, S.; Bellamy, D.; Bibi, S.; Bittaye, M.; Clutterbuck, E.A.; et al. Safety and immunogenicity of the ChAdOx1 nCoV-19 vaccine against SARS-CoV-2: A preliminary report of a phase 1/2, single-blind, randomised controlled trial. Lancet 2020, 396, 467–478. [Google Scholar] [PubMed]
- Hvidt, A.K.; Baerends, E.A.M.; Sogaard, O.S.; Staerke, N.B.; Raben, D.; Reekie, J.; Nielsen, H.; Johansen, I.S.; Wiese, L.; Benfield, T.L.; et al. Comparison of vaccine-induced antibody neutralization against SARS-CoV-2 variants of concern following primary and booster doses of COVID-19 vaccines. Front. Med. 2022, 9, 994160. [Google Scholar] [CrossRef] [PubMed]
- Khoury, D.S.; Cromer, D.; Reynaldi, A.; Schlub, T.E.; Wheatley, A.K.; Juno, J.A.; Subbarao, K.; Kent, S.J.; Triccas, J.A.; Davenport, M.P. Neutralizing antibody levels are highly predictive of immune protection from symptomatic SARS-CoV-2 infection. Nat. Med. 2021, 27, 1205–1211. [Google Scholar] [CrossRef]
- Aniagyei, W.; Kofi Adjei, J.; Adankwah, E.; Seyfarth, J.; Mayatepek, E.; Antwi Berko, D.; Asamoah Sakyi, S.; Batsa Debrah, L.; Debrah, A.Y.; Hoerauf, A.; et al. Doxycycline Treatment of Mansonella perstans-Infected Individuals Affects Immune Cell Activation and Causes Long-term T-cell Polarization. Clin. Infect. Dis. 2023, 76, e1399–e1407. [Google Scholar] [CrossRef]
- Debrah, A.Y.; Specht, S.; Klarmann-Schulz, U.; Batsa, L.; Mand, S.; Marfo-Debrekyei, Y.; Fimmers, R.; Dubben, B.; Kwarteng, A.; Osei-Atweneboana, M.; et al. Doxycycline Leads to Sterility and Enhanced Killing of Female Onchocerca volvulus Worms in an Area With Persistent Microfilaridermia After Repeated Ivermectin Treatment: A Randomized, Placebo-Controlled, Double-Blind Trial. Clin. Infect. Dis. 2015, 61, 517–526. [Google Scholar] [CrossRef]
- Dhar, R.; Kirkpatrick, J.; Gilbert, L.; Khanna, A.; Madhavdas Modi, M.; Chawla, R.K.; Dalal, S.; Nagarjuna Maturu, V.; Stern, M.; Keppler, O.T.; et al. Doxycycline for the prevention of progression of COVID-19 to severe disease requiring intensive care unit (ICU) admission: A randomized, controlled, open-label, parallel group trial (DOXPREVENT.ICU). PLoS ONE 2023, 18, e0280745. [Google Scholar] [CrossRef]
- Johannesen, C.K.; Rezahosseini, O.; Gybel-Brask, M.; Kristensen, J.H.; Hasselbalch, R.B.; Pries-Heje, M.M.; Nielsen, P.B.; Knudsen, A.D.; Fogh, K.; Norsk, J.B.; et al. Risk Factors for Being Seronegative following SARS-CoV-2 Infection in a Large Cohort of Health Care Workers in Denmark. Microbiol. Spectr. 2021, 9, e0090421. [Google Scholar] [CrossRef]
- Ding, J.; Liu, C.; Wang, Z.; Guo, H.; Zhang, K.; Ma, L.; Wang, B.; Zhao, H.; Song, M.; Guan, X. Characteristics and Prognosis of Antibody Non-responders With Coronavirus Disease 2019. Front. Med. 2022, 9, 813820. [Google Scholar] [CrossRef]
- Hamady, A.; Lee, J.; Loboda, Z.A. Waning antibody responses in COVID-19: What can we learn from the analysis of other coronaviruses? Infection 2022, 50, 11–25. [Google Scholar] [CrossRef]
- Adepoju, P. Africa’s struggle with inadequate COVID-19 testing. Lancet Microbe 2020, 1, e12. [Google Scholar] [CrossRef] [PubMed]
- Moyazzem Hossain, M.; Abdulla, F.; Rahman, A. Challenges and difficulties faced in low- and middle-income countries during COVID-19. Health Policy Open 2022, 3, 100082. [Google Scholar] [CrossRef] [PubMed]
- Grifoni, A.; Weiskopf, D.; Ramirez, S.I.; Mateus, J.; Dan, J.M.; Moderbacher, C.R.; Rawlings, S.A.; Sutherland, A.; Premkumar, L.; Jadi, R.S.; et al. Targets of T Cell Responses to SARS-CoV-2 Coronavirus in Humans with COVID-19 Disease and Unexposed Individuals. Cell 2020, 181, 1489–1501.e15. [Google Scholar] [CrossRef]
Sample Size (n=) | 222 |
Age (Mean ± SD, Min–Max) | 46.57 ± 9.21 (17–64) |
Sex (M/F) | 34 (15%)/188 (85%) |
BMI (Min-Max, Mean ± SD) | 11.49–42.44 (23.32 ± 4.05) |
LE Staging (0/1/2/3/4/5/6) | 2/5/130/55/0/1/29 0.9%/2.3%/58.6%/24.8%/0%/0.5%/13.1% |
Treatment Group (A/B) | 198 (89%)/24 (11%) |
COVID-19 Positive test (No/Yes) | 222 (100%)/0 |
COVID-19 Vaccination (No/1. Dose/2. Dose) | 141 (63%)/63 (28%)/18 (8%) |
BCG vaccination (No/Yes/Unknown) | 65 (29%)/139 (63%)/18 (8%) |
Influenza vaccination (No/Yes/Unknown) | 65 (29%)/139 (63%)/18 (8%) |
COVID-19 related symptoms (No/Yes) | 186 (84%)/36(16%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Meyer, J.; Nadal, J.; Batsa Debrah, L.; Debrah, A.Y.; Osei-Mensah, J.; Adu Mensah, D.; Korir, P.J.; Kuehlwein, J.M.; Klarmann-Schulz, U.; Hoerauf, A.; et al. Robust COVID-19 Vaccine Responses Despite Filarial Co-Infection: Insights from a Lymphatic Filariasis Cohort in Ghana. Vaccines 2025, 13, 312. https://doi.org/10.3390/vaccines13030312
Meyer J, Nadal J, Batsa Debrah L, Debrah AY, Osei-Mensah J, Adu Mensah D, Korir PJ, Kuehlwein JM, Klarmann-Schulz U, Hoerauf A, et al. Robust COVID-19 Vaccine Responses Despite Filarial Co-Infection: Insights from a Lymphatic Filariasis Cohort in Ghana. Vaccines. 2025; 13(3):312. https://doi.org/10.3390/vaccines13030312
Chicago/Turabian StyleMeyer, Julia, Jennifer Nadal, Linda Batsa Debrah, Alexander Yaw Debrah, Jubin Osei-Mensah, Derrick Adu Mensah, Patricia Jebett Korir, Janina M. Kuehlwein, Ute Klarmann-Schulz, Achim Hoerauf, and et al. 2025. "Robust COVID-19 Vaccine Responses Despite Filarial Co-Infection: Insights from a Lymphatic Filariasis Cohort in Ghana" Vaccines 13, no. 3: 312. https://doi.org/10.3390/vaccines13030312
APA StyleMeyer, J., Nadal, J., Batsa Debrah, L., Debrah, A. Y., Osei-Mensah, J., Adu Mensah, D., Korir, P. J., Kuehlwein, J. M., Klarmann-Schulz, U., Hoerauf, A., & Adjobimey, T. (2025). Robust COVID-19 Vaccine Responses Despite Filarial Co-Infection: Insights from a Lymphatic Filariasis Cohort in Ghana. Vaccines, 13(3), 312. https://doi.org/10.3390/vaccines13030312